Robust Monocular Depth Estimation under Challenging Conditions

Stefano Gasperini*!?  Nils Morbitzer*!
Federico Tombari'+3

Nassir Navab!

! Technical University of Munich

Abstract

While state-of-the-art monocular depth estimation ap-
proaches achieve impressive results in ideal settings, they
are highly unreliable under challenging illumination and
weather conditions, such as at nighttime or in the presence
of rain. In this paper, we uncover these safety-critical is-
sues and tackle them with md4all: a simple and effective
solution that works reliably under both adverse and ideal
conditions, as well as for different types of learning super-
vision. We achieve this by exploiting the efficacy of existing
methods under perfect settings. Therefore, we provide valid
training signals independently of what is in the input. First,
we generate a set of complex samples corresponding to the
normal training ones. Then, we train the model by guiding
its self- or full-supervision by feeding the generated sam-
ples and computing the standard losses on the correspond-
ing original images. Doing so enables a single model to
recover information across diverse conditions without mod-
ifications at inference time. Extensive experiments on two
challenging public datasets, namely nuScenes and Oxford
RobotCar, demonstrate the effectiveness of our techniques,
outperforming prior works by a large margin in both stan-
dard and challenging conditions. Source code and data are
available at: hitps://md4all.github.io.

1. Introduction

Estimating the depth of a scene is a fundamental task
for autonomous driving and robotics navigation. While
supervised monocular depth estimation approaches have
achieved remarkable results, they rely on ground truth data
which is expensive and time-consuming to produce [20, 13].
This requires costly 3D sensors (e.g., LIDAR) and signifi-
cant additional data processing [20, 13].

To circumvent these issues, geometrical constraints on
stereo pairs or monocular videos have been widely explored
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Figure 1. Predictions in challenging settings [4] for self-supervised
[12] and supervised [1] methods. Standard approaches fail due to
training assumptions or sensor artifacts. Under both supervisions,
our md4all makes the same models robust in all conditions.

to learn depth estimation in a self-supervised manner [12,
26, 35, 8, 11]. Monocular training solutions are the most
inexpensive and rely on the smallest amount of assumptions
on the sensor setup, as they require only image sequences
captured by a single camera.

Self-supervised methods rely on photometric assump-
tions and pixel correspondences [12, 35]. State-of-the-art
approaches [12, 42, 33] deliver sharp and accurate esti-
mates in standard conditions (i.e., sunny and cloudy), but
suffer from a variety of inherent issues, such as scale am-
biguity and difficulties with dynamic objects. While prior
works have already proposed robust methods to address
these problems [ 13, 9], there is still a major issue preventing
the wide applicability of self-supervised depth estimators in
safety-critical settings, such as autonomous driving. Dark-
ness and adverse weather conditions (e.g., night, rain, snow,
and fog) introduce noise in the pixel correspondences. As
displayed in Figure 1, this is detrimental to the effectiveness
of such methods, thereby requiring ad hoc solutions.

As shown in Figure 2, this problem is particularly se-
vere at nighttime due to reflections (e.g., caused by street-
lights and vehicle headlights), noise, and the general inabil-
ity of the embedded cameras to capture details in dark ar-
eas. This leads to wrong depth estimates, which can be dan-
gerous in safety-critical settings. A few pioneering works
have already explored this problem, albeit with highly-
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complex pipelines and significant architecture changes af-
fecting inference as well [39, 38, 23, 34, 37], such as
illumination-specific branches. Additionally, prior methods
that can operate both at night- and daytime introduce a sig-
nificant trade-off concerning the standard daytime perfor-
mance [23, 38], highlighting the need for a new solution.

In adverse weather conditions such as rain, monocular
models are similarly fooled by reflections and decreased
visibility. However, rain introduces another problem. While
radars are robust in such conditions, LIDARs become unre-
liable, as they introduce multi-path and the so-called bloom-
ing effects (Figure 2). In autonomous driving, since super-
vised depth estimation approaches learn from LiDAR data,
this causes them to learn also such erroneous measurements,
rendering them unreliable in rainy settings (Figure 1). Anal-
ogous issues occur with snow and fog. These problems are
relatively unexplored, demanding new solutions.

Alarmingly, no general solution currently allows an
image-based depth estimator to work reliably under all con-
ditions. Since LiDAR can constitute a misleading train-
ing signal in adverse weather, and pixel correspondences
are problematic too (e.g., at night), neither existing super-
vised [25] nor self-supervised [ 12, 35] techniques work well
in such challenging settings. A straightforward solution for
the supervised case would be using synthetic data [41, 31],
as by simply not modeling the sensor issues, a simula-
tor could produce perfect ground truth in adverse weather.
However, this is not only unexplored, but it would introduce
a series of problems, such as a substantial syn2real gap due
to the difficulty of modeling challenging conditions realis-
tically (requiring, e.g., domain adaptation).

In this paper, we address these open issues with a sim-
ple and effective solution that works reliably in a variety of
conditions and for multiple types of supervision. We ap-
proach this challenging problem by considering the success
of existing methods in standard illumination and weather
settings [12, 14, 13, 9]. This motivated us to find a way for
them to work also under challenging scenarios, exploiting
what makes them learn depth effectively in ideal conditions.
Our core idea is based on training the model by providing
always valid training signals as if it was sunny or cloudy,
even when samples with adverse conditions are given. We
apply this general principle to both supervised and self-
supervised depth estimation via a set of techniques to im-
prove the model robustness and reduce the performance gap
between standard and hard conditions. The main contribu-
tions of this paper can be summarized as follows:

* We show how estimating depth in adverse conditions
(e.g., night and rain) is problematic for both self- and
fully-supervised approaches, requiring new solutions.

* We propose md4all: a simple and effective technique
to make standard models robust in diverse conditions.
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Figure 2. Detrimental factors to monocular depth estimation in dif-
ficult settings from nuScenes [4]. Self-supervised works have is-
sues with textureless areas, reflections, and noise. Supervised ones
learn artifacts from the ground truth sensor (LiDAR is shown).

* We apply our generic method to both fully- and self-
supervised monocular settings.

* We generate and share open-source images in adverse
conditions corresponding to the sunny and cloudy sam-
ples of nuScenes [4] and Oxford Robotcar [24].

With md4all, we substantially outperform prior solutions
delivering robust estimates in a variety of conditions.

2. Related Work
2.1. Supervised Monocular Depth Estimation

The problem of estimating depth from a single color im-
age is challenging due to the countless 3D scenarios that
can produce the same 2D projection, making it an ill-posed
problem. Nevertheless, significant progress has been made,
thanks to the introduction of CNN-based architectures by
Eigen et al. [6] and fully-convolutional networks with resid-
ual connections by Laina et al. [2]] to estimate dense
depth maps from monocular inputs. While many super-
vised methods have focused on directly regressing to depth
measurements from LiDAR sensors (as in KITTI [10]) or
RGB-D cameras (as in NYU-Depth v2 [32]), DORN [7]
tackles the task in an ordinal manner. AdaBins [ 1] extended
DORN via a linear combination of predictions across adap-
tive bins. Moreover, BTS uses a multi-stage local planar
guidance [22] and P3Depth exploits coplanar pixels [25].
Others investigated the benefit of depth estimation while
tackling other tasks, such as 3D object detection [18].

Issues While the supervision signal from 3D sensors is
reliable in ideal conditions (e.g., sunny, cloudy), it severely
degrades in photometrically challenging scenarios [20].
Outdoor, LiDAR sensors deliver erroneous measurements
in adverse weather conditions, such as rain, snow and fog.
As Jung et al. demonstrated indoor [20], training on an in-
exact ground truth leads depth models to learn the sensor ar-



tifacts and deliver wrong outputs. This problem is relatively
unexplored outdoors, e.g., with rain. A few works investi-
gated depth completion in simulated settings with LiDAR
and radar in input [4 1] or event cameras and RGB [31]. In
this paper, we explore this issue on AdaBins [!] and pro-
vide a simple solution to estimate depth reliably in diverse
conditions, regardless of the sensor artifacts.

2.2. Self-Supervised Monocular Depth Estimation

To bypass the need for expensive LiDAR data, self-
supervised methods employ view reconstruction constraints
through stereo pairs [8, | 1] or monocular videos [12, 47].
The latter utilizes motion parallax from a moving camera in
a static environment [36] and requires simultaneous depth
and camera pose transformation prediction. Significant ad-
vancements have been made since Zhou et al.’s pioneering
video-based approach [47], including novel loss terms [12],
network architectures that preserve details [13], the use of
cross-task dependencies [ 19, 14], pseudo labels [26], vision
transformers [45], uncertainty estimation [27], and 360 de-
grees depth predictions [16].

2.2.1 Solutions to Inherent Issues

Scale ambiguity Video-based methods predict depth up to
scale, requiring median-scaling with ground truth data at
test time [12]. Guizilini et al. [13] used the readily available
odometry information to achieve scale awareness via weak
velocity supervision on the pose transformation.

Dynamic scenes Due to the moving camera in a static
world assumption [36], video-based methods have issues
with dynamic objects, e.g., cars. To address this, Mon-
odepth2 [12] uses an auto-masking loss on the static pixels,
R4Dyn [9] adds weak radar supervision on the objects, and
DRAFT [15] combines optical and scene flows.

Darkness Low visibility is detrimental to the losses
used to learn depth because noise and lack of details pre-
vent establishing pixel correspondences across the frames.
DeFeat-Net [34] was among the first to mitigate this, with a
cross-domain dense feature representation. ADFA [37] uses
a generative adversarial network (GAN) to adapt nighttime
features to daytime ones. R4Dyn [9] shows that radar is
beneficial not only for dynamic objects but also at night-
time as a byproduct. RNW [39] reduces the irregularities at
nighttime via, e.g., image enhancement and a GAN-based
regularizer. ADIDS [23] uses separate networks for day
and night images, partially sharing weights. ITDFA [44]
is similar to ADFA, doing feature adaptation from night
to day, with images generated with a GAN. WSGD [38]
combines denoising with a lighting change decoder to pre-
dict per-pixel changes. While these works made signifi-
cant steps towards solving the problem, they either have
complex pipelines with dedicated branches for day and

night [23, 44], use additional sensors [9], suffer from a sig-
nificant trade-off on the daytime performance [38], or are
not meant to operate on multiple conditions, such as both
day and night [37, 39, 44]. Therefore, an effective solution
without inference complications is yet to be found.

Adverse weather As at nighttime, in adverse weather
such as rain, fog, and snow, the limited visibility pre-
vents establishing correct correspondences. Even fully-
supervised approaches have issues in these settings [20]. So
far, only a handful of works have explored depth estimation
with adverse weather. ITDFA [44] requires an encoder for
each condition and was not shown to work in both standard
and adverse settings. R4Dyn [9] and MonoViT [45] are ro-
bust methods that delivered improvements also in adverse
conditions as a side effect. Thus, this problem is largely
unexplored, demanding a general solution.

Unlike prior works, in this paper, we propose a simple
and effective solution enabling a standard monocular model
to estimate depth in diverse conditions (e.g., day, night, and
rain) without any difference at inference time compared to a
common encoder-decoder pipeline [12]. Additionally, ours
does not degrade the output quality in standard settings.

3. Method

In this paper, we enable a model to estimate depth reli-
ably in diverse conditions (e.g., day, night, and rain). Dis-
played in Figures 3 and 4, our techniques exploit the ef-
fectiveness of existing approaches in standard conditions
(e.g., daytime in good weather) to increase their robustness
in adverse settings. Towards this end, we perform day-to-
adverse image translation, train on the generated adverse
samples, and learn only from valid training signals from
the original day inputs. This simple idea is suitable to both
self-supervised (Section 3.1) and supervised (Section 3.2)
frameworks and is general to operate under various weather
and illumination settings (including fog and snow).

3.1. md4all - Self-Supervised

We build upon a scale-aware video-based monocular
method (Section 3.1.1). As described in Section 2.2.1, night
and bad weather cause issues to self-supervised approaches.
We address this with md4allby computing the losses only
on the ideal samples corresponding to the hard ones given
as input (Section 3.1.2). We then take this concept even fur-
ther by distilling knowledge from a frozen self-supervised
model trained only on the ideal samples (Section 3.1.3).

3.1.1 Self-Supervised Baseline

We build on a standard video-based monocular depth base-
line equivalent to the framework shown in Figure 4 when
considering z = 0 (i.e., no translation). We predict both
the depth Dy of a target frame and the pose transformations
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Figure 3. Our md4all-DD framework. The frozen day - depth model estimates on easy samples and provides guidance to another model
fed with a mix of easy and translated inputs. Inference is done with a simple single model for both fully- and self-supervised md4all.

between the target I; and source frames I c¢—1,¢41y, With
which we warp the source into a reconstructed target view.
Asin [12, 13], a loss is computed on the appearance shift
between [; and the reconstruction [47], alongside the struc-
tural similarity [40]. Following [12], we account for partial
occlusions via the minimum reprojection error £, and we
ignore static pixels. Another loss £, promotes smoothness
and preserves edges [11]. £, and L, are calculated at all
decoder scales, upsampled to the input size [12].

So far, this is equivalent to Monodepth2 [12]. Then,
we add the weak velocity supervision £, to achieve scale-
awareness [13] and allow consistent predictions, beneficial
when distilling knowledge between different models.

Architecture Unlike previous works having specialized
branches [23, 44], we leave the architecture unchanged
(e.g., [12]). Instead, we act on the training process. Our
approach is general and not bound to a specific architecture.

3.1.2 md4all-AD: Always Daytime, No Bad Weather

Our md4all-AD configuration is shown in Figure 4. The
core idea is learning from easy samples, even when given
challenging ones (e.g., night) as if it was always daytime
with good visibility (i.e., sunny or cloudy). This allows us-
ing the same established losses described in Section 3.1.1,
which would otherwise fail with difficult inputs.
Day-to-adverse translation To achieve the above, we
need easy samples corresponding to the challenging ones.
This means having paired images (e;, h{), with ¢; € E
and E being the set of easy samples (i.e., sunny or cloudy),
h$ € H with H the set of the difficult samples from the
conditions of interest ¢ € C' (e.g., snow). While an image
translation method could convert the training H into easy
ones, removing information is easier than adding it. There-
fore, we generate H from F (e.g., turning e; into nighttime).

Specifically, for each e; and each condition ¢ we aim to im-
prove (e.g., night and rain), we obtain h{ = T°(e;). We do
this with ¢ image translation models 7 trained at an earlier
stage, increasing the training set size by C' x E.

Training scheme We then train depth and pose models
as shown in Figure 4. During training, we feed to the depth
model m;, which is either h§ (for % of the inputs, as a ran-
dom mix of c) or e; from the pre-existing training data. Ad-
ditionally, we normalize the inputs depending on the record-
ing time (i.e., day/night) to learn robust features agnostic
of the input condition. The Appendix shows how perform-
ing this step only during training delivers similar results.
Then, in the case of particularly noisy night samples (e.g.,
nuScenes [4]), we augment the inputs with heavy noise. The
pose model always takes the sequence [e;_1, €;, €;41], cor-
responding to m;. If fed h{, the pose network would have
issues assessing the pixel correspondences.

Learning in all conditions Computing the losses £,, and
L, on h{ would lead to issues because of the difficulty of
establishing correspondences in adverse conditions (Sec-
tion 2.2.1). For this reason, training on E and deploying
on H is more effective than training on both (Section 4.2),
proving the limitations of standard methods. Our solution
to this challenging problem is relatively simple: as shown
in the figure, we provide a reliable training signal by always
calculating the losses on E. Specifically, they are always
computed on e;, even when the depth model is fed with h¢
(z%). This constructed setting constitutes the ideal condi-
tion in which the losses £, and L are already proven suc-
cessful [12], eliminating the source of the issues. This leads
the depth model to learn to extract robust features, regard-
less of whether the input belongs to E or H.

Inference After training depth and pose models, the lat-
ter is discarded, while our depth model is a simple encoder-
decoder capable of estimating depth in multiple conditions.
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As shown at the top of Figure 3, since we do not apply
any architectural modification, at inference time, we pre-
dict depth with the same model through the same model
parameters, regardless of the input condition. While dedi-
cated models or branches may lead to better performance,
switching between them is not always trivial, e.g., at dusk or
with light rain. Therefore, we opted for a single monocular
model, which does not penalize inference time compared to
the same model trained only on F.

3.1.3 md4all-DD: Day Distillation

We take md4all-AD (Section 3.1.2) to the next level by sim-
plifying the training scheme with md4all-DD. The core idea
of md4all-DD is the same as for md4all-AD: we aim to learn
depth only from F, pretending that the conditions C' detri-
mental for the losses never occur.

Our md4all-DD framework mimics model estimates in
ideal settings F, regardless of the difficulty of the input. As
shown in Figure 3, we achieve this via knowledge distilla-
tion from a depth network B (baseline) trained at an earlier
stage on F to a new depth model D D for both easy and ad-
verse scenarios (i.e., &/ and H). The latter is fed m;, i.e.,
the same mix of ¢; and h{ as in md4all-AD (Section 3.1.2),
while the former is given only e;. DD is optimized solely
through the following objective:

o 1 N ‘DD(’ITLZ)] — B(GZ)J‘
La=x ; DD(m;); M

where N is the number of pixels, DD(m;) is DD’s depth
prediction on m; (i.e., an easy or hard sample), and B(e;)
is B’s estimation on e; (i.e., an easy sample). DD learns to

follow B at the output level, even when fed the problematic
h§, without being affected by the detrimental factors occur-
ring in adverse settings. Inference is unchanged.

3.2. md4all - Supervised

Learning depth from a 3D sensor in adverse conditions
exposes issues inherent to the sensor and the way it mea-
sures depth [20]. With bad weather (e.g., rain), LiDARs
provide erroneous measurements (Figure 2), so learning
from their signal means copying their artifacts as well (Fig-
ure 1). This has been ignored so far for monocular depth.

Regardless of the input, we address the sensor issues by
learning from E. Analogously to the self-supervised set-
ting, we use image pairs (e;, h$) and specify our method
as md4all-AD following the self-supervised definition (Sec-
tion 3.1.2), except for the supervision signal. Thus, we train
the depth model with m; and learn from the LiDAR sig-
nal of e;. Thus, the supervision is from artifact-free data in
ideal conditions F, such that the models never experiences
the sensor issues. As in the self-supervised setup, the infer-
ence is unchanged. While md4all-DD (Section 3.1.3) also
applies to the supervised case, using AD is more reasonable
since reliable ground truth data from e; is available.

4. Experiments and Results
4.1. Experimental Setup

Datasets and metrics We used two public driving
datasets containing various illumination and weather condi-
tions: nuScenes [4] and Oxford RobotCar [24]. nuScenes
is a challenging large-scale dataset with 15h of driving in
Boston and Singapore, diverse scenes, and difficult con-
ditions. We distinguished good visibility (i.e., day-clear),



day-clear — nuScenes night — nuScenes day-rain — nuScenes
Method sup. trdata | absRel RMSE 01 absRel RMSE 01 absRel RMSE 01
Monodepth2 [12] M*  a:dnr | 0.1477 6771 8525 | 2.3332 32940 10.54 | 04114 9.442  60.58
Monodepth2 [12] M*  d 0.1374 6.692 85.00 | 0.2828 9.729 51.83 | 0.1727 7.743  77.57
PackNet-SftM [13] Mv d 0.1567 7.230 82.64 | 0.2617 11.063 56.64 | 0.1645 8288 77.07
R4Dynw/orin [9] Mvr d 0.1296  6.536  85.76 | 0.2731 12430 52.85 | 0.1465 7.533  80.59
R4Dyn [9] (radar) Mvr d 0.1259 6.434 8697 | 0.2194 10.542 62.28 | 0.1337 7.131 8391
RNW [39] M*  dn 0.2872  9.185 56.21 | 0.3333 10.098 43.72 | 0.2952 9.341 57.21
[ours] baseline Mv d 0.1333 6459 85.88 | 0.2419 10.922 58.17 | 0.1572 7453  79.49
[ours] md4all-AD  Mv  dT(nr) | 0.1523 6.853 83.11 | 0.2187 9.003 68.84 | 0.1601 7.832  78.97
[ours] md4all-DD  Mv  dT(nr) | 0.1366 6.452 84.61 | 0.1921 8507 71.07 | 0.1414 7.228 80.98
AdaBins [ 1] GT a:dnr | 0.1384 5582 81.31 | 0.2296 7.344 6395 | 0.1726 6.267 76.01
[ours] md4all-AD GT  dnT(r) | 0.1206 4.806 88.03 | 0.1821 6.372 75.33 | 0.1562 5.903 82.82

Table 1. Evaluation of self- and GT-supervised methods on the nuScenes [4] validation set. Supervisions (sup.): M: via monocular videos,
*: test-time median-scaling via LiDAR, v: weak velocity, r: weak radar, GT: via LiDAR data. Training data (tr.data): d: day-clear, T:
translated in, n: night (incl. night-rain), r: day-rain, a: all. Visual support: 1%, 2", 3™ best. More conditions and metrics in the Appendix.

night (including night-rain), and day-rain. We used the of-
ficial split following R4Dyn [9], with 15129 training images
(with synced sensors), and 6019 validation ones (of which
4449 day-clear, 602 night, and 1088 rain). RobotCar was
collected in Oxford, UK, by traversing the same route multi-
ple times in a year. It features a mix of day and night scenes.
We followed the split and setup of WSGD [38], with 16563
day training samples and 1411 test ones (with synced sen-
sors, of which 709 night). While we focused on night, rain,
sun, and overcast, the Appendix shows preliminary results
with fog and snow from the DENSE dataset [2]. We report
on the standard metrics and errors up to S0m for RobotCar
as in [38], and 80m for nuScenes as in [9]. More results can
be found in the Appendix.

Implementation details Our self-supervised models use
a ResNet-18 backbone [17] and learn from an image triplet
sized 576x320 for nuScenes and 544x320 for RobotCar.
The supervised model and md4all-DD are given only one
keyframe. At inference time, all models take a single RGB
input. We set z = |C|/(|C|+1) %, with |C| being the num-
ber of the adverse conditions of interest C, e.g., x = 66%
for a model to work with rain, night and day, and within
2% we used equally distributed data among C. So, our
models see an equal amount of inputs for each condition.
We used the same hyperparameters as Monodepth2 [12] and
AdaBins [1] for self- and fully-supervised models, respec-
tively. All models were trained on a single 24GB GPU.

Image translation We translated each e; image to h{.
Diffusion models [28, 29] are not suitable due to the lack
of already paired images. Datasets with multiple drives on
the same roads [5, 30, 24] do not solve this issue due to the
lack of synchronization and environmental changes. So we
opted for GANs. For each condition ¢, we used a ForkGAN
model [46] T to translate all day-clear training samples E
of nuScenes, with ¢ € C' = {night, rain}. We trained Fork-

GAN on BDD100K [43] and fine-tuned it on the nuScenes
training set. For RobotCar, we used T to translate all day
samples E into night ones. RobotCar contains more night
samples than nuScenes, so we trained 7T directly on its
training set. We share publicly all generated h{ images.
Prior works and baselines We compared ours with a
variety of works [9, 12, 13, 39, 38, 23, 34, 1]. We applied
ours on the self-supervised Monodepth2-based baseline of
Section 3.1.1 and the fully-supervised AdaBins [1].

4.2. Quantitative Results

Night — nuScenes In Table 1, we report results for
nuScenes [4] across various settings. Night samples present
strong noise levels and reflections that are detrimental for
self-supervised models (Figure 2), causing the absRel er-
rors of most methods to double from ideal conditions (i.e.,
day-clear) to night. The difficulty of learning from night
inputs is evident comparing Monodepth2 [12] trained only
on day-clear (d) against all conditions (a), with the latter
severely underperforming. PackNet [13] improved at night
and rain, albeit doing worse in standard settings, possibly
due to its large model and the relatively small dataset. Pack-
Net’s velocity supervision also helped over Monodepth2
(md2) with our baseline. Thanks to the extra radar signal,
R4Dyn [9] delivered significant improvements, although at
night, only adding radar in input was beneficial over md2.
md2 trained only on day-clear data outperformed RNW’s
complex pipeline [39]. We retrained RNW on the official
split (the authors reported an absRel of 0.3150 at night on
their split [39]). Remarkably, despite being based on the
same model as md2, at night, our simple techniques reduced
absRel by 32% and relatively increased d; by 37% (DD).
Our md4all also outperformed the radar-based R4Dyn at
night. This is thanks to the ability of our method to extract
robust features from monocular data even in the dark.



day — RobotCar night — RobotCar

Method source sup. trdata | absRel sqRel RMSE 01 absRel sqRel RMSE 01

Monodepth2 [12]  [ours] M* d 0.1196 0.670 3.164 86.38 | 0.3029 1.724 5.038 45.88
DeFeatNet [34] [38] M*  a:dn | 02470 2980 7.884 65.00 | 0.3340 4.589 8.606 58.60
ADIDS [23] [38] M*  a:dn | 02390 2.089 6.743 6140 | 0.2870 2.569 7.985 49.00
RNW [39] [38] M*  ardn | 02970 2.608 7.996 43.10 | 0.1850 1,710 6.549 73.30
WSGD [38] [38] M*  ardn | 0.1760 1.603 6.036 75.00 | 0.1740 1.637 6302 7540
[ours] baseline [ours] Mv d 0.1209 0.723 3.335 86.61 | 0.3909 3.547 8227 22.51
[ours] md4all-DD  [ours] Mv dT(n) | 0.1128 0.648 3.206 87.13 | 0.1219 0.784 3.604 84.86

Table 2. Evaluation of self-supervised works on the RobotCar [

Night — RobotCar In Table 2, we report results for
RobotCar [24]. Here we compare with various approaches
that also target depth estimation in challenging condi-
tions [34, 23, 39, 38]. They all focus on night issues, tested
here. Our md4all outperforms them all across the board,
with substantially better estimates at night than theirs dur-
ing the day: the previous best WSGD [38]’s day absRel
error is 45% higher than ours at night. This is thanks to the
simplicity of our approach, which does not rely on complex
architectures, but makes existing models robust in adverse
conditions by changing their input and training signals.

Rain — nuScenes Rain is less problematic than darkness
due to the lack of cues in the latter. Results are shown in
Table 1, with all methods performing better with rain than
at night. Our self-supervised monocular md4all-DD signif-
icantly improved over Monodepth2 and the baseline, per-
forming close to the radar-based R4Dyn [9].

Fully-supervised Table | reports also results in super-
vised settings. LiDAR data is reliable in the dark, so night
scenes are less of an issue. Instead, rain inputs are partic-
ularly interesting for supervised works due to the reflection
issues shown in Figures | and 2. For supervised settings, we
applied our method on AdaBins [1]. It is to be considered
that LiDAR artifacts may have an impact on the rain val-
ues, such that perfect estimates would not score perfectly
because the ground truth is wrong (Figure 2). So, while
we can assess the improvements of md4all at handling the
blur caused by raindrops, we cannot correctly quantify its
impact on eliminating the artifacts. Therefore, these com-
parisons are more meaningful when considered alongside
qualitative outputs (Figure 5). Our supervised md4all per-
formed better than AdaBins both quantitatively and quali-
tatively, eliminating the dependency on the sensor artifacts.
Additionally, thanks to the strong regularization introduced
by the translated samples, our model generalizes signifi-
cantly better than the standard AdaBins, leading to vast im-
provements across the board, also at night. Training on the
sparse LiDAR signal of nuScenes [4] (Figures 2 and 5) can
lead to overfitting. Ours is a beneficial data augmentation
technique, adding diversity to the training, as the model is
shown |C| + 1 variations of each day-clear input.

] test set. Trailing 0 added to the values from [

]. Notation from Table 1.

Day(-clear) While we do not include any modification
addressing standard conditions, we still see improvements
over the baselines across both datasets and supervision
types (Tables 1 and 2). This is due to the training mix of
easy and translated samples acting as a strong data augmen-
tation and regularization technique. Since the same weights
are optimized on all conditions, they learn to extract robust
features which are beneficial also with good visibility. In-
stead, RNW [39] is meant for operating only at night.

All conditions Remarkably, across all tested conditions,
md4all significantly improves over Monodepth2 and Ad-
aBins on which we applied it, without the need for spe-
cialized branches (Tables 1 and 2). There is no trade-off
introduced when training our unique md4all model for mul-
tiple conditions, as the scores and errors remain equivalent
or even improve compared to training only in ideal settings.
This proves the effectiveness and generality of our simple
ideas. The Appendix includes preliminary results with snow
and fog on the challenging DENSE dataset [2].

AD and DD Our md4all delivers improvements both as
DD and AD (Tables | and 2). While the two are applica-
ble under both supervisions, available and reliable ground
truth alongside the day-clear data makes AD more suitable
for supervised setups. DD works better than AD in self-
supervised settings thanks to the simplified training scheme
and the guidance of our strong baseline.

Robustness against translations In Table 3, we as-
sess the impact of the quality of image translation on our
method. While the selected ForkGAN [46] translates bet-
ter than CycleGAN [48], it does not give perfect outputs
either (Appendix). Since we use the translations to learn ro-
bust features, their imperfections even help our model’s ro-

Method ‘ avg/all  day night
[ours] w/ CycleGAN [48] 0.1244 0.1159 0.1328
[ours] w/ ForkGAN [46] 0.1174 0.1128 0.1219
[ours] w/ degraded ForkGAN | 0.1213 0.1159 0.1266

Table 3. Robustness of md4all-DD against translations from dif-
ferent GANs. Evaluation of absRel on the RobotCar [24] test set.
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Figure 5. Comparison on nuScenes [4] between fully-sup. AdaBins [1] w/o and w/ ours, and self-sup. Monodepth2 [12] w/o and w/ ours.

bustness by making it harder to recover information for the
depth task, as the translations act as data augmentation and
regularization. The table confirms the robustness of md4all,
performing similarly regardless of which GAN is used, even
when degrading 10% of the inputs via random erasing.

4.3. Qualitative Results

Qualitative comparisons in Figures 5 and 6 confirm the
quantitative findings, with our md4all delivering improved
estimates in both adverse and standard conditions. On
nuScenes [4] (Figure 5), unlike the baselines, both our mod-
els correctly identified the truck in the first rainy sample.
As shown in Figure 2, rain leads to artifacts in the LIDAR
ground truth, which cause the standard fully-supervised Ad-
aBins [1] to learn them and estimate the road wrongly. Our
supervised md4all exhibits no such artifacts as it was not
trained with the problematic rainy samples but rather on our
translated ones, which have reliable ground truth. Instead,
self-supervised methods have issues at night. While Mon-
odepth2 [12] could identify critical elements of the scenes
(e.g., car and sign), its difficulties in extracting informa-
tion in the dark are evident. Monodepth2 had fewer issues

md4all [ours]

input image

Figure 6. Comparison on RobotCar [24] samples between ours
self-supervised and WSGD [38]. Ouputs of WSGD are from [38].

with brighter night samples, as shown in the Appendix. Our
self-supervised md4all delivered sharp estimates, identify-
ing even the two trees on the left side of the bottom in-
put, which are particularly hard to see. For RobotCar [24]
(Figure 6), we compared on the same samples displayed by
WSGD in their paper [38]. As in Table 2, our md4all de-
livered better and sharper estimates in both conditions, cor-
rectly estimating the people’s distance.

Limitations md4all improves in all tested conditions,
but DD may propagate errors from the baseline. Thus,
a stronger baseline would help. Despite the robustness
against translations (Table 3), GANs [46] could be prob-
lematic. Better translations would help eliminate the do-
main gap, as seen with RobotCar (Table 2). GANSs require
many adverse images for training. Hard-to-distinguish data
distributions (e.g., light snow vs. overcast) may create prob-
lems. md4all is applicable to stereo-based models too, but
only given consistent translations for the stereo images. Fu-
ture work may focus on eliminating the dependency on the
GAN. Furthermore, md4all does not address the issue of
dynamic objects, so flow [15] or weak radar supervision [9]
may be beneficial, albeit adding complexity. The core ideas
of this work can be extended to other tasks.

The Appendix includes a variety of extra results, e.g.,
experiments with snow and fog, and sample translations.

5. Conclusion

We presented the simple and effective md4all, enabling
a single monocular model to estimate depth robustly in both
standard and challenging conditions (e.g., night, rain). We
showed md4all delivering significant improvements under
both fully- or self-supervised settings, overcoming the detri-
mental factors that make adverse conditions problematic.



A. Supplementary Material

The source code of our method, the main trained models
reported in the experiments, and the generated translated
images are publicly available at https://md4all.github.io.

This appendix includes additional details and results.
Sections A.l and A.2 include additional information on
the method and the experimental setup, while Sections A.3
and A.4 introduce more results, quantitatively and qualita-
tively, respectively.

In particular, this appendix is organized as follows:

e Section A.l.l includes details about our supervised
framework.

» Section A.1.2 adds details about our self-supervised
baseline.

» Section A.1.3 describes the noise and time-dependent
normalization used for our self-supervised models.

» Section A.2.1 further reports details about the experi-
mental setup for image translation.

¢ Section A.2.2 includes details on the setup used for the
nuScenes dataset.

¢ Section A.2.3 includes details on the setup used for the
RobotCar dataset.

e Section A.2.4 adds details about the experimental
setup for prior works.

» Section A.3.1 reports a detailed ablation study of our
method on both nuScenes and RobotCar.

 Section A.3.2 adds preliminary results with snow and
fog on the DENSE dataset.

* Section A.3.3 analyzes the effect of different data dis-
tributions among the conditions during training on
RobotCar.

* Section A.3.4 compares different configurations of our
supervised framework on nuScenes.

e Section A.3.5 looks into quantitative results with rain
at nighttime and averages across the various conditions
on nuScenes.

» Section A.3.6 compares methods on the test set of
nuScenes.

» Section A.3.7 analyzes the performance of the meth-
ods at varying distances from the ego vehicle, both on
nuScenes and RobotCar.

e Section A.4.1 reports qualitative results of our self-
supervised method on nuScenes.
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Figure 7. Apart from the type of supervision, our md4all-AD
supervised framework works similarly to the md4all-AD self-
supervised framework described in Section 3.1.2 and Figure 4,
with Always Daytime, No Bad Weather. The depth model is
trained with a mix of easy and translated samples, while its super-
vision is obtained from the ground truth data corresponding only
to the easy samples. As in the self-supervised case, inference time
is unchanged and performed with a single depth model without
specialized branches (top right).

e Section A.4.2 adds qualitative results of our fully-
supervised method on nuScenes.

* Section A.4.3 discusses qualitative results of our self-
supervised method on RobotCar.

 Section A.4.4 looks into failure cases of our self- and
fully-supervised methods, exemplified on nuScenes.

* Section A.4.5 analyzes images generated via image
translations for both nuScenes and RobotCar.

» Section A.5 lists attempted and alternative approaches
that did not work.

A.1. Additional Details on the Method
A.1.1 Supervised md4all

In the main paper, we mostly focused on the more complex
self-supervised setting (Sections 3.1.2 and 3.1.3), and we
extended our method to the supervised setup (Section 3.2),
making it the first depth estimation work to explore and ad-
dress bad weather in supervised monocular settings.
Supervised models learn directly from the ground truth
(e.g., LiDAR data). However, in adverse conditions (e.g.,
rain), the ground truth becomes unreliable (Figure 2). Our
supervised md4all aims to eliminate the sources of unrelia-
bility in the ground truth by providing a reliable signal in all
conditions. As shown in Figure 7, we achieve this with the
same principles described for the self-supervised settings:
having a single depth model learn robust features agnostic
of the condition in input by feeding a mix of easy and hard
samples, with the ground truth always corresponding to the
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easy samples. Therefore, we use the same image transla-
tion model to generate adverse images corresponding to the
easy ones in the training data. Then, we train the depth
model with a mix of original easy and generated adverse in-
puts. Unlike the self-supervised settings where the training
signal came from a pre-trained baseline model (md4all-DD)
or the photometric losses (md4all-AD), the training signal
is obtained directly from the ground truth data for super-
vised methods. When translating an image e; to adverse
conditions h{, we use as ground truth for A{ the LiDAR
data corresponding to e;.

We associate this supervised method with our AD con-
figuration since no distillation from a pre-trained model oc-
curs (unlike for DD). Moreover, the depth model is trained
in the same way as its baseline, i.e., via the ground truth,
in an Always Daytime, no Bad Weather fashion, similarly
to our self-supervised AD model (Section 3.1.2). Further-
more, the translated images should be used only for those
conditions that render the ground truth unreliable. There-
fore, for the experiments, we translated the inputs from day-
clear to day-rain, since the ground truth is unreliable with
rain (Figure 2). Still, we used the original night inputs since
the ground truth is reliable at night (Figure 5).

A.1.2  Self-Supervised Baseline

In this section, we further describe the loss functions used
for the baseline of Section 3.1.1. Such baseline is equiv-
alent to Monodepth2 [12] made scale-aware through weak
velocity supervision from Guizilini et al. [13].

The photometric loss is the combination of £;-loss and
SSIM [40], as done in [11]:

(1) = |
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where @ = 0.85 is a weight to balance between the two
terms. Furthermore, similarly to [12], we account for partial
occlusions by only considering the minimum reprojection
error:

Ly (B dine) = minpe (I dine) . @)
Moreover, following the so-called auto-mask from Mon-

odepth2 [12], we automatically mask out the pixels that do
not change appearance across different frames:

M, =min L, (I, I) > min £, (Itjsﬁt) @

Therefore, the photometric loss is only computed in the
areas where M, = 1. Additionally, to encourage local

smoothness and preserve sharp edges, we use the follow-
ing term from [11]:

L, (I, d})
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where |-| is the absolute value computed element-wise, Oy
and 0, are the gradients in x and y directions, and d; =
d; /dy is the inverse of the depth prediction normalized by
the mean.

As already described in Section 3.1.1, we follow [13]
by using a weak velocity supervision £, to achieve scale-
awareness. This is defined as:

Lo (boortins) = [lmllz = lisllo] — ©)

where t;_,5 and t;_,, are the predicted and ground truth
pose translations, respectively, which can be easily obtained
from the available odometry information, through the ego
vehicle speed and the time interval across frames.

A.1.3 Noise and Normalization

We did not apply either of these two techniques in the su-
pervised setting, i.e., where we applied our method on Ad-
aBins [1], since the LiDAR ground truth provides a strong
signal which already enables such robust feature extraction.
For the self-supervised models, we normalize the inputs
at training time depending on the time of the day (i.e., day
and night). Towards this end, we precompute the mean
and variance of the pixel values across the two conditions
throughout the dataset and normalize the inputs accord-
ingly. In Tables 4 and 5, we show how this time-dependent
normalization has a positive impact at training time, as it
aligns the features in a condition-agnostic manner. Addi-
tionally, we show that this normalization can be avoided at
inference time for similar results. Avoiding it ensures that
the operations executed across all conditions are identical
at inference time. Thus, after deployment, our method does
not require any knowledge about the current weather and il-
lumination settings, which may be hard to define and may
intersect with other conditions (e.g., wet ground without
rain or dusk). Nevertheless, due to the relatively small dif-
ference during inference, we used time-dependent normal-
ization for self-supervised models unless otherwise noted.
Furthermore, in the case of camera sensors delivering
significant noise levels (e.g., nuScenes [4]), we augment
the inputs of self-supervised models with heavy noise. The
noise is randomly applied to 50% of the inputs, regardless
of their condition. This helps to learn more robust features.
When the noise is used, we compute the losses on the sam-
ples without noise. Specifically, we generated the noise by
adding to the image a random pattern following the uniform
distribution [0.005, 0.05], then clamped the pixel values to



[0, 1], thereby ensuring that the input remains within a valid
range.

A.2. Additional Details on the Experimental Setup
A.2.1 Day-to-adverse Translation

For the experiments, we focused on two adverse conditions
in nuScenes [4] (i.e., rain and night) and one in Robot-
Car [24] (i.e., night), alongside the standard conditions day-
clear | day. Towards this end, we trained two different
ForkGAN [46] models for nuScenes, one for each con-
dition, and one for RobotCar, to enable translations from
day-clear to each challenging condition, tailored to each
dataset. For the RobotCar dataset, we trained the GAN us-
ing the 34128 daytime samples from the scene 2014-12-09-
13-21-02 and the 32585 nighttime samples from 2014-12-
16-18-44-24. The dataset offered enough samples to train
the image translation model thanks to the high frame rate.
Instead, the nuScenes dataset only provides 6951 samples
for day-rain and 4706 for night, which are insufficient for
the GAN to learn such day-to-adverse translation. There-
fore, to learn the transition from day-clear to day-rain, we
additionally used all day-rain samples from the nulmages
dataset [4] resulting in a total number of 19857 day-rain
frames. We balanced this with the 19685 day-clear images
of the nuScenes training set. Since the nulmages dataset
does not provide any metadata about the weather condition,
we manually labeled all its samples with their respective
weather condition. Nevertheless, night samples are insuf-
ficient in nuScenes and nulmages (14302) to train a GAN.
For this reason, we first trained the day-clear to night trans-
lation model on BDD100K [43], which includes 36728 day
and 27971 night images in its training set. Then, we fine-
tuned it on the available nuScenes night samples from the
training set.

A.2.2 nuScenes

For the depth experiments on nuScenes [4], we followed the
setup of R4Dyn [9], using the official data splits and evalu-
ating up to 80 meters comparing the predictions with a sin-
gle LiDAR scan. As in R4Dyn, we discarded static frames
(i.e., where the ego vehicle is stationary) for self-supervised
models. While a single scan is highly sparse compared
to the dense depth prediction, it limits the artifacts intro-
duced by accumulating multiple scans over time for denser
ground truth (e.g., due to moving objects and changing per-
spectives). We augmented the inputs with heavy noise for
self-supervised models to mimic that in the night samples.
For the supervised setting, learning from such a sparse sig-
nal means reducing the workload needed for producing the
ground truth, albeit rendering it more challenging. As it is
standard for supervised setups, the models do not learn the
depth of the unreachable areas for the ground truth sensor

(e.g., the sky for LIDAR). All qualitative images and quan-
titative results reported in the main paper and this supple-
mentary material are from the validation set unless other-
wise noted (e.g., test set in Table 14).

A.2.3 RobotCar

For the experiments on RobotCar [24], we followed the
setup of WSGD [38] using the six sequences in the 2014-
12-09-13-21-02 traversal as daytime samples, and the six
sequences in the 2014-12-16-18-44-24 traversal as night-
time ones. Since the peculiarity of RobotCar is that it was
recorded by driving over the same route multiple times over
a year, a training-test split with non-overlapping drives is
required to properly assess the models’ generalization ca-
pabilities. Therefore, we used the split provided by WSGD.

As in [39], we used the left images of the front stereo-
camera (Bumblebee XB3), of which we removed the bot-
tom 20% (i.e., ego vehicle bonnet), and the ground truth
data from the LMS front LiDAR sensor. We used the official
toolbox to accumulate multiple LiDAR scans and project
them to the input images. Towards this end, we used vi-
sual odometry, as recommended by the official documen-
tation of the dataset, and a time margin of +4e6 from the
origin timestamp, as in [39]. As commonly done for self-
supervised methods, we discard static frames thresholding
the translation provided by the visual odometry. We did
not apply heavy noise for RobotCar as the night samples
did not exhibit it. Furthermore, since the RobotCar camera
occasionally suffers from inconsistent illumination across
neighboring frames, we discarded these too. Specifically,
we removed all triplets where the keyframe’s mean RGB
value is > 0.9, or the RGB mean value difference between
two consecutive frames is > 0.05. In addition, only the
images with a corresponding LiDAR ground truth could be
evaluated.

For the experiment with degraded translations via ran-
dom erasing (Table 3), we applied it randomly to 10% of the
inputs, with a patch sized randomly between 5% and 10%
of the input dimensions, placed randomly within the im-
age, with an aspect ratio between 0.3 and 3.3. When apply-
ing random erasing, the performance of md4all marginally
improved in terms of &; by 0.32% on all (absRel slightly
decreased as shown in Table 3), thanks to the augmenta-
tion and regularization effect introduced by the patches.
Throughout the main paper and this supplementary mate-
rial, all qualitative images and quantitative results are from
the test set defined by WSGD.

A.2.4 Prior Works

For prior works on RobotCar, we reported the values com-
puted by Vankadari et al. [38], who retrained RNW [39]
on a non-overlapping split (which inherently reduced



day-clear — nuScenes night — nuScenes day-rain — nuScenes
ID Method trdata | absRel RMSE absRel RMSE 01 absRel RMSE 01
A0 md2 [12], all a:dnr | 0.1477 6.771 8525 | 2.3332 32940 10.54 | 0.4114 9.442  60.58
Al md2, n real dn 0.1345 6.575 8547 | 24536 34.295 11.71 | 0.1753 7.701 77.13
A2 md2, n transl. 59,  dT(n) | 0.1390 6.670 85.36 | 0.2655 9.892 54.44 | 0.1861 7.800 76.28
A3 md2, day-conly d 0.1374 6.692 85.00 | 0.2828 9.729 51.83 | 0.1727 7.743  77.57
A4 +v.-sup=b.line d 0.1333 6459 85.88 | 0.2419 10.922 58.17 | 0.1572 7453 79.49
A5 +noise, L clean  d 0.1428 6.609 84.43 | 0.2256 9.672 63.50 | 0.1592 7.619 78.95
A6 + all n transl. dI(n) | 0.1624 7.042 80.50 | 0.2214 9.092 67.01 | 0.1752 8272 7641
A7 — pose transl. dT(n) | 0.1597 7.143 8137 | 0.2184 8.754 6690 | 0.1689 8.210 77.23
ADn | + day loss only dT(n) | 0.1433 6.954 83.27 | 0.2230 9.001 68.63 | 0.1545 7915 78.36
A9 — time norm. dT(n) | 0.1554 6.949 81.66 | 0.2121 8.502 6743 | 0.1627 7.797 77.62
ADa | ADn + r transl. dT(nr) | 0.1523 6.853 83.11 | 0.2187 9.003 68.84 | 0.1601 7.832 78.97
All | + day distill. dI(nr) | 0.1387 6.621 84.11 | 0.1960 8.595 70.08 | 0.1444 7355 80.20
DDn | ADn + distill. dT(n) | 01302 6.373 85.02 | 0.1959 8.471 70.14 | 0.1429 7.312 79.60
DDr | rdistill. dI(r) | 0.1323 6.437 85.18 | 0.2502 11.847 57.02 | 0.1364 7.100 81.37
DDa | ADa + distill. dT(nr) | 0.1366 6.452 84.61 | 0.1921 8507 71.07 | 0.1414 7.228  80.98
Al5 | —testtime norm. dT(nr) | 0.1367 6449 84.56 | 0.1881 8524 70.65 | 0.1412 7.234 80.99

Table 4. Ablation study on our self-supervised method on the nuScenes [4] validation set. md2: Monodepth2 [12]. DDa is our self-
supervised approach reported throughout this work for nuScenes: md4all-DD trained on dT(nr). Instead, ADa is our self-supervised

md4all-AD model. Notation reused from Table 1.

the scores), and also re-evaluated DeFeatNet [34] and
ADIDS [23] on the same test split (again reducing the
scores). Among works focusing on depth estimation in the
dark, only RNW reported its results on the more challeng-
ing nuScenes dataset. However, since the authors reported
their scores on a different, custom split, we retrained their
model on the official split. For this reason, the results of
RNW differ from those reported directly by Wang et al. in
their paper [39]. Nevertheless, the difference is relatively
small as RNW reported at night: absRel of 0.3150 (0.3333
from our experiment with RNW), sqRel of 3.793 (4.006),
RMSE of 9.6408 (10.098), and d; of 50.81 (43.72). While
this performance gap should be attributed to the different
data splits used, it does not affect the comparisons since
our models performed significantly better than what Wang
et al. reported in their paper [39], both quantitatively and
qualitatively. Furthermore, on nuScenes, we also report the
values of R4Dyn [9] and PackNet-SfM [ 13], as provided to
us by the authors of [9]. Additional related works tackling
adverse conditions exist (Section 2.2.1). Still, their lack of
open-source code or their use of unconventional and unclear
experimental setups prevented us from directly comparing
with their methods.

A.3. Additional Quantitative Results
A.3.1 Ablation Study

In Table 4, we report an ablation study over the main com-
ponents of our method.
We started from a Monodepth2 [12] trained on the en-

tire training set of nuScenes [4] (AQ), meaning all avail-
able conditions. AO performed poorly under adverse con-
ditions due to the difficulty of establishing pixel correspon-
dences across consecutive night and rain frames. A0 de-
livered scores and errors similar to those reported for Mon-
odepth2 by prior works in their papers, such as RNW [39]
and WSGD [38]. Furthermore, the outputs of A0 ex-
hibit the same issues shown by RNW and WSGD in their
qualitative comparisons (e.g., holes in the ground), which
are not present and much improved when training Mon-
odepth2 only on day-clear, as reported throughout this work
(A3). In particular, with A0O-A3, we show how the standard
Monodepth2 performs substantially better than the complex
RNW overall and significantly better than WSGD in the
daytime (Table 5).

Al is a Monodepth2 model trained on day-clear and
night (i.e., everything excluding day-rain). Al performed
similarly to AO at night, but significantly better with rain.
Additionally, it can be seen how training on day-rain sam-
ples negatively affected the day-clear performance (AQ)
while excluding such rainy samples improved in standard
conditions (A1). Then, A2 is another Monodepth2 model,
trained on day-clear and the translated night samples we
generated with the GAN. A2 was fed a mix of day-clear
and generated night ones with x = 15%, to resemble the
day-night distribution of the training set (used by A1l). The
comparison of Al with A2 shows mainly two aspects about
the translated images (Figure 17): they are not entirely re-
alistic, and, unlike the real ones, they do not prevent estab-
lishing the pixel correspondences. If the generated samples



day — RobotCar night — RobotCar

Method trdata | absRel sqRel RMSE 01 absRel sqRel RMSE 01

Monodepth2 [12] d 0.1196 0.670 3.164 86.38 | 0.3029 1.724 5.038 45.88
WSGD [38] a:dn | 0.1760 1.603 6.036 75.00 | 0.1740 1.637 6302 7540
[ours] baseline d 0.1209 0.723 3.335 86.61 | 0.3909 3.547 8.227 22.51
[ours] md4all-AD dT(n) | 01113 0.707 3.248 88.02 | 0.1223 0.851 3.723 85.77
[ours] md4all-DD dT(n) | 0.1128 0.648 3.206 87.13 | 0.1219 0.784 3.604 84.86
[ours] md4all-DD w/o test time norm. dT(n) | 0.1129 0.640 3.190 87.02 | 0.1256 0.824 3.703  83.87
[ours] md4all-AD w/ LiDAR scaling  dT(n) | 0.1192 0.747 3.184 86.81 | 0.1275 0.834 3.641 86.15
[ours] md4all-DD w/ LiDAR scaling  dT(n) | 0.1133 0.642 3.052 87.45 | 0.1230 0.739 3439 86.41

Table 5. Evaluation of self-supervised works on the RobotCar [24] test set up to 50 meters. Different configurations of our method are
compared with Monodepth2 and WSGD. LiDAR scaling indicates the use of LiDAR data at test-time to scale the predictions (as done by
Monodepth2 and WSGD), which is equivalent to * in the supervision notation of Table 1 and 2. The method highlighted in bold is reported

throughout this work for RobotCar as md4all-DD trained on d7{(n). This Table extends Table 2.

were completely realistic (i.e., like the real night ones from
nuScenes), there would have been a much smaller differ-
ence between Al and A2. In particular, the generated im-
ages do not fully resemble the real night ones (Figure 17),
especially for the noise, which is more consistent through-
out the generated frames compared to the real ones, and the
darkness levels, with images that are not as black as the real
night ones of nuScenes. This lack of realism in the gener-
ated images is the reason for the performance improvement
of A2 at night compared to Al.

Similarly, WSGD [38] showed the importance of de-
noising night images, with noise detrimental to the models.
Since the translated images do not exhibit the same kind of
noise and reflections as the real ones and are particularly
unrealistic when translating a sunny sample (Figure 17),
A2 was able to establish pixel correspondences across the
translated samples to a certain extent. Additionally, as x
randomizes the condition of each input independently, with
A2, the translations also introduce a regularization effect as
data augmentation. A3 was also a Monodepth2 model but
trained only on the day-clear samples. As shown in Ta-
ble 1, this improves significantly compared to training on
all conditions (A0) due to the impossibility of establishing
correspondences at night for AQ.

The weak velocity supervision [13] (A4) improved sig-
nificantly over A3, thanks to better pose estimates. Com-
pared to AO-A3, which need ground truth median scaling at
test time, A4 is scale-aware and does not use it. With A5,
we added heavy noise (consistently throughout the triplets)
but computed the losses on the clean samples (i.e., with-
out noise). This made it worse for day-clear and day-rain,
but improved for night compared to A4. The motivation
for AS develops from the intense noise present in the night
samples of nuScenes (Figure 2), which may confuse the
models. We did not apply this under supervised settings
(i.e., our method on AdaBins). The improvement seen with

adding noise while computing the loss on the inputs with-
out noise paved the way for the concept of our AD model.
With A6, we added the translated images generated with
the GAN from day to night (x = 50%) to the training data.
This made it worse than AO for day-clear, but similarly to
A2, it improved for night due to the lack of realism of the
generated samples, which allowed to establish pixel corre-
spondences. For A6 (and A2), perfectly realistic generated
samples would have been detrimental to learning.

With A7, we did not feed the translated images to the
pose model but only to the depth one. This guarantees rea-
sonable pose estimates, which improve the task at hand un-
der all three conditions. Then, with ADn, we computed
the losses only on the day-clear e; samples, correspond-
ing to the translated ones given as input. This significantly
improved the model performance on day-clear, reaching a
level similar to A3 (i.e., only a marginal degradation on the
standard conditions). It should be noted that if the trans-
lated images perfectly mimicked the real night ones, A2,
A6, and A7 would have performed relatively poorly, i.e.,
similarly to AO and Al at night. In the case of perfect day-
to-night translations, always computing the loss only on the
day-clear e; samples (as in ADn, instead of calculating it
on the translated ones, as in A2, A6, and A7) would have
had a significantly positive impact at night.

With A9, we removed the time-dependent normalization
from ADn, which was used from A6 to ADn. This shows
that this technique benefits both day-clear and day-rain, as
it helps construct a unified representation for all conditions.
With ADa, we incorporated day-to-rain translations to ADn
alongside the day-to-night images (z = 66%, i.e., one-third
for each condition). This delivered a similar performance
to ADn (e.g., improved for night, and improved the RMSE,
with a worse absRel for day-clear). As for Table 1, the Li-
DAR ground truth is not fully reliable for day-rain and also
significantly sparser than for day-clear (Figure 2). With



day-clear fog Snow
Method |absRel §; |absRel §; |absRel 6

md2 [12] | 0.1642 82.35|0.1698 81.97 | 0.1798 76.68

[ours] 0.1520 83.54 | 0.1524 83.36 | 0.1788 77.93

Table 6. These are only preliminary results (details in Sec-
tion A.3.2). Evaluations with snow and fog on the DENSE
dataset [2]. AbsRel and d; are reported for each condition. Mon-
odepth2 [12] (md2) trained on day-clear is compared with our
md4all-DD trained on day-clear plus translated images to fog and
snow (x = 66%).

All, we added the day distillation loss (Equation 1) on
the translated inputs while keeping the standard losses for
the day-clear inputs. This combination improved across the
board. Then, with DD, we simplified the training process by
using only the day distillation loss for all inputs (including
day-clear). Thus, DDn does this for day-clear and night,
DDr does it for day-clear and day-rain. Our day distilla-
tion provides a dense and reliable signal (from A4 inferring
only on day-clear samples), improving the errors and met-
rics across the board.

Finally, with A15, we show the impact of avoiding the
time-dependent normalization at test time. Compared to
DDa, A15 does not apply such time-dependent normaliza-
tion at inference time but only at training time. Al5 ob-
tains comparable results throughout the various settings. In-
stead, as shown with A9, the time-dependent normaliza-
tion is helpful at training time. After training, our model
has learned robust features agnostic to the condition, al-
lowing it to perform similarly regardless of the image nor-
malization applied at test time. This demonstrates how our
method does not need any condition-specific setups at in-
ference time to deliver robust predictions, clearly separating
our md4all from previous works requiring custom branches
for each condition. In the supervised settings (i.e., our
method applied on AdaBins), we did not perform any time-
dependent normalization since the strong LiDAR supervi-
sion is enough to learn depth estimation at night.

In Table 5, we report various configurations of our
method on the RobotCar [24] dataset. As for nuScenes
(A15 in Table 4), we show that not applying the time-
dependent normalization at test-time (i.e., executing the
same operations with the same setup across the differ-
ent conditions) does not negatively affect the predictions,
achieving comparable results. Furthermore, we show how
the results change when applying the median scaling via
LiDAR data at test time. This technique is used by Mon-
odepth2 [12], WSGD [38], and most other methods com-
pared in this work. Our model does not need such scaling
via ground truth data, thanks to its scale awareness learned
via the weak velocity supervision introduced by PackNet-
SfM [13].

avg/all day night
Method |absRel §; |absRel §; |absRel §;

md2 [12] |0.2122 65.92{0.1196 86.38|0.3029 45.88
70d -30n | 0.1189 86.39|0.1138 87.80|0.1239 85.01
50d - 50n | 0.1174 85.99 | 0.1128 87.13|0.1219 84.86
30d-70n | 0.1221 85.86|0.1168 87.16|0.1273 84.59

Table 7. Impact of different training data distributions between day
(d) and night (n) samples by varying the parameter x. AbsRel
and d; are reported on the test set of the RobotCar dataset [24].
Different distributions are shown for md4all-DD, a. In the rest of
this work, the balanced 50d-50n configuration (i.e., z = 50%) was
used.

Nevertheless, accurate scaling can further improve the
results, especially at night. Compared to nuScenes, the
RobotCar dataset provides less precise odometry informa-
tion, causing difficulties for the baseline and our models to
learn the correct scaling. This can be seen by the improved
scores at night when applying the median scaling via Li-
DAR data. With reliable scaling via the ground truth data,
md4all-DD outperforms md4all-AD.

AD and DD While the benefit of our DD configuration
over AD is evident for nuScenes, the gap is not as significant
for RobotCar, with the two delivering comparable results
(Table 5). This difference can be attributed to various rea-
sons. First of all, nuScenes is more challenging, as demon-
strated by the lower scores obtained by the models across all
conditions, especially at night. Thus, the improvements of
DD over AD might be reduced for RobotCar since AD al-
ready achieves solid results. The higher amount of images
available on RobotCar to learn the translation task led to
more realistic translations than nuScenes (Section A.4.5).
Then, the less precise odometry information of RobotCar
impacted the performance of the baseline through weak ve-
locity supervision. Therefore, the baseline possibly learned
wrong poses. This is not the case on nuScenes (Table 4),
where the baseline (A4) improved significantly over Mon-
odepth2 (A3). This did not happen for RobotCar. Since
our md4all-DD learns to mimic the baseline via knowledge
distillation, our model is directly affected by the weaker
baseline in RobotCar, delivering similar results to AD. In-
stead, in nuScenes the gap between AD and DD is substan-
tial throughout the conditions.

As shown with Monodepth2 [12] and AdaBins [1], our
method is widely flexible and applicable to different archi-
tectures and types of supervision. While being out of the
scope of this work, our approach can be seamlessly applied
to other self-supervised or supervised frameworks, such as
PackNet-SfM [13], since we do not alter the model archi-
tecture, but only its training scheme. In particular, to apply
the proposed md4all to an existing depth estimation method,
no structural changes are needed, as it is sufficient to feed



day-clear — nuScenes night — nuScenes day-rain — nuScenes
Method tr.data | absRel RMSE 01 absRel RMSE 01 absRel RMSE 01
AdaBins [1] a:dnr | 0.1384 5582 81.31 | 0.2296 7344 6395 | 0.1726 6.267 76.01
AdaBins [1] d 0.1138 4.805 87.98 | 0.3336 14.002 45.77 | 0.1540 6.119 81.20
[ours] md4all-AD, rain  dT(r) | 0.1052 4.621 89.58 | 0.2644 10.749 55.51 | 0.1380 6.030 83.32
[ours] md4all-AD, all  dnT(r) | 0.1206, 4.806 88.03 | 0.1821 6.372 7533 | 0.1562 5.903 82.82

Table 8. Additional evaluation of LiDAR-supervised methods on the nuScenes [4] validation set. This table adds the second and third lines

compared to Table 1.

avg/all — nuScenes night-rain — nuScenes d-clear | night | d-rain
Method absRel sqRel RMSE 01 absRel sqRel RMSE 01 sqRel | sqRel | sqRel
md2 [12],d 0.1576 2.002 7.164 80.49 | 0.3148 3.001 9.523 46.72 | 1.820 | 2.879 | 2.296
R4Dyn [9], d (radar) | 0.1365 1.830 6.957 84.01 | 0.2431 2945 10.055 5695 | 1.661 | 2.889 | 1.938
RNW [39], dn 0.2931 3.557 9.304 55.13 | 0.3400 4.783 10.189 44.68 | 3.433 | 4.066 | 3.796
baseline, d 0.1480 2.032 7.065 82.08 | 0.2684 3.368 10.664 53.54 1.738 | 2.776 | 2.273
md4all-AD, dT{(nr) 0.1602 2.245 7.226 81.02 | 0.2470 3.442 9.153 65.17 | 2.141 | 2.991 | 2.259
md4all-DD, dT(nr) 0.1429 1.828 6.782 82.67 | 0.2143 2.628 8.376 68.03 | 1.752 | 2.386 | 1.829
AdaBins [1], a 0.1604 1.103 5.868 78.72 | 0.2343 1.704 7.088 61.62 | 0.980 | 1.773 | 1.249
md4all-AD, dnT(r) 0.1328 0.952 5.139 8592 | 0.1967 1.632 6.423 71.67 | 0.821 | 1.525 | 1.199

Table 9. Evaluation of fully-supervised (based on AdaBins [1]) and self-supervised methods (based on md2: Monodepth2 [12]) on the

nuScenes [4] validation set. The models are the same as in Table 1. This table complements Table 1 with an evaluation on all conditions

combined, as well as the most challenging night-rain.

to the model the translated images % of the time during
training.

A.3.2 DENSE Dataset: Snow and Fog

Disclaimer: First, please consider that these are only pre-
liminary experiments and that we have not yet explored
these conditions and models to the same extent as night and
rain in the rest of this work. Nevertheless, we report them
here as they provide interesting insights.

In Table 6, we show a first attempt to tackle the prob-
lem of monocular depth estimation in the presence of snow
or fog with the DENSE dataset [2]. While our md4all per-
formed better than the standard Monodepth2 [12] across the
board, the improvement is relatively small compared to the
other datasets and conditions explored (e.g., Tables | and 2).
There are multiple reasons for this, explained below.

An impactful aspect to be considered is related to the
available data. The condition boundaries are somewhat
blurry. Overcast day-clear samples can be similar to light
fog or light snow. This is problematic for the GAN used
for image translation, which cannot distinguish the distri-
butions and adequately learn the translation task.

Furthermore, the term snow is generic and includes var-
ious scenarios, such as light snow, heavy snow, blizzard,
partly covered ground, fully covered ground, piles of snow,
or wet ground with light snow falling. These settings dif-
fer substantially, but all belong to the same snow condition.

This high variability is problematic for the translation task.
While this issue can occur similarly with night and rain too,
it is not as severe, and the diversity is more limited.

Another significant issue is the amount of usable image
data for these conditions, which is insufficient to properly
learn the translation task with ForkGAN [46]. As we did for
night for nuScenes (Section 4.1), also for DENSE, we had
to supplement with extra snow images taken from another
dataset: Boreas [3]. We trained the snow ForkGAN with
17591 day-clear and 8443 snow samples from DENSE,
plus 25036 day-clear and 26437 snow samples from Boreas
for the pre-training. While supplementing with data from
Boreas helped, the number of images from DENSE was rel-
atively low compared to nuScenes and RobotCar, prevent-
ing effective translations.

Training data for the depth models was 7947 day-clear
keyframes for DENSE. These keyframes were relatively
few (15129 were used for nuScenes and 17790 for Robot-
Car), and they were extracted from short sequences, so they
did not exhibit high variability. This reduced the depth esti-
mation performance of the models. The validation set was
also small with only 289 for day-clear, 1281 for snow, and
543 for fog. DENSE contains more images, but those were
not usable due to various reasons, e.g., they were captured
by different sensors.

Furthermore, as with rain (Figure 2), the LiDAR is not
reliable in the presence of snow or fog, as it often captures
snowflakes, fog particles, or is even obstructed by the snow



40m — day-clear — nuScenes

40m — night — nuScenes
sqRel RMSE 01

40m — day-rain — nuScenes
absRel sqRel RMSE 01

Method | absRel sqRel RMSE 01 absRel
md2 0.1095 0.796 3.535 88.89 | 0.2401
b.line 0.1131 0932 3.624 8946 | 0.2118
AD 0.1306 1.074 3.866 86.95 | 0.1907
DD 0.1173 0.877 3.592 88.22 | 0.1672

1.640 5.842  60.40
1.816 6476 63.47
1.670 5.414 73.24
1.322  5.025 75.50

0.1405 1.083 4.259 82.64
0.1333  1.200 4.397 83.66
0.1329 1.083 4.332 83.54
0.1190 0.927 4.036 85.37

Table 10. Evaluation up to 40 meters of self-supervised approaches on the validation set of nuScenes [4]. md2: Monodepth2 [12] trained
on d. b.line: baseline trained on d. AD: md4all-AD trained on dT(nr). DD: md4all-DD trained on dT(nr). The models are the same as in

Table 1.

Method | absRel sqRel RMSE

40m — avg/all — nuScenes

40m — night-rain — nuScenes
absRel sqRel RMSE 01

md2 0.1276  0.926  3.882
b.line 0.1262 1.063  4.034
AD 0.1369 1.135 4.096
DD 0.1225 0.930 3.807

85.04 | 0.2768 2.020 6.604 53.26
8593 | 0.2466 2301 7.440 57.13
85.03 | 0.2184 2.064 6.066 68.96
86.49 | 0.1925 1.653 5.661 71.38

Table 11. Evaluation up to 40 meters of self-supervised approaches on the validation set of nuScenes [4]. md2: Monodepth2 [12] trained
on d. b.line: baseline trained on d. AD: md4all-AD trained on d7(nr). DD: md4all-DD trained on dT(nr). The models are the same as in

Table 1. This table complements Table 10.

accumulated on the sensor itself. We mitigated this problem
by filtering the erroneous LiDAR points via clustering, but
we could not eliminate all problematic measurements. As
seen for rain on nuScenes, in adverse conditions the LIDAR
sensor is unable to collect measurements at further distances
(e.g., Figure 5 rain vs. night ground truth depth). Therefore,
we could only evaluate a limited set of points at a closer dis-
tance. We used a single LiDAR scan as ground truth. Addi-
tionally, among the snow data, many samples were recorded
in remote areas with relatively flat surroundings. Consider-
ing the limited distance and the flat surroundings, a model
overfitting on flat ground may seem erroneously adequate
by obtaining good quantitative results.

Additionally, for the weak velocity supervision of our
baseline, we exploited the information from the CAN bus,
as provided by the authors of DENSE. We used the vehicle
speed and the frame rate to compute the camera translation
between the frames. However, since the vehicle speed is
provided as single value for each short sequence, the cam-
era poses could only be coarsely approximated. This likely
affected the performance of the baseline, hence that of our
md4all-DD too. Furthermore, we used the CAN data to
discard static inputs (i.e., stationary ego vehicle) and those
where the ego vehicle is turning. We filtered the latter when
the steering wheel angle exceeded 20°. This filtering led to
the numbers indicated above.

All these points should be considered when evaluating
these preliminary results on DENSE.

First of all, regarding Table 6, it can be seen how the
day-clear results are not as good as those seen for nuScenes
(Table 1) or RobotCar (Table 2). This could be attributed to

DENSE containing more challenging data. More likely, it
is due to the inability of the models to properly generalize
on DENSE due to the relatively low diversity in the training
data and the limited amount of training samples. There-
fore, our md4all-DD learned from a weak baseline which
could not correctly estimate depth in standard conditions.
Nevertheless, our md4all-DD outperformed Monodepth2 in
standard settings, thanks to the regularization effect of our
translations.

In the table, we report light-fog for fog and full-coverage
or currently snowing for snow. We opted for light-fog since
dense-fog exhibited too few LiDAR points for the evalua-
tion, all at relatively close distances (easier). Instead, light-
fog allowed for a more thorough assessment at further dis-
tances. For reference, all results were better with dense-
fog than light-fog. For snow, we selected those with full-
coverage or weather metadata snow. This is because, among
the annotated conditions, they had the most precise bound-
aries with other conditions.

Moreover, both models perform similarly with fog as in
ideal settings (i.e., day-clear). While this hints that fog is
not as challenging as rain or night (Tables | and 2), the val-
ues are also affected by the limited distance of the ground
truth used for the evaluation. Therefore, the performance
may degrade significantly at further distances due to the
fog preventing seeing the details, but that cannot be eval-
vated. Nevertheless, already at the available ground truth
distances, our model outperformed Monodepth2, on which
ours is based.

Despite the limited distance of the ground truth, snow
appears more challenging than fog, causing a significant



60m — day-clear — nuScenes
Method | absRel sqRel RMSE 01

md2 0.1283 1.387 5.447 86.15
b.line 0.1279 1522 5422 8691
AD 0.1461 1.745 5.744 84.23
DD 0.1310 1.419 5364 85.65

60m — night — nuScenes
absRel sqRel RMSE 01

02739 2469 8.444 53.40
0.2348 2779 9.502 59.28
02113 2526 7.789  69.92
0.1859 2.029 7.377 72.10

60m — day-rain — nuScenes
absRel sqRel RMSE 01

0.1623 1.779 6312 79.23
0.1506 1.833 6.267 80.73
0.1519 1.774 6421 80.28
0.1347 1.463 5.938 82.24

Table 12. Evaluation up to 60 meters of self-supervised approaches on the validation set of nuScenes [4]. md2: Monodepth2 [12] trained
on d. b.line: baseline trained on d. AD: md4all-AD trained on dT(nr). DD: md4all-DD trained on dT(nr). The models are the same as in
Table 1.

60m — avg/all — nuScenes
Method | absRel sqRel RMSE 01

md2 0.1483 1.558 5.886 81.76
b.line 0.1423 1.698 5.966 83.15
AD 0.1536 1.827 6.057 82.16
DD 0.1371 1.487 5.658 83.74

60m — night-rain — nuScenes
absRel sqRel RMSE 01

0.3086 2.782 8.790 47.76
0.2648 3.130 9.858 54.09
0.2402 2983 8.233 65.79
0.2101 2368 7.661 68.58

Table 13. Evaluation up to 60 meters of self-supervised approaches on the validation set of nuScenes [4]. md2: Monodepth2 [12] trained
on d. b.line: baseline trained on d. AD: md4all-AD trained on d7(nr). DD: md4all-DD trained on dT(nr). The models are the same as in

Table 1. This table complements Table 12.

drop in performance compared to the ideal settings (i.e.,
day-clear). With snow, the limited data available to learn
proper translations substantially impacted our method’s per-
formance, which obtained only slightly better scores than
Monodepth?2.

Stronger condition boundaries (e.g., more precise anno-
tations) and more training data would significantly improve
the translations and our method’s outcomes. Furthermore,
depth ground truth reaching further distances without any
artifacts would allow us to assess the actual performance of
the models. While these factors would contribute to a more
considerable gap between the proposed md4all and Mon-
odetph2, the issues with the translations also highlight the
limitations of our approach: the difficulty in collecting ad-
verse data that would lead to solid results (e.g., Table 2 with
RobotCar [24]).

Due to the substantial limitations encountered with this
data, the DENSE dataset is unsuitable for depth estimation.
However, we used it to provide these preliminary results
with snow and fog. New real data with artifact-free long-
distance ground truth is needed to properly explore monoc-
ular depth estimation in these conditions.

A.3.3 Different Distributions of Conditions

In Table 7, we explore the effect of different data distribu-
tions among the conditions during training. We vary this via
the parameter x. In the rest of this work, x was selected to
equally distribute the inputs among the conditions. So for
RobotCar 50% for half for day and half for night (i.e., 50d
- 50n in the table); for nuScenes 66% corresponding to one
third for each of day-clear, night, and rain; one third each

also for the DENSE dataset.

While intuitively increasing the amount of day images
could improve the performance on day, this is not the case
by randomizing via x at each training sample indepen-
dently. This is because with enough epochs, our model sees
all images in all conditions, so the training data remains un-
changed, causing only minor differences as the model might
be fed more or fewer translations (Table 7). For day, beyond
the observed regularization effect (e.g., Table 2), there is lit-
tle room for gains as long as the baseline model B to distill
from remains the same. Instead, if = affected which por-
tion of the training data is translated, it would have a more
significant impact than shown in Table 7. In that case, see-
ing too many or too few translated images may impair the
performance as the model does not experience enough of
the ideal settings or not enough adverse conditions to tackle
them properly.

A.3.4 Supervised Configuration Comparisons

Table 8 reports a comparison of different supervised con-
figurations of AdaBins [1] and our md4all-AD applied on
AdaBins. Specifically, AdaBins trained only on day-clear
resulted in a significant improvement on day-clear and day-
rain compared to the AdaBins trained in all conditions (i.e.,
a). Analogously, our model trained on day-clear and trans-
lated day-rain samples performed better than ours trained
on all but substantially worse at night. As seen in the self-
supervised case, our model trained in all conditions outper-
formed the baseline across the board (i.e., AdaBins trained
on all), thereby not introducing any trade-off while improv-
ing in adverse conditions over the model it is based on.



test — 40m — nuScenes test — 60m — nuScenes test — 80m — nuScenes

Method | absRel sqRel RMSE 01 absRel sqRel RMSE 01 absRel sqRel RMSE 01

md2 0.1162 0.811 3.701 87.59 | 0.1376 1364 5.650 84.08 | 0.1465 1.755 6941 82.69
RNW 0.2500 2237 6.114 62.63 | 0.2781 3.420 9.222 57.50 | 0.2900 4.169 11.289 55.56
b.line 0.1126 0.840 3.827 87.17 | 0.1275 1364 5747 84.33 | 0.1332 1.679 6938 83.22
AD 0.1214 0.881 3.851 86.99 | 0.1353 1387 5.731 84.14 | 0.1409 1.691 6915 83.00
DD 0.1090 0.757 3.606 88.29 | 0.1221 1.204 5418 85.57 | 0.1277 1.503 6.607 84.46
AdaBins | 0.1434 0.617 3.233 83.09 | 0.1494 0.852 4.689 80.67 | 0.1532 1.055 5.849 79.62
ADsup. | 0.1182 0.641 3279 89.40 | 0.1221 0.785 4.293 8798 | 0.1240 0.887 5.021 87.33

Table 14. Evaluation up to 40, up to 60, and up to 80 meters of self-supervised approaches on the test set of nuScenes [4]. All conditions

are evaluated here (avg/all). AD sup.: our md4all-AD trained on dn7(r) applied on AdaBins [1]. md2: Monodepth2 [

] trained on d.

b.line: baseline trained on d. AD: md4all-AD trained on dT(nr). DD: md4all-DD trained on dT(nr). Time-dependent normalization was
not applied to obtain these results as nuScenes provides no condition annotations for the test set. The models are the same as in Table 1.

A.3.5 nuScenes Night-rain and Average

In Table 9, we report results on more conditions of
nuScenes [4], such as the most difficult night-rain and an
average over all, alongside the sqRel errors not fitting in
Table 1 (due to the limited space available). All is not com-
puted as an average on the various conditions but rather
as an average of the performance on each sample (i.e.,
night counts marginally, accounting for only 10% of the im-
ages). Our model outperforms the baseline AdaBins across
the board for the supervised case. Similarly, in the self-
supervised setting, our md4all improved significantly over
the baseline and Monodepth2 [12], second only in ideal
conditions (day-clear) to the radar-based R4Dyn [9].

A.3.6 nuScenes Test Set

Table 14 reports errors and metrics on the official test set
of nuScenes [4]. Since no metadata about the weather and
illumination conditions is available for the test set, the val-
ues are to be considered for all conditions combined. As for
the validation set, results were computed with the available
ground truth data (i.e., LIDAR). The test set of nuScenes
is more accessible than its validation set, with the models
achieving better performance in the former across all three
distance ranges. For these reasons, we focused on the val-
idation set, and we report the test set results here for com-
pleteness. Nevertheless, our supervised and self-supervised
models performed better than the models they are based
on (i.e., AdaBins and Monodepth2, respectively) across the
various conditions and depths.

A.3.7 Evaluation over Different Distances

For completeness, we also include the results for self-
supervised models computed up to different distance
ranges, namely up to 40, 60, and 80 meters. This comple-
ments the values reported in the main paper (up to 80 meters
for nuScenes, and up to 50 for RobotCar) and should ease

comparisons with future works. These results are reported
across the following tables:

e Tables 10, 11, and 14 for nuScenes up to 40 meters.

Tables 12, 13, and 14 for nuScenes up to 60 meters.

Tables 1, 8, 9, and 14 for nuScenes up to 80 meters.

Table 15 for RobotCar up to 40 meters.

L]

Table 2 for RobotCar up to 50 meters.

 Table 16 for RobotCar up to 60 meters.

Table 17 for RobotCar up to 80 meters.

The scores improve at lower distances as the problem be-
comes more effortless. Changes are limited due to the spar-
sity of the LiDAR at further distances, especially for Robot-
Car. While evaluating using more LiDAR frames would
have allowed us to evaluate at greater distances, we avoided
it as it would have introduced artifacts in the ground truth
for dynamic objects. Nevertheless, our models consistently
improved across the various distances and conditions tested.
As described in Section 4.1, the results we reported are to
be considered up to 80 meters for nuScenes, and up to 50
meters for RobotCar, unless otherwise noted.

A.4. Additional Qualitative Results

For all qualitative results reported in this work (also Fig-
ures 1, 5, and 6 in the main paper), the predictions of our
self-supervised model were all performed by our md4all-
DD trained on all conditions (i.e., dT(nr) for nuScenes
and dT(n) for RobotCar) and based on Monodepth2, while
the supervised ones were all performed by our md4all-AD
trained on dnT(r) and based on AdaBins. All qualitative
images of the standard Monodepth2 were produced by the
model trained only on day-clear (day for RobotCar). In
contrast, the ones for the standard AdaBins were made by



40m — day — RobotCar

40m — night — RobotCar

Method trdata | absRel sqRel RMSE 01 absRel sqRel RMSE 01

Monodepth2 [12] d 0.1181 0.614 3.034 86.51 | 0.3022 1.702 4984 4597
[ours] baseline d 0.1198 0.678 3229 86.69 | 0.3908 3.541 8206 22.52
[ours] md4all-AD  dT(n) | 0.1099 0.650 3.130 88.10 | 0.1203 0.762 3.531 85.87
[ours] md4all-DD  dT(n) | 0.1120 0.618 3.125 87.18 | 0.1206 0.723 3479 84.92

Table 15. Evaluation of self-supervised works on the RobotCar [

] test set up to 40 meters. The models are the same as in Table 2.

60m — day — RobotCar

60m — night — RobotCar

Method tr.data | absRel sqRel RMSE 01 absRel sqRel RMSE 01

Monodepth2 [12] d 0.1201 0.698 3.215 86.38 | 0.3029 1.728 5.045 45.88
[ours] baseline d 0.1213 0.746 3382 86.61 | 0.3909 3.548 8.228 22.51
[ours] md4all-AD  dT(n) | 0.1116 0.731 3.291 88.02 | 0.1231 0.903 3.812 85.76
[ours] md4all-DD dT(n) | 0.1130 0.661 3.234 87.13 | 0.1225 0.824 3.664 84.86

Table 16. Evaluation of self-supervised works on the RobotCar [

] test set up to 60 meters. The models are the same as in Table 2.

80m — day — RobotCar 80m — night — RobotCar
Method trdata | absRel sqRel RMSE 01 absRel sqRel RMSE 01
Monodepth2 [12] d 0.1203 0.718 3.245 86.38 | 0.3030 1.729 5.046 45.88
[ours] baseline d 0.1214 0.759 3.404 86.61 | 0.3909 3.548 8.228 22.51
[ours] md4all-AD  dT(n) | 0.1118 0.742 3.308 88.02 | 0.1236 0.952 3.880 85.76
[ours] md4all-DD  dT(n) | 0.1131 0.666 3.243 87.13 | 0.1229 0.865 3.713 84.86

Table 17. Evaluation of self-supervised works on the RobotCar [

training it on all conditions, meaning that the best scoring
models of each type produced them.

The following sections introduce new qualitative results
on the various settings and conditions, such as nuScenes
with self-supervised models (Section A.4.1), nuScenes with
supervised methods (Section A.4.2), RobotCar with self-
supervised approaches (Section A.4.3), failure cases (Sec-
tion A.4.4), and translated images (Section A.4.5).

A.4.1 nuScenes — Self-Supervised

Night — nuScenes In Figure 8, we compare our md4all-DD
to Monodepth2 [12] on particularly challenging night sam-
ples due to the extreme darkness levels, as well as the high
amounts of reflections (also due to the wet ground, in night-
rain conditions). Instead, in Figure 9, we compare the same
models on brighter, i.e., easier samples. It can be seen that
the standard Monodepth2 trained on day-clear had marked
difficulties with darker scenes (Figure 8), while it delivered
satisfactory results in brighter settings (Figure 9). This sig-
nificant difference can be attributed to the fact that Mon-
odepth2 was trained only on day-clear (the model trained
on all conditions performed significantly worse, especially
at night, as shown in Table 1) and that the details are eas-
ier to grasp in brighter night inputs compared to very dark
ones. In brighter images, the road, vehicles, curb, grass, and

] test set up to 80 meters. The models are the same as in Table 2.

trees on the sides can be seen relatively well thanks to the
light emitted by the streetlights, allowing the standard Mon-
odepth2 to estimate reasonable depth maps. Conversely,
with darker scenes, the depth cues are highly challenging
to extract due to the noise and general blackness. Neverthe-
less, Monodepth2 tended to estimate the ground well also
in darker settings. This can be due to the model being bi-
ased toward scenes with flat and regular roads in front of
the ego vehicle and the road being the most visible part of
the images. Instead, Monodepth2 had severe issues with the
sky, which is not evaluated since the ground truth is unavail-
able. Nevertheless, the proposed md4all delivered good and
sharp estimates in dark and bright environments.

Rain — nuScenes In Figure 10, we compare our md4all-
DD to Monodepth2 [12] on rainy samples of nuScenes.
While the standard Monodepth2 trained on day-clear deliv-
ered reasonable estimates for the most part, it was severely
affected by the reflections on the wet ground (e.g., first
row). Also, the blurriness due to water drops affected Mon-
odepth2, triggering overly smooth estimates. The figure
shows also Monodepth2 having issues estimating the depth
of the sky (second and fifth row). Since none of these
problems occurs without rain (i.e., day-clear, shown in Fig-
ure 11), they can be attributed to the challenging weather
conditions. Instead, our md4all delivered reasonable depth
estimates regardless of the adverse settings, because its su-
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Figure 8. Comparison of self-supervised models on nuScenes [4] night samples. The standard Monodepth2 [12] is compared to our md4all-
DD applied to Monodepth2. This set of samples is particularly challenging for the standard Monodepth2 due to the overall darkness and

reflections.

pervision signal was always from ideal settings.

Day-clear — nuScenes In the lower half of Figure 11,
we compare the performance at daytime. The day-clear
scores of Monodepth2 (d) and our md4all-DD a are rela-
tively close to one another (Table 1). Based on the same
model (i.e., Monodepth2), the depth maps of the two are
similar, with ours delivering smoother surfaces (e.g., vehi-

cles), with fewer artifacts around the objects, such as the
black car on the left of the bottom input. Our extra smooth-
ness is due to the day distillation scheme, propagating dense
estimates from the baseline. Since our same model predicts
significantly better depth maps in adverse conditions than
Monodepth2, the figure confirms that our md4all does not
degrade in ideal conditions. This proves the effectiveness of



input image ground truth Monodepth2 md4all [ours]

Figure 9. Comparison of self-supervised models on relatively bright nuScenes [4] night samples. The standard Monodepth2 [12] is com-
pared to our md4all-DD applied to Monodepth2. This set of samples could be handled reasonably by the standard Monodepth2, thanks to
the high brightness of the scenes.

our techniques, as they do not introduce any performance A.4.2 nuScenes — Supervised
trade-off in standard settings while enabling significantly

better outcomes in challenging conditions. Night — nuScenes In Figure 12, we compare our md4all-

AD to AdaBins [1] on particularly challenging night sam-
ples due to the extreme darkness levels and the high amount
of reflections (same samples as in Figure 8). Our md4all-
AD delivered overall sharper and more accurate estimates,
as can be seen for the thin structures (e.g., poles and tree
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Figure 10. Comparison of self-supervised models on nuScenes [4] rain samples. The standard Monodepth2 [12] is compared to our

md4all-DD applied to Monodepth2.

trunks), as well as the boundaries of the vehicles in the bot-
tom two rows. Although all depth maps are displayed with
the same colormap, the standard AdaBins never estimated
depths that triggered the use of the bright yellow color (i.e.,
closest distance). This problem is less pronounced during
daytime (Figure 11). This can be attributed to the standard
AdaBins suffering from overfitting on the sparse ground
truth data of nuScenes. Towards this end, we had to ap-

ply early stopping to prevent severe horizontal artifacts from
appearing on the outputs following the LiDAR detections.
Applying our md4all on AdaBins introduced challenging
augmentations during training, reducing overfitting and al-
lowing it to train longer. This led to a model that estimated
depth throughout a more extensive range without the hori-
zontal artifacts. The qualitative results align with the scores
gap in Table 1. Moreover, some artifacts are noticeable for
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Figure 11. Comparison of models on nuScenes [4] day-clear samples. In the upper half, the standard AdaBins [1] is compared to our
md4all-AD applied to AdaBins. In the lower half, the standard Monodepth2 [12] is compared to our md4all-DD applied to Monodepth2.

both models around the roof of the vehicles. These are due
to the ground truth LiDAR data reporting further estimates
in those areas (e.g., fifth row). This is caused by the rela-
tive position of the LiDAR sensor to the camera, with the
former being at a higher location, thereby seeing beyond
objects compared to the camera’s perspective.

Rain — nuScenes In Figure 13, we compare our md4all-
AD to AdaBins [!] on rain samples of nuScenes. As
the standard AdaBins learned from the erroneous measure-
ments of the LIDAR ground truth (e.g., Figure 2), it sys-
tematically estimated artifacts on the ground, resulting in
holes in its depth maps. The erroneous LiDAR measure-

ments can also be seen from the ground truth reported for
each image. Such wrong measurements are caused system-
atically by each highly reflective object (e.g., traffic sign)
reflected on the wet ground. Therefore, training on such a
wrong signal causes the standard AdaBins to replicate the
artifacts in its output (e.g., in front of the stop sign in the
fourth row). Nevertheless, thanks to the reliable training
signal from ideal conditions, our md4all-AD delivered good
estimates without such artifacts.

Day-clear — nuScenes In the upper half of Figure 11, we
compare the performance at daytime. The scores between
AdaBins and our md4all-AD trained on all conditions favor
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Figure 12. Comparison of supervised models on nuScenes [4] night samples. The standard AdaBins [1] is compared to our md4all-AD
applied to AdaBins. This set of samples is particularly challenging due to the overall darkness and reflections.

ours (Table 1). This can be seen from the depth maps, with
ours delivering smoother estimates for the road and sharper
details throughout. Ours separated the truck in the second
frame from the background. As discussed above, this can
be attributed to the strong tendency of the standard AdaBins
to overfit. Instead, by feeding a mix of original and trans-
lated images, our method acts as data augmentation, mit-
igating the problem. Nevertheless, the limitations of such

a sparse ground truth signal are evident, with smooth edges
due to its sparsity and see-through effects caused by the dis-
placement between the LiDAR and the camera. For these
reasons, self-supervised outputs look better overall, as the
models are also less prone to overfitting.
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Figure 13. Comparison of supervised models on nuScenes [4] rain samples. The standard AdaBins [!] is compared to our md4all-AD

applied to AdaBins.

A.4.3 RobotCar - Self-Supervised

Comparison with other night methods In Figure 14, we
compare our md4all-DD with various other methods tar-
geting depth estimation in night conditions, namely De-
FeatNet [34], ADIDS [23], and WSGD [38], as well as
the standard Monodepth2 [12] designed for ideal condi-
tions. The samples shown are exactly the ones displayed
by WSGD [38] in their paper, from which we took the out-

puts of [34, 23, 38]. However, unlike theirs [38], for ours
and Monodepth2, we do not manually threshold the maxi-
mum depth, showing the entire depth estimation, including
further distances. This is possibly the reason for theirs be-
ing artificially dark in the background. Remarkably, as seen
already in Table 2 and Figure 6, our md4all-DD delivered
more accurate and sharper estimates in both conditions, and
especially at night, thanks to its robust feature extraction
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Figure 14. Comparison of self-supervised models on RobotCar [24] night and day samples. The samples are exactly the ones reported
by Vankadari et al. in WSGD [38], from which we took directly the predictions of DeFeatNet [34], ADIDS [23], and WSGD [38]. We

compare these with Monodepth2 [12] and our md4all-DD.

suitable for both day and night inputs.

Night — RobotCar Figure 15 shows additional outputs
of the standard Monodepth2 [12] compared to our md4all-
DD applied on Monodepth2. Although the night scenes are
not as dark and not as noisy as those from nuScenes [4]
(e.g., Figure 8), Monodepth2 had major issues estimating
the depth of the image. Darkness and streetlights were detri-
mental for the standard Monodepth2 (e.g., in the second
row). Moreover, compared to nuScenes, the images from
RobotCar are often blurry at night, especially those from
turns (first row). Nevertheless, the proposed md4all esti-
mated reasonable depth maps regardless of these issues in
the input. Due to the textureless pure white sky in the day
samples of RobotCar (last two rows), the models had issues
capturing its depth during training. The same occurred for
the top of buildings, which are often too bright and indistin-
guishable from the sky in the images (e.g., fourth input in
Figure 14). This problem is inherent to the data itself and
causes the sky to always be predicted to be relatively close
(brighter color). This did not happen for nuScenes.

Day - RobotCar Figure 15 also shows additional pre-
dictions during daytime (bottom rows). As seen in Table 2,
while performing significantly better at night, the perfor-
mance of the proposed method does not degrade during the
day compared to the standard Monodepth2 [12]. Due to the
knowledge distillation from the baseline to our md4all-DD
model, surfaces result smoother, but edges remain sharp.
The bottom input is particularly challenging as it features
a turn. Both models correctly estimated the scene’s depth,
with Monodepth2 delivering more details on the tree in the

foreground but less on the tree in the background (left). As
discussed for the night scenes, the textureless white sky of
RobotCar prevents the models from learning its depth cor-
rectly, which causes erroneous estimations at test time. In-
stead, nuScenes [4] includes different sky conditions (e.g.,
sunny and cloudy), allowing the models to learn its depth.

A.4.4 Failure Cases

While our techniques bring significant improvements across
various conditions, there is still room for improvement. Fig-
ure 16 reports failure cases of our models. Inherited from
Monodepth2 [12], our self-supervised model has issues
with dynamic objects, especially oncoming traffic, whose
distance is wrongly estimated due to the violations of the
moving camera in a static world assumption [9]. This oc-
curs in all three conditions. Furthermore, the model is oc-
casionally fooled by reflections on the ground or mislead-
ing shadows which look like objects (first and sixth row).
Additionally, highly dark scenes are also challenging (third
row) due to the lack of information across nearly black pix-
els. These issues could be mitigated by integrating the data
from the cost-effective radar, as in R4Dyn [9], which is ro-
bust against adverse weather and challenging illumination
conditions. Our method is not bound to a specific architec-
ture or pipeline, so it could be applied to R4Dyn directly.
Another drawback our md4all inherited from Monodepth2,
which we did not address, is the lack of temporal consis-
tency in the depth predictions. Instead, for the supervised
setting, we focused on eliminating the artifacts due to the
erroneous ground truth measurements. While such issues
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Figure 15. Comparison of self-supervised models on RobotCar [24] night and day samples. The standard Monodepth2 [12] is compared to
our md4all-DD applied to Monodepth?2.

are appropriately addressed, other problems persist, such A.4.5 Day-to-Adverse Translation
as with particular reflections and the blur caused by water

drops (third row). Radar may help here too. This section shows samples of the translated images we

generated with ForkGAN [46]. We publicly share all trans-
lated images corresponding to the ideal settings from the
training sets of nuScenes [4] and RobotCar [24].
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Figure 16. Failure cases of our self-supervised (md4all-DD, Monodepth2-based) and supervised (md4all-AD, AdaBins-based) models on
samples from nuScenes [4]. White arrows mark issues in the predictions.

nuScenes In Figure 17, we show examples of the trans-
lated images used to train our models on nuScenes. The
GAN [46] added plausible reflections and lights simulating
wet ground or streetlights. While these additions are not al-
ways realistic, they bring challenging variations to the train-
ing set, resembling the adverse conditions in the first and
last columns. The standard day-clear training set includes a
mix of sunny and cloudy scenes. For cloudy ones, shadows

are limited, with less contrast overall, making it easier for
the translation model. Instead, the inputs with sunny con-
ditions are particularly challenging for the GAN, resulting
in less convincing outputs (e.g., in the last row). The GAN
also learned to add water drops blurring certain areas for
rain, and intense noise for night. The results of our mod-
els would directly benefit from improvements in the trans-
lations towards greater realism. With perfect translations,
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Figure 17. Example of day-to-adverse image translations on nuScenes [4]. Training samples are translated from day-clear to both rain and
night. For reference, in the first and last columns, we included real rain and night samples from the validation set. We share publicly the

translated night and rain images for the entire day-clear training set.

our md4all would further reduce the gap between ideal and
challenging conditions.

RobotCar In Figure 18, we report examples of the trans-
lated images used on RobotCar. In this case, the GAN was
trained entirely on RobotCar, thanks to the high amount of
night samples available. Since the weather in the day sam-
ples tends to be always cloudy, with a consistently white
sky, the GAN did not exhibit the issues seen for nuScenes
with sunny inputs (Figure 17). Instead, the GAN delivered
highly plausible samples with a higher degree of realism
than for nuScenes, enabling our model to narrow the mar-
gin between daytime and nighttime performances. As seen
for nuScenes, the GAN added streetlights resembling the
ones seen throughout the dataset. Furthermore, it can be
seen clearly that the GAN learned the headlights of the ego
vehicle, which it added to illuminate the road ahead.

For both datasets, while being somewhat plausible, the
translated samples are not perfect. For nuScenes, for exam-
ple, noise patterns in the night translations are repeated sim-
ilarly over the lower left corner of the images. The noise is
more unstructured for the real night images. Additionally,
the GAN did not learn to turn on the lights of other cars,
which are often a source of issues for the models.

A.5. Attempted Approaches That Did Not Work

We explored several alternative solutions for this chal-
lenging problem, and we intend to mention them in this sec-
tion to help future researchers who target the same issues.
As written in Section 4.1, we experimented with diffusion
models to learn our day-to-adverse image translation. How-
ever, the lack of paired images for day and night made it un-
feasible. Therefore, we opted for GANs, which do not need
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Figure 18. Example of day-to-adverse image translations on RobotCar [24]. Training samples are translated from day to night. For
reference, we included real night samples from the test set in the central column. We share publicly the translated night images for the

entire day training set.

paired inputs. Furthermore, we experimented with the fol-
lowing methods on the night samples of nuScenes, seeking
improvements over the standard Monodepth2. Spatial and
temporal attention could have allowed the model to focus on
valuable information. Still, it did not bring an improvement,
possibly due to the large amount of noise varying across dif-
ferent night images, which could have prevented to attend
on the helpful information. Additionally, we experimented
with incorporating geometrical priors (e.g., from edge de-
tection) into the losses, but they were similarly not bene-
ficial. The simple solution presented in this work was the
most effective to tackle this complex problem.
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