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Abstract

We address the problem of fitting a parametric human
body model (SMPL) to point cloud data. Optimization-
based methods require careful initialization and are prone
to becoming trapped in local optima. Learning-based meth-
ods address this but do not generalize well when the in-
put pose is far from those seen during training. For rigid
point clouds, remarkable generalization has been achieved
by leveraging SE(3)-equivariant networks, but these meth-
ods do not work on articulated objects. In this work we ex-
tend this idea to human bodies and propose ArtEq, a novel
part-based SE(3)-equivariant neural architecture for SMPL
model estimation from point clouds. Specifically, we learn
a part detection network by leveraging local SO(3) invari-
ance, and regress shape and pose using articulated SE(3)
shape-invariant and pose-equivariant networks, all trained
end-to-end. Our novel pose regression module leverages
the permutation-equivariant property of self-attention lay-
ers to preserve rotational equivariance. Experimental re-
sults show that ArtEq generalizes to poses not seen during
training, outperforming state-of-the-art methods by ~44%
in terms of body reconstruction accuracy, without requir-
ing an optimization refinement step. Furthermore, ArtEq
is three orders of magnitude faster during inference than
prior work and has 97.3% fewer parameters. The code
and model are available for research purposes at ht tps :
//arteq.is.tue.mpg.de.

], and LoopReg [0]. Note that IP-Net’s output has a flipped torso.

1. Introduction

The three-dimensional (3D) capture of humans in var-
ied poses is increasingly common and has many applica-
tions including synthetic data generation [35], human health
analysis [57], apparel design and sizing [51], and avatar cre-
ation [ 10, 36, 50, 55]. Existing 3D body scanners output un-
ordered point clouds, which are not immediately useful for
the above applications. Consequently, the first step in pro-
cessing such data is to register it; that is, to transform it into
a canonical and consistent 3D representation such as a mesh
with a fixed topology. For human bodies, this is typically
done by first fitting a parametric model like SMPL [31] to
the data; see Figure 1. Such a process should be efficient
and general; that is, it should work for any input body scan,
no matter the complexity of the pose. However, this is chal-
lenging given the articulated structure of the body and the
high degree of variation in shape and pose.

Traditional optimization-based methods for fitting bod-
ies to point clouds [2, 7, &, 21, 25] are usually based on
ICP [11] or its variants [2, 38, 62]. These approaches
can recover accurate results even for complex poses, but
require a good initialization, are computationally expen-
sive, and may require significant manual input. Inspired
by progress made in neural architectures for rigid 3D point
clouds [41, 42, 48, 59], learning-based approaches have
been proposed to solve the registration task. Previous ap-
proaches directly regress model parameters [24, 30, 54], in-
termediate representations such as correspondences [5, 6],
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or mesh vertex positions [19, 39, 60]. While less ac-
curate than optimization, they can be used to initialize
an optimization-based refinement step for improved accu-
racy [15].

A major limitation of learning-based approaches, as re-
ported in several recent papers [5, 6, 54], is their poor gen-
eralization to body poses that lie outside the training dis-
tribution. To understand why, let us first consider how a
parametric model such as SMPL explains the input point
cloud. Given the shape parameters, the model first gen-
erates the overall body structure by deforming a template
mesh in a canonical pose. Pose-dependent offsets are then
added to the mesh. This deformed mesh then undergoes an
articulated transformation that poses the body parts rigidly,
and linear blend skinning is applied to smooth the result.
Therefore, the observed point cloud is modeled as a com-
bination of a canonical body shape, a part-based articulated
model, and non-rigid pose-corrective deformations. When
training networks to fit SMPL to point clouds, the networks
are tasked with capturing the joint distribution of canonical
shape and pose deformation, entangling these factors while
learning a prior over plausible body shape and pose. This
data-dependent prior is useful to infer new, in-distribution
samples, but becomes a limitation when it comes to poses
that are far from the training set. Ideally, if the networks
were designed to be equivariant to articulated body pose
transformations, then unseen body poses at test time would
not be a problem.

A function (network) f : V' — W is said to be equiv-
ariant with respect to a group G if, for any transformation
T € G, f(TX) = Tf(X), X € V. This property can
aid in generalization since it allows one to train with only
“canonical” inputs f(X), while generalizing, by design,
to any transformation of the group 7 f(X). For example,
SE(3)-equivariant networks have been used to address the
out-of-distribution (OOD) generalization problem in rigid
point cloud tasks, see for example [9, 16, 40]. However, ex-
tending this to the human body is far from straightforward,
due to 1) its high degree of articulation, 2) the entangle-
ment of pose and shape, and 3) deformations that are only
approximately rigid.

In this work we introduce ArtEq, a new neural method
that regresses SMPL shape and pose parameters from a
point cloud. Our key insight is that non-rigid deforma-
tions of the human body can be largely approximated as
part-based, articulated, rigid SE(3) transformations, and
that good generalization requires a proper integration of
equi-/in-variant properties into the network. With this
in mind, we propose a novel equi-/in-variant architecture
design based on the discretized SE(3)-equivariant frame-
work [9, 12]. We learn a part detection network by lever-
aging local SO(3) invariance and regress shape and pose
by proposing articulated SE(3) shape-invariant and pose-

equivariant networks, all trained in an end-to-end man-
ner. We further propose a novel pose regression module
that leverages the permutation-equivariant property of self-
attention layers to preserve rotational equivariance. Finally,
to facilitate generalization to unseen poses, we cast pose re-
gression as a weight prediction task, in which the predicted
weights are used to calculate a weighted average over each
of the discretized SO(3) rotations to obtain the final result.

Our empirical studies demonstrate the importance of in-
troducing SE(3) equi-/in-variance for the task of SMPL
pose and shape estimation from point cloud data. For out-
of-distribution data, we show significant improvement over
competing methods [5, 6, 54] in terms of part segmentation,
as well as accuracy in pose and shape estimation, even when
others are trained with SO(3) data augmentation. Notably,
we outperform methods that require an optimization step,
while ArtEq is purely regression-based. Our method also
shows strong performance for in-distribution samples, sur-
passing all previous (optimization-based) methods although
it only uses regression. Finally, we demonstrate how em-
ploying the right symmetries can lead to a lightweight net-
work that is more than thirty times smaller than prior mod-
els, as well as a thousand times faster at inference time,
making it easy to deploy in real-world scenarios.

In summary, we make the following contributions: (1)
We propose a new framework for human shape and pose
estimation from point clouds that integrates SE(3)-equi-/in-
variant properties into the network architecture. (2) We
propose a novel SE(3)-equivariant pose regression module
that combines SE(3) discretization with the permutation-
equivariant property of self-attention layers. (3) We show
state-of-the-art performance on common benchmarks and
datasets based on only regression, particularly for out-of-
distribution poses. Additionally, our framework results in a
much lighter model that performs three orders of magnitude
faster than competitors at inference time. Our code and pre-
trained models are available at https://arteq.is.
tue.mpg.de.

2. Related Work

Human Body Registration From Point Clouds. Classic
approaches for body registration typically deform a tem-
plate mesh or a parametric model using some variant of the
ICP [11] algorithm [2, 38, 62], often with additional cues
such as color patterns [7, 8] or markers [2, 3, 37]. These
optimization-based methods can produce accurate results
for complex poses when properly initialized, but are prone
to getting stuck in local minima when not, can be slow to
generate results, and are not fully automatic.
Learning-based approaches have gained popularity,
largely due to the development of effective neural net-
works for point cloud processing such as PointNet [4 1, 42],
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DeepSets [59], and KPConv [48]. These are trained to pro-
duce either a good initialization for a subsequent optimiza-
tion process [5, 19, 54] or as end-to-end systems that di-
rectly compute either a mesh [39, 53, 60] or the parameters
of a human body model [6, 24, 30, 60]. Our method falls
into the last category.

Model-based registration reduces the task to estimat-
ing pose and/or shape parameters of a human body model
such as SMPL [32]. It has been noted that it is diffi-
cult to directly regress the parameters of a SMPL model
from point clouds [5, 6, 24, 53, 54]. To circumvent this,
current approaches go through intermediate representations
such as joint-level features [24, 30] and correspondence
maps [0, 54], or resort to temporal data and motion mod-
els [23]. Similar to this work, part-based segmentation has
been used as an additional cue for registration [5, 0, 28, 54].
Closely related to our work, PTF [54] isolates each seg-
mented part and regresses a local transformation from input
space to canonical space, from which pose parameters are
obtained via least-squares fitting.

Without explicitly considering rotational symmetries,
previous methods struggle to generalize to poses unseen
during training, which limits their applicability. To the best
of our knowledge, ours is the first work on model-based
human point cloud registration specifically designed to cor-
rectly and efficiently handle out-of-distribution poses.

Equivariant Learning on Point Clouds. The success of
CNN:s is largely attributed to the translational equivariance
property of such networks. Consequently, there has been an
increasing interest in making neural networks invariant or
equivariant to other symmetry groups [4, 9, 13, 14, 16—18,

, 40, 41, 44, 46, 56, 59]. Of particular interest for point
cloud processing is the SE(3) equivariance group. Meth-
ods for achieving SE(3) equivariance include: Vector Neu-
rons [16], which employ tensor features and accordingly
designed linear/non-linear equivariant layers; Tensor Field
Networks (TFEN) [49] and SE3-transformers [18], which
build on top of the SO(3) representation theory with spher-
ical harmonics and Clebsch-Gordan coefficients; methods
that make use of group averaging theory [4, 40, 43]; and
methods that employ a discretization of the SO(3) space
to achieve equivariance [9, 12]. Within this last group,
EPN [9] uses separable discrete convolutions (SPConv) that
split the 6D SE(3) convolutions into SO(3) and translational
parts, improving computational efficiency. Here, we em-
ploy the discrete SO(3) framework along with SPConv lay-
ers, as it allows us to leverage the discretized space to sim-
plify the problem of pose regression, and has been noted by
previous work to be highly effective [29].

In the case of rigid objects, SE(3)/SO(3)-equivariant net-
works have been applied to several tasks including classi-
fication and retrieval [9, 17], segmentation [16, 33], reg-
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Figure 2: A rotation acting in continuous space is equiva-
lent to a permutation acting in the discretized rotation space
(in a particular order). We exploit this property to design
our architecture based on self-attention layers, while main-
taining SO(3) equivariance.

istration [52, 61], object manipulation [45], normal esti-
mation [40], and pose estimation/canonicalisation [29, 47].
Also for rigid objects, disentanglement of shape and pose
has been considered by some of these works, such as [26,

]. To our knowledge, the only method that explores piece-
wise equivariance for articulated objects is [40]. However,
this is done in the context of shape-space learning, which
takes as input already registered meshes with ground-truth
part segmentation information. Our work, on the other
hand, takes as input unordered and unevenly sampled point
clouds, for which the parts are unknown.

3. Preliminaries
3.1. Discretized SE(3) Equivariance

Gauge-equivariant neural networks were proposed by
Cohen et al. [12] as a way to extend the idea of 2D con-
volutions to the manifold domain. Intuitively, instead of
shifting a convolutional kernel through an image for trans-
lational equivariance, gauge-equivariant networks “shift” a
kernel through all possible tangent frames for equivariance
to gauge symmetries. Since this process is very computa-
tionally expensive, [12] proposed to discretize the SO(3)
space with the icosahedron, which is the largest regular
polyhedron, exhibiting 60 rotational symmetries. This has
been further extended to operate on point clouds and the
SE(3) space by EPN [9], which introduces separable con-
volutional layers (SPConv) to independently convolve the
rotational and translational parts.

Formally, the SO(3) space can be discretized by a rota-
tion group G of size |G| = 60, where each group element
g; represents a rotation R(g;) in the icosahedral rotation
group. As shown in Figure 2, a rotation acting on a con-
tinuous equivariant feature is equivalent to a permutation
acting in the discretized space, where the rotation group is
permuted in a specific order. This builds a connection be-
tween a rotation in a continuous space and a permutation in
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Figure 3: Overview of ArtEq. We first obtain point-wise equivariant features using a small equivariant point network
[9], which provides a C-dimensional feature vector per point and per-group element (i.e. the 60 rotational symmetries of
the icosahedron). We then convert these into point-wise invariant features by pooling over the rotation group to obtain a
part segmentation of the point cloud. Using the segmentation, we softly aggregate the point-wise features into part-based
equivariant features. A self-attention layer processes these in an efficient manner while preserving equivariance. We cast
pose regression as a weight prediction task by predicting the weights necessary to perform a weighted average over each
rotation element. Finally, we transform the part-based features into invariant ones to obtain an estimate of the shape.

a discrete space. In this paper, following [9, |2], we use the
rotation group G and the permutation operator to approxi-
mate the SO(3) space and the rotation operator.

3.2. SMPL Body Model

SMPL [31] is a statistical human body model that maps
shape 3 € R1Y and pose § € R¥*3 parameters to mesh ver-
tices V € R6890x3 where K is the number of articulated
joints (here K = 22), and 6 contains the relative rotation
of each joint plus the root joint w.r.t. the parent in the kine-
matic tree, in axis-angle representation. The model uses
PCA to account for variations in body shape, and Linear
Blend Skinning (LBS), W (), to pose the mesh.

A rest-pose mesh is first produced by

T(8,6) = T + Bs(8) + Bp(6), (1)

where T € R6890%3 ig the template mesh, Bg(/3) is the lin-
ear transformation from shape parameters 3 to shape dis-
placements, and Bp(6) is the linear transformation from
pose parameters to blendshape correctives that account for
soft-tissue deformations due to pose. Next, joint locations
are obtained for the rest-pose mesh via the linear joint re-
gressor J(B) : RIBI — RO J(B) = {t1,... tog;t; €
R3}. Finally, SMPL applies LBS using skinning weights
W over the rest-pose mesh to obtain the output vertices:

M(B,0) = W(T(B,0),J(8),6,W). 2
4. Method

Given an input point cloud X = {x; € R3}y of size
N representing a human body, the goal of this work is to

regress the SMPL [31] shape 3 and pose 8 parameters that
best explain the observations for any given pose, including
out-of-distribution ones. Inspired by the progress in rigid
SE(3)-equivariant networks [4, 9, 29], we develop an archi-
tecture that extracts part-based SE(3)- invariant/equivariant
features to disentangle shape, pose, and body parts.

There are key differences between rigid objects and hu-
man bodies. First, bodies have a highly articulated struc-
ture, with different body parts undergoing various SE(3)
transformations according to the kinematic tree. There-
fore, global SE(3)-equivariant features cannot be directly
employed, requiring, instead, local feature extraction and
aggregation along with part-based semantic guidance. Sec-
ond, most of the human body parts are approximately cylin-
drical in shape, such as the torso, legs, and arms. Cylindri-
cal shapes have a rotational symmetry, resulting in ambigu-
ities when recovering the pose. This is a known problem in
the rigid pose estimation field [22], and cannot be resolved
without external information. For human bodies, however,
we can use non-ambiguous parts to help disambiguate the
other ones, as we will show later. Third, when varying body
poses the Euclidean neighborhood of a point might not al-
ways correspond to the geodesic neighborhood, particularly
with poses that are close to self-contact. This is a problem
when using point convolutional networks (such as the one
developed here) since the kernel has a ball-shaped receptive
field that might convolve far-away body points (i.e., close
in Euclidean space but far in geodesic space), resulting in
incorrect estimates.

To address this we introduce ArtEq, a part-based SE(3)-



equivariant framework for human point clouds that pro-
cesses articulated bodies via four modules: (1) shared lo-
cally equivariant feature extraction (Sec. 4.1), (2) part seg-
mentation network (Sec. 4.2), (3) pose estimation network
(Sec. 4.3.2) and (4) shape estimation network (Sec. 4.3.3).
An overview of our method can be found in Figure 3, and
we elaborate each of these in the following.

4.1. Locally Equivariant Feature Extractor

The first step of our pipeline is to obtain local per-point
SO(3)-equivariant features that can be used by the subse-
quent modules. To this end, we train a network that takes as
input the point cloud X and a rotation group G with |G| =
M elements, and returns a feature tensor F € RVXMxC|
comprising a feature vector of size C for each of the N
points and each of the M group elements.

Key to our design is the ability to capture local SO(3)-
equivariant features via limiting the point convolution net-
work’s effective receptive field. As mentioned earlier, hu-
man body parts that come close to each other are prob-
lematic, since the convolutional kernels might incorporate
points that are geodesically distant (e.g., an arm that is al-
most touching a leg). This, in turn, results in reduced perfor-
mance when body parts are close to each other in Euclidean
space. To mitigate this, we employ a small kernel size for
the SPConv layer and reduce the number of layers to only
two, such that each point-wise feature in F € RV*Mx*C jg
calculated using only a small neighboring patch.

4.2. Part Segmentation via Local SO(3) Invariance

To obtain part-based equivariance, the first step is to seg-
ment the point cloud into body parts. To achieve this while
generalizing to OOD poses, we initially obtain a locally
SO(3)-invariant feature by average pooling F over the ro-
tation group dimension (M), aggregating the information
from all group elements:

F(xi) = o ({F(xi,81), F(xi,82), - -, F(xi,8Mm)}) ,

3)
where o is an aggregation function (here we use mean pool-
ing), and F € RV*® are the per-point SO(3)-invariant fea-
tures that encode intrinsic geometry information. To effi-
ciently segment the point cloud we adopt a PointNet ar-
chitecture [41] with skip connections, which takes as in-
put the invariant local feature F(x;) and outputs a vector
a € RV*22 with a(x;, pr) representing the probability of
point x; belonging to body part pg. Note that PointNet is
based on set operators such as pooling and point-wise con-
volution, and hence preserves SO(3) invariance'.

'In the original PointNet, the input to the first layer is absolute point
coordinates which are not invariant to rotations. Here, however, the input
is already SO(3)-invariant.

4.3. Pose and Shape Estimation via Attentive SE(3)
Equivariance

To disentangle pose and shape while maintaining OOD
generalization we need to consider the correct symmetries
for each task: part-based SE(3) equivariance for pose and
part-based SE(3) invariance for shape. We explain here how
to process the previously obtained part segmentation and lo-
cal SO(3)-equivariant features to estimate part-based equiv-
ariant features, which are used to compute the final SMPL
pose 6 and shape 3 parameters.

4.3.1 Extracting Part-Based Features

The feature tensor F operates at the level of points. To ob-
tain features that are useful for the part-level task of pose
and shape regression, we aggregate F into part-based equiv-
ariant features H € REXMxC,

A naive solution is to simply select the points with max-
imum probability for a part, and average their features to
obtain a unique equivariant feature of size M x C' for each
body part p;. However, (1) hard selection based on the
argmax operation is not differentiable, and (2) points in the
transition of two adjacent parts are ambiguous and can be
hard to correctly select. Instead, we propose to use a soft
aggregation by performing a weighted average of the equiv-
ariant features of all the points, weighted by the probability
computed by the segmentation network:

N
H(pk,8j) = Za(xiapk)}—<xiagj)a “)

%

where H € REXMXC ig a per-part SO(3)-equivariant fea-
ture, and K is the number of body parts (KX = 22 in the
case of SMPL). Similar to Equation (3) in Section 4.2, we
extract the part-level SO(3)-invariant feature by aggregating
the equivariant features:

H(pr) = o ({H(Pk, 81), H(Pk,82); -, H(Pr 8M)})
©®)
where H(py) € RE*C is the per-part SO(3)-invariant fea-
ture.

4.3.2 Pose Estimation

Pose Representation. SMPL pose parameters are defined
relative to their parent in the kinematic tree. However, lo-
cal rotations are problematic for equivariant features, since
these are defined in a global coordinate system. We esti-
mate instead global rotation matrices that represent the rigid
transformation from the part in canonical pose to the part in
the current pose, from which we can recover the local rota-
tion matrix @y by 6, = 7% .07 (k) where 7% is the

parent



estimated global rotation matrix, and 6 ,,c(1) the accu-
mulated rotation matrix of the parent.

Attentive SE(3) Equivariance. To obtain the part rota-
tion matrices 7A€k, we need a function that transforms the
part feature vector H(py) into a suitable representation of
Ry This function is required to preserve the equivariance
by construction; if it does not (e.g., if we employ a stan-
dard MLP), the network must observe the point cloud in
all possible poses to be capable of regressing arbitrary rota-
tions. While we could, in principle, extend the network by
concatenating more SPConv layers, this results in larger re-
ceptive fields, which are harmful in our particular scenario,
and results in longer computation times. Instead, we can
make use of the fact that rotational equivariance in continu-
ous space is equivalent to permutation equivariance in dis-
crete space (see [9, 13] and Section 3). Thanks to this, self-
attention over group elements is an efficient alternative for
preserving rotational equivariance, and we can use it to ex-
tract relationships (e.g., relative importance) among the el-
ements of G. Hence, we pair our initial SPConv layers with
self-attention layers for efficient SE(3)-equivariant process-
ing.

Pose Regression as Group Element Weight Prediction.
Given the set of M group element features, H € REXMxC
we now need to regress a rotation for each body part. Here,
we can make use of the fact that each group element fea-
ture is associated with a group element g; (which is a ro-
tation in the discretized SO(3) group — see Section 3.1).
With this, we can regard the pose regression task as a prob-
abilistic/weighted aggregation of the group element rota-
tions. Specifically, we use the part-based group element
features H(px, g;) to regress one weight for each of the M
group elements. The final pose is calculated as the weighted
chordal L2 mean [20] of the group elements with the pre-
dicted weights. Since these are predicted by self-attention
layers, we can ensure that 1) rotational (permutation) equiv-
ariance is preserved and 2) the correlations between the M
group element features are being captured. The part-wise
rotations can now be regarded as a weighted interpolation
between the discrete M group elements, without losing the
equivariance of the group element features.

Addressing the Cylindrical Rotational Symmetry. For
human bodies, we need to take into account the fact that
many parts are of roughly cylindrical shape, resulting in a
rotational ambiguity. However, we can leverage the fact that
pairs of neighboring parts are less prone to this ambiguity.
Imagine an upper leg and lower leg with a bent knee be-
tween them. Each body part on its own suffers from rota-
tional ambiguity, but the bent knee means that the complex
of both limbs has no such ambiguity. With this in mind, we
condition the pose-estimation network on both a part’s fea-

ture and the feature of its parent; that is, we concatenate
H(px) with the parent feature: [H(px)||H(Pparent(r))]-
before processing with the self-attention layers. We con-
catenate the root joint with itself for completeness. Experi-
mentally, we find that this helps improve accuracy (Table 2).

4.3.3 Shape Estimation

Finally, to properly explain the observed point cloud we
need to estimate the shape parameters 3 in a way that is
part-wise-invariant to pose transformations. To this end, we
transform 7 into a part-invariant feature by mean pooling
over the group element dimension M, resulting in a feature
matrix H € RE*C as explained in Section 4.3.1. This fea-
ture is further processed by a few self-attention layers that
capture the correlation across different body parts. The out-
put is then flattened and fed into an MLP to produce the
final 3 parameters.

4.4. Model Instance and Training

Thanks to the additional symmetry information, equiv-
ariant networks have been shown to be efficient in terms of
model size and data requirements [ 1 2]. We leverage this and
instantiate our framework with a minimally sized ArtEq ar-
chitecture, with only two layers of SPConv that output a
feature tensor with channel size C = 64; two multi-head self
attention (MHSA) layers for pose regression (eight heads
with 64-dim embedding); and one similar MHSA for shape
regression. This results in a model that is significantly
smaller than competing models [54], while still delivering
superior performance, as we will see in the next section.

We train the framework in a supervised manner in two
stages. In a first stage, we train the part segmentation net-
work and use ground-truth part segmentation to perform the
part-level feature aggregation, while all modules are simul-
taneously and independently trained. In the second stage,
we use the predictions from the part segmentation network
for part-level feature aggregation and train the full pipeline
end-to-end. Training objectives and additional details can
be found in the Sup. Mat.

5. Results

In the following we show qualitative and quantitative
results for ArtEq, both for in-distribution (ID) and out-of-
distribution (OOD) data, and we compare with state-of-the-
art methods IP-Net [5], LoopReg [0], and PTF [54]. We
explain our evaluation protocol in Section 5.1, evaluate our
SE(3)-invariant segmentation network in Section 5.2, and
show quantitative and qualitative performance for SMPL-
parameter estimation in Section 5.3. Finally, we compare
performance time and model size in Section 5.4.



Figure 4: Qualitative results for part segmentation. Each pair of bodies shows ground-truth (left) and our result (right).

Method Aug. OOD ID
IP-Net [5] 29.0 30.5
IP-Net [5] v 86.7 91.2
LoopReg [6] v 60.6 66.1
PTF [54] 8.5 10.3
PTF [54] v 80.3 88.1
Ours (nc) 91.7 96.2
Ours (nc) v 93.8 96.2
Ours 92.6 96.3
Ours v 94.1 96.2

Table 1: Part segmentation accuracy compared to SOTA
methods, in terms of percentage of correct predictions, for
out-of-distribution (OOD) and in-distribution (ID) datasets.
We show results with and without SO(3) data augmentation
(“Aug.”), and we show our model with and without parent
feature conditioning (“nc”) (Sec. 4.3.2). Best result in bold,
second best underlined.

5.1. Evaluation Protocol

Datasets. We train our network using the DFAUST [&]
subset of the AMASS dataset [34], which contains 100 se-
quences of 10 subjects with diverse body shapes. We fol-
low the train-test split used in [4, 10] and we crop the test
sequences to the middle 50% of frames, subsampling ev-
ery 5 frames. We sample 5000 non-uniform points across
the surface with random on-surface displacements. For ID
testing we use the test split of DFAUST [8]. For OOD test-
ing we use the PosePrior subset [ 1] of AMASS, which con-
tains challenging poses that are far from those performed in
DFAUST.

Metrics. The focus of this work is robustness to OOD
poses, and hence we employ metrics previously proposed
for this goal [10]. Specifically, for SMPL estimation we
measure (1) vertex-to-vertex error (V2V) in cm and (2) joint
position error (MPJPE) in cm, which are standard in the hu-
man pose community and capture the effect of errors in rota-
tion on the final body, propagated through the kinematic tree
while taking into account the predicted shape. For body part
correspondence estimation, we test accuracy of part seg-
mentation as the percentage of correct assignments. Note
that a high V2V error and MPJPE, or a low part segmenta-
tion accuracy suggests a lack of robustness to outliers (OOD

4]

)

poses).

Comparisons. We compare our method with state-of-the-
art learning-based methods that obtain SMPL parameters
from point clouds [5, 6, 54]. IP-Net [5] predicts dense
correspondences to the SMPL mesh, which are then used
within an ICP-like optimization that recovers SMPL shape
and pose parameters. LoopReg [6] extends this idea by in-
cluding the SMPL optimization step within the training pro-
cess of the network. PTF [54] segments body parts and re-
gresses local transformations for each, from which pose pa-
rameters are obtained via least-squares fitting. Since all of
these methods require part segmentation, we also compare
our segmentation results with them. Note that IP-Net and
LoopReg predict segmentation for 14 parts, while PTF and
our method segment the point cloud into 24 parts, which
is a harder task. For LoopReg we use their publicly avail-
able model trained on minimal clothing data, while the rest
of the networks are trained using publicly available code.
All methods, including ours, are trained for 15 epochs on
the DFAUST train split. Note that all competitors depend
on a test-time optimization step, while our results are solely
based on regression.

SO(3) Data Augmentation. An alternative to SE(3) equiv-
ariant learning is to explicitly perform data augmentation.
While augmenting articulated body poses is not always fea-
sible one can easily perform global SO(3) augmentation by
randomly rotating the root joint. In fact, this is already
implemented by prior work, including the methods consid-
ered here. For this reason, we compare against these meth-
ods both with and without global SO(3) data augmentation.
Our method, being an equivariant method, does not require
augmentation to achieve good OOD generalization. How-
ever, this is still useful since it helps the network bridge the
gap between the discretized SO(3) group and the continu-
ous SO(3) group, and hence we too evaluate both with and
without SO(3) augmentation.

5.2. Part Segmentation

We begin by evaluating our part segmentation network.
Both for us and for competing methods, this is an impor-
tant step in the pipeline that determines the quality of the
final results. Since the output of this step comes directly
from the networks, initial errors cannot be masked by an
optimization step as it is with the SMPL estimations (see



Method Aug. 00D 1D
V2V] MPIPE] | V2V| MPJPE]

IP-Net 41.58 46.99 38.55 43.41
IP-Net v 7.57 9.41 5.98 6.42
LoopReg v 29.08 34.09 7.57 9.17
PTF 61.42 68.43 56.35 60.98
PTF v 6.42 7.56 3.05 3.53
Ours (nc) 541 591 0.95 1.04
Ours (nc) v 4.17 4.61 0.95 1.03
Ours 4.73 5.51 1.13 1.48
Ours v 3.62 4.23 0.98 1.26

Table 2: SMPL estimation results compared to state-of-
the-art methods, with and without SO(3) augmentation
(“Aug.”) for out-of-distribution (OOD) and in-distribution
(ID) datasets. Metrics: vertex-to-vertex error (v2v, in
cm) and mean joint position error (MPJPE, in cm). We
also show our method without parent feature conditioning
(“nc”). Best result in bold, second best underlined.

next section). We use this task to more clearly evaluate the
impact of equivariant learning.

Quantitative results can be found in Table 1. Our method
outperforms the competitors both for ID and OOD datasets
by a large margin. Without data augmentation, IP-Net and
particularly PTF perform very poorly in both cases, suggest-
ing a fundamental limitation with respect to generalization
of these methods. Our approach, on the other hand, shows
superior performance over all methods both with and with-
out data augmentation. Additionally, we observe that con-
ditioning on the parent feature (Sec. 4.3.2) can further boost
the segmentation accuracy. We show qualitative results for
our method in Figure 4 and qualitative results for competing
methods in the supplementary material.

5.3. SMPL Shape and Pose Estimation

In Table 2 we show quantitative results for the SMPL
body estimation task, evaluated in terms of vertex error and
joint position error. Note that our results are obtained di-
rectly from the network, while the other methods require
an optimization step. For OOD data, our model performs
significantly better than the rest, reducing the vertex error
by almost two times over the best-performing competitor
(PTF with augmentation). This shows the importance of
including the right symmetries within the network design,
which cannot be replaced by simply performing data aug-
mentation. It is worth noting that all the other methods re-
quire data augmentation to perform reasonably in the OOD
case. While data augmentation slightly improves the results
in our case, we outperform the rest even without it. For
in-distribution data, ArtEq without data augmentation also
surpasses the previous state of the art model by 68% in V2V
error, while the competing methods are much slower at in-

Method #Param (M) Time (s)
IP-Net [5] 35.0 2114
LoopReg [6] 33 146.9
PTF [54] 34.1 158.1
Ours 0.9 0.1

Table 3: Number of parameters (#Param) and inference
time (Time) for the methods evaluated in this paper.

ference time due to the optimization step. In the bottom part
of Table 2 we show that our proposed parent conditioning
consistently improves the results by around 5 mm for OOD
samples. Qualitative results can be found in Figure 5.

Additionally, we evaluate our model directly on raw real-
world scans from the DFAUST dataset [8], which contains a
different noise distribution including sensor noise and holes.
For this OOD noise experiment, we perform inference on
these scans without fine-tuning our model, and find the part
segmentation performance only drops by 5%. While the
OOD noise increases the V2V error by 2cm, it is still on
par with the accuracy of previous state-of-the-art methods
on synthetic data. While ArtEq works well without fine-
tuning, we suspect that training on real noise will produce
significant improvements in robustness and accuracy. See
supplemental material for more information.

5.4. Performance and Convergence

Performance. Table 3 shows computation time for all
methods, along with model size. Using SE(3)- equivari-
ant/invariant features allows our model to be more space-
and time-efficient. ArtEq has only 2.7% the number of pa-
rameters of PTF, while still outperforming in terms of accu-
racy. Additionally, our smaller model size results in signif-
icantly faster inference time, which is three orders of mag-
nitude faster than the others. Of course, like the other meth-
ods, one could add an additional optimization step to refine
our results further.

Convergence. In addition to being computationally faster
and having lower memory requirements, we show in Fig-
ure 6 that our method also converges rapidly, requiring
merely 5 epochs of training to reach reasonable results, for
both in-distribution and out-of-distribution datasets.

5.5. Limitations

Our method’s primary failure mode results from self-
contact, a disadvantage shared with most mesh registration
methods. Here, self-contact may lead to incorrect feature
aggregation, where features that belong to different body
parts are convolved together due to their proximity in Eu-
clidean space. Additionally, while our method generalizes
to unseen rigid transformations of the body parts, the model
is not guaranteed to be robust to non-rigid deformations that
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Figure 5: Qualitative results for out-of-distribution poses. From left to right: (a) input point cloud, (b) ground-truth SMPL
mesh, (c) our results, (d) IP-Net [5], (e) PTF [54], and (f) LoopReg [6].
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Figure 6: Convergence plots. Vertex-to-vertex error (V2V), joint position error (Joint Error), and part segmentation accuracy
(Acc) as a function of epoch number, on (a) in-distribution and (b) out-of-distribution datasets.

are encoded in the pose corrective blendshapes of SMPL.
Its performance in this respect depends on the distribution
of non-rigid transformations seen during training. Though
data augmentation is helpful to mitigate the aforementioned
limitations, a more principled solution to address these is
left for future work.

6. Conclusions

In this paper we propose ArtEq, a powerful part-based
SE(3)-equivariant neural framework for SMPL parameter
estimation from point clouds. Our experimental results
demonstrate the generalization ability of ArtEq to out-of-
distribution poses, where the direct regression output of
ArtEq outperforms state-of-the-art methods that require a
time-consuming test-time optimization step. ArtEq is also
significantly more efficient in terms of model parameters
and computation. Our results demonstrate the advantage

and importance of incorporating the correct symmetries into
the task of SMPL-body pose and shape estimation. ArtEq
provides the first fast, practical, method to infer SMPL mod-
els directly from point clouds. This serves as a foundation
to make 3D human mesh registration more accessible and
efficient.
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Supplementary Material

A. Additional Results

In this section we provide additional results, as well as
ablation studies that demonstrate the impact of our design
choices.

Qualitative Registration Results. Figure S.2 shows qual-
itative results for out-of-distribution testing data, and Fig-
ure S.1 shows results for the in-distribution case. IP-Net,
PTF, and LoopReg all fail under difficult poses, resulting
in unnatural rotations for some body parts. Poses that are
particularly far from the distribution, such as standing on
the arms, result in very unnatural shapes. In contrast, our
method can handle such poses well despite never having
seen similar ones during training. It is worth noting that
LoopReg uses the same self-supervised objective during
training and during optimization, and refines the learned
correspondences at test time by overfitting to the input.
Hence, we see here that even such a test-time optimization
strategy is not sufficient when the initial poses are far from
the correct result.

Qualitative Segmentation Results. In Figure S.3 we
show additional results for part segmentation on out-of-
distribution data, along with comparisons to the segmen-
tations obtained by IP-Net, PTF, and LoopReg. Note that
IP-Net and LoopReg predict part segmentation for 14 body
parts, where, for example, the two shoulder blades, the three
spine regions and the hip are all merged into one torso
part (here, in red), or the neck is merged into the head
region (here, in olive), making it an easier problem. Our
method produces accurate segmentations even for these dif-
ficult OOD cases, while PTF, IP-Net, and LoopReg struggle
to predict the segmentation, particularly in the regions with
out-of-distribution pose. For example, in the second row,
IP-Net’s part segmentation confuses left and right, resulting
in a flipped torso with the belly facing up.

Raw Scan Data. We evaluated our method on the raw scans
from the DFaust testing set (in-distribution), without any
fine-tuning or re-training. Our model obtains 88.3% accu-
racy for part segmentation, 3.62cm vertex-to-vertex error,
and 4.37cm MPIJPE error, which is still better than most
other methods on clean data. A qualitative example of these
results is shown in Figure S.4. Here we see that our estima-
tions are still accurate for out-of-distribution poses, despite
the out-of-distribution noise.

Impact of the Number of Input Points. We show in Ta-
ble S.1 the results of our model when the input is 500, 1000,
2500, and 5000 points. We see here that our method can al-

ready perform reasonably well for in-distribution data for
1000 input points, with a segmentation accuracy that is on
par with competitors that use 5000 points as input (91.2%
for IP-Net, Table 1 in main paper). The segmentation accu-
racy does not differ much when moving to the OOD case.
The model has lower performance in terms of V2V and
MPIPE for a lower number of points on OOD data, how-
ever it still outperforms all the competitors (Table 2 in main
paper). This shows that our model does not require a sig-
nificant number of points in order to obtain accurate results,
both for in- and out-of-distribution data.

Baselines Without a Pose Prior. PTF and IP-Net use
a pose prior to regularize the pose space when fitting to
SMPL. In the main paper we tested these methods with de-
fault parameters, which include the use of the pose prior. To
make sure that this does not negatively affect the final out-
come, we evaluate PTF and IP-Net without the pose prior.
The results are shown in Table S.2, where we observe that
the pose prior does not have a substantial effect on the out-
put.

B. Permutation Equivariance of the Self-
Attention Mechanism

As we have mentioned in the main paper, a function (net-
work) f : V — W is said to be equivariant with respect to
a group G if, for any transformation 7 € G, f(TX) =
Tf(X), X € V. Here we elaborate on how the self-
attention function fg4 is equivariant to the permutation
group 7(X) = X P,, where P, denotes the permutation
matrix of 7, and 7 denotes the permutation of the input ten-
sor’s elements (in our case, the permutation over the group
element dimension). The self-attention function fg 4 is de-

fined as fs4(X) = WX -softmax ((WkX)T : qu),
then

fsa (T(X))

= W, T(X) - softmax ((WkT(X))T : WqT(X))

— W, XP, - softmax ((WkXP,r)T : WqXPﬂ)

— W, X P, - softmax (P,? W.x)"- WqXPﬂ)

= W, X (P, PT) - softmax ((WkX)T : WqX) P,
= W ,X - softmax ((WkX)T . WqX) P,

=T (fsa(X)),

(S.1)
where we used the property softmax(P - A - PT) = P -
softmax(A) - PT, for a permutation matrix P and an arbi-
trary matrix A, to go from the third to the fourth line (refer
to the proof in [58]). Hence, we have proved that the self-
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Figure S.1: Qualitative results for in-distribution poses. From left to right: (a) input point cloud, (b) ground-truth SMPL
mesh, (c) our results, (d) IP-Net [5], (e) PTF [54] and (f) LoopReg [6].

# points OOD ID

Seg. 1t V2V | MPIPE] | Seg. V2V ] MPIPE |
500 80.5 7.33 8.63 829 455 5.27
1000 89.7 4.85 5.83 92.1 227 2.80
2500 93.0 4.09 4.59 954  1.01 1.22
5000 94.1 3.62 4.23 96.2  0.98 1.26

Table S.1: Our results for different numbers of input points, in terms of segmentation accuracy (“Seg.”), vertex-to-vertex

error (“V2V”), and mean joint position error (“MPJPE”).

attention function is equivariant to the permutation opera-
tion over the discretized SO(3) group elements.

C. Method Details

Architecture. The local SO(3) feature extractor has two
SPConv layers and a nearest neighbor feature propagation
layer [42]. Each SPConv layer has a kernel size of 0.4 and
a stride downsampling factor of 2, therefore, the input point
cloud with shape [B, N, 3] will be processed as [B, N/4,
64, 60] where the last dimension is the group element ob-
tained by SO(3) discretization, and C' = 64 is the feature
dimension. For each input point, the feature propagation
layer finds the top 3 spatial nearest neighbors of the down-
sampled point-wise features, and interpolates these features
weighed by their pairwise distance, resulting in an output of
size [B, N, 64, 60].

To obtain the chordal mean weights we attach to the self-

attention layers an element-wise MLP (3 layers with ReL U,
sizes [64,64,1]), since self-attention does not contain non-
linear activations. Similarly, we attach a 2-layer MLP on the
flattened part features [B, 20%6] to obtain the final SMPL
shape code.

Part Segmentation. We consider here 20 body parts, merg-
ing the fingers into hands, and toes into feet. This is because
the AMASS DFAUST dataset does not contain finger or toe
motion.

Averaging Rotations by Calculating the Chordal L2
Mean. Given two rotations R and S, the chordal L2 dis-
tance is defined as dcpora(R, S) = ||R — S||F where ||| F
is the Frobenius norm of the matrix, which is related to the
angular distance between R and S [20]. The chordal L2
mean of a set of rotations is then defined as the matrix that
minimizes the chordal distance to all rotations in the set. In
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Figure S.2: Qualitative results for out-of-distribution poses. From left to right: (a) input point cloud, (b) ground-truth SMPL
mesh, (c) our results, (d) IP-Net [5], (e) PTF [54] and (f) LoopReg [6].

our case, if wy, ; is the weight for part £ and group j, then symmetries is

the weighted average for part k over the |G| = 60 rotation ]

argmin > _ denora(Wi,; - R(g;), Ri) (S.2)
Rr€SO(3) j=1
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Figure S.3: Qualitative results for part segmentation. From left to right: (a) ground-truth segmentation, (b) our results, (c)
IP-Net [5], (d) PTF [54], and (e) LoopReg [0].

Method | Pose Prior OOD ID

V2V ]| MPIPE| | V2V | MPIPE |
IP-Net v 7.57 941 5.98 6.42
IP-Net 7.67 9.55 6.04 6.50
PTF v 6.42 7.56 3.05 3.53
PTF 6.46 7.62 3.13 3.66
Ours 3.62 4.23 0.98 1.26

Table S.2: Comparison with IP-Net and PTF with and without using their pose prior.



Figure S.4: Qualitative results on the raw scans from DFAUST testing set. From left to right: (a) input point cloud, (b)

ground-truth SMPL mesh, (c¢) our results.

where R(g;) is the rotation matrix of g;, and g; is a group
element. In practice, 7A2k can be obtained in closed-form by
using singular value decomposition. We refer the readers to
[20] for more details.

Loss Function. We train both stages of the network with
the following loss function:

)\lﬁpose + )\Z['Shape + /\SEverts + >\4['joint + /\5£pa7‘t7
(S.3)
where

* Lpose = ||0 — 0]? is the MSE loss between predicted

pose coefficients 6 and ground-truth pose coefficients
0.

Lehape = ||B — B|? is the MSE loss between pre-
dicted shape coefficients 3 and ground-truth shape co-
efficients 3.

Loeris = W (M(B.8) = M(8,0)) > is the
weighted MSE loss between the reconstructed SMPL
mesh vertices and the ground-truth registration, using
the per-vertex weights W, where the vertices corre-
sponding to body markers are assigned a weight of 2.0,



and the other vertices a weight of 1.0.

* Lioint = [|T(T(B),0) — T(T(B),0)|| is the MSE
loss between the predicted joint positions of the SMPL
mesh (posed) and the ground-truth joint positions.

o Lport = cross-entropy(o(x;, Px), ogt(Xi, Pr)) is the
cross-entropy loss between the predicted part segmen-
tation and the ground-truth part segmentation of the
point cloud.

We use \; = 5, Ay = 50, A3 = 100, A, = 100, A5 = 5.



