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Abstract

Multi-agent collaborative perception (MCP) has re-
cently attracted much attention. It includes three key pro-
cesses: communication for sharing, collaboration for inte-
gration, and reconstruction for different downstream tasks.
Existing methods pursue designing the collaboration pro-
cess alone, ignoring their intrinsic interactions and result-
ing in suboptimal performance. In contrast, we aim to pro-
pose a Unified Collaborative perception framework named
UMC, optimizing the communication, collaboration, and
reconstruction processes with the Multi-resolution tech-
nique. The communication introduces a novel trainable
multi-resolution and selective-region (MRSR) mechanism,
achieving higher quality and lower bandwidth. Then, a
graph-based collaboration is proposed, conducting on each
resolution to adapt the MRSR. Finally, the reconstruction
integrates the multi-resolution collaborative features for
downstream tasks. Since the general metric can not reflect
the performance enhancement brought by MCP systemati-
cally, we introduce a brand-new evaluation metric that eval-
uates the MCP from different perspectives. To verify our
algorithm, we conducted experiments on the V2X-Sim and
OPV2V datasets. Our quantitative and qualitative exper-
iments prove that the proposed UMC greatly outperforms
the state-of-the-art collaborative perception approaches.

1. Introduction
Single-vehicle perception has made remarkable achieve-

ments in object detection[21, 31, 32], segmentation[29, 33],
and other tasks with the advent of deep learning. However,
single-vehicle perception often suffers from environmental
conditions such as occlusion[39, 50] and severe weather[4,
16, 53], making accurate recognition challenging. To over-
come these issues, several appealing studies have been de-
voted to collaborative perception[1, 2, 7, 42, 49], which take
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(b) Our proposed MRSR communication mechanism

(a) Existing SRAR communication mechanism

Collaborative Process

Single-

Features
Coarse

Encoder

Communication Region

Multi-

Features

Fine

Intermediate

Coarse

Fine

Intermediate

Coarse

Entropy-based Selection

Encoder

No SelectionSingle-resolution

Multi-resolution

Figure 1. The SRAR versus the proposed MRSR mechanism.
(a) The existing single-resolution and all-region (SRAR) method
utilizes the coarse-grained feature with bandwidth inefficient all-
region transmission. (b) The proposed MRSR mechanism incor-
porates bandwidth-efficient entropy-based selection with multi-
resolution features.

advantage of sharing the multiple-viewpoint of the same
scene with the Vehicle-to-Vehicle(V2V) communication[3].

To design a collaborative perception algorithm, current
approaches[40, 24, 45, 19, 44] mainly focus on the collab-
oration process alone, aiming to design a high-performance
collaboration strategy. Nevertheless, such a strategy ig-
nores intrinsic interactions with two critical processes:
communication[23, 12] and reconstruction[9]. This kind
of collaboration strategy will inherently cause suboptimal
performance because the quality of communication directly
determines the performance of collaboration[19], and the
reconstruction influences the quality of feature maps for
downstream tasks. Meanwhile, the collaboration can also
affect the design of communication and reconstruction.
Hence, failing to optimize these three processes will de-
grade the system.

In this paper, to the best of our knowledge, we are the
first to propose a unified collaborative perception frame-
work that optimizes the communication, collaboration, and
reconstruction processes with multi-resolution technique.
As for communication, as shown in Figure 1, we propose a
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novel multi-resolution and selective-region (MRSR) mech-
anism, which is different from the single-resolution and all-
region (SRAR) mechanism that is used by existing collab-
orative algorithms[19, 45, 40]. In MRSR, we replace the
coarse-grained feature in SRAR with multi-grain features,
which reflect the scene from a global to a local perspective.
The multi-grain features will have the complementary ad-
vantages of global structure information and local texture
details. Meanwhile, to reduce the burden of bandwidth,
unlike SRAR, which blindly transmits all regions, we im-
plement a trainable and region-wise entropy-based commu-
nication selection (Entropy-CS) module that highlights the
informative regions and selects appropriate regions for each
level of resolution. The proposed MRSR is adaptive to
real-time communication, reflecting dynamic connections
among agents.

We propose a graph-based collaborative GRU(G-CGRU)
module for MRSR’s each level resolution feature in collab-
oration. Compared to the existing collaboration strategies
that only focus on the present shared information without
considering the previous state, we redesign the GRU-cell[5]
to adapt the time series of collaborative perception, which
models the continuity of vehicle movement. In G-CGRU,
the collaboration depends not only on collaborators but also
on the last moment information of the ego agent. Mean-
while, we propose matrix-valued gates in G-CGRU to en-
sure collaboration at a high spatial resolution and allow the
agents to adaptively weight the informative regions.

To adapt the proposed multi-resolution collaboration
mechanism for reconstruction, we propose a multi-grain
feature enhancement (MGFE) module to strengthen the fea-
ture reconstruction process. In MGFE, the fine-grained
collaborative feature maps will give direct guidance to the
agents’ feature maps via a global pooling operation, and
the coarse-grained collaborative feature maps will again en-
hance the agents’ feature maps from a global perspective.
This design allows the agents to comprehensively recon-
struct the feature maps from local and global viewpoints.

The general evaluation metric (e.g., average precision)
can reflect the overall performance of multi-agent collab-
orative perception (MCP). However, the performance en-
hancement brought by the collaboration concept that MCP
introduced cannot be reflected directly. To address this is-
sue, we introduce a brand new evaluation metric that sys-
tematically evaluates the MCP from four aspects.

To validate the proposed framework, we conducted com-
prehensive experiments in 3D object detection on V2X-
Sim[17] and OPV2V[46] datasets. Our proposed uni-
fied, bandwidth-efficient and multi-resolution based col-
laborative perception framework (UMC) achieves a better
performance-bandwidth trade-off than the state-of-the-art
SRAR-based collaboration methods. Our contributions are
listed as follows:

• We present a unified, bandwidth-efficient framework
(UMC) for collaborative perception, which optimizes
the communication, collaboration, and reconstruction
processes with the multi-resolution technique.

• We propose a novel multi-resolution and selective-
region mechanism for communication and the graph-
based collaborative GRU for each resolution collabo-
ration and multi-grain feature enhancement module for
reconstruction.

• We present a brand new evaluation metric for 3D ob-
ject collaborative perception, which can evaluate the
performance from different perspectives.

2. Related works
2.1. V2X Collaborative Perception

F-Cooper[1] is the first to apply feature-level collabora-
tion, which weights interaction information equally using
a max-based function. When2com[23] employs an atten-
tion mechanism to build a bandwidth-efficient communica-
tion group. V2VNet[40] proposes a spatially-aware mes-
sage transmission mechanism that assigns varying weights
to the different agents. DiscoNet[19] adapts the knowledge
distillation to enhance student model performance by con-
straining the teacher model, which is based on correspond-
ing raw data collaboration. V2X-ViT[45] presents a unified
V2X framework based on Transformer that takes into ac-
count the heterogeneity of V2X systems. Where2comm[12]
takes the advantage of sparsity of foreground information in
detection downstream task to save the communication band-
width of V2X collaboration. CoBEVT[44] generates BEV
map predictions with multi-camera perception by V2X.

2.2. 3D Perception for Autonomous Driving

Due to the declining price of commodity LiDAR sensors,
3D perception has become more prevalent in autonomous
driving. VoxelNet[54] pioneered utilizing 3D object detec-
tion in autonomous driving. More and more advanced al-
gorithms have been discovered. There are three branches of
3D perception input forms that have been widely adopted:
point-based methods[29, 37, 30] directly process raw cap-
tured point; and voxel-based methods[54, 47, 13, 36] divide
the points into a volumetric grid; and 2D projections based
methods[38, 48, 14] compact the input by projecting points
into images. In UMC, we utilize bird’s eye view projection
as input, which decreases the processing time and enables
the use of 2D object detection networks.

2.3. Multi-resolution Image Inpainting

Multi-resolution is a widely used image inpainting[51,
28, 41] technique to combine low-resolution feature
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Figure 2. The overview of the proposed UMC framework. i) Feature extraction stage, the agents obtain the F e,t
i by the shared feature

encoder Θe with the observation xt
i . ii) Communication stage, the ego agent (in blue) will broadcast compact query matrix Me,t

i in
each resolution to collaborators by V2X communication, and the collaborators will compute the transmission map by entropy-CS module
at local. Then the ego agents will receive the selected messages from the assisted collaborators. iii) Collaboration stage, the ego agents
will employ the G-CGRU module in each resolution for high efficient collaboration. iv) Reconstruction stage, the MGFE module will
reconstruct the ego agent’s feature by multi-resolution collaborative feature maps for different downstream tasks.

maps that contain global structure information with high-
resolution feature maps that are rich in local texture details,
such as, PEN-Net[52] proposes the attention map mecha-
nism, which learns from high-resolution feature maps to
guide low-resolution features. Wang et al. [41] design a
parallel multi-resolution fusion network that can effectively
fuse structure and texture information. DFNet[11] em-
ploys U-Net[34] based multiple fusion blocks to implement
multi-resolution constraints for inpainting. In UMC, we
implement the multi-resolution technique for a new appli-
cation scenario: multi-agent collaborative perception. The
multi-grain collaborative feature makes it possible for the
agents to reconstruct the occlusion area from both a local
and a global point of view.

3. UMC
In this section, we present the technical details of the pro-

posed UMC. The overall architecture of the proposed UMC
is shown in Figure 2, which consists of three new modules,
entropy-CS, G-CGRU, and the MGFE. Entropy-CS extends
the traditional entropy theory to select the informative re-
gions of observations, reducing the heavy bandwidth burden
brought by multi-resolution. G-CGRU redesigns the GRU-
Cell to adapt the multi-agent collaboration, which models
the continuity of vehicle movement. MGFE introduces the
multi-grain feature enhancement to strengthen the feature
reconstruction process for different downstream tasks.

3.1. Problem Statement and Notation

We assume there are N collaborators with their cor-
responding observations Xt = {x tn}n=1,...,N at time t.
Among those collaborators, the feature set of the i-th agent
is defined as F e,ti = {F e,ti,j}j=1,...,M ← Θe(xi,t), where
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Figure 3. Illustration of entropy-based communication selection.
The entropy-CS filters out the lower quality regions, achieving
high efficient bandwidth usage.

Θ(·) is the feature encoder shared by all the collaborators
andM represents the number of intermediate layers in Θ(·).

Note that because each agent has its unique pose ξt,
we need conduct feature alignment operation Λ(·, ·) across
agents for subsequent collaboration process, e.g., for the
i-th agent, the transformed feature map from the k-th agent
of the j-th intermediate layer is F e,tk→i,j ← Λ(F e,tk,j , ξ

t
k→i),

where the ξtk→i is based on two ego poses ξtk and ξti.
Now the F e,tk→i,j and F e,ti,j are supported in the same
coordinate system. The goal of this paper is to opti-
mize the unified collaborative perception framework and
each agent outputs the prediction of perception task:
Ŷ
t

=
∑N
i=1{ŷ

t
i|H(Ψ(

∑M
j=1 Υ(F e,ti,j ,

∑N
k 6=i Ω(F e,tk→i,j))))},

where Ω(·),Υ(·, ·),Ψ(·) represent the entropy-CS, G-
GGRU, and MGFE module, respectively. The H(·)
denotes the headers for different perception tasks.

3.2. Entropy-based Communication Selection

The intuition of entropy-CS is low computational com-
plexity and high interpretability to filter out the lower-
quality regions. Based on above considerations, we extend
the traditional entropy theory[6] toward two-dimensional



communication selection. Hence, the entropy-CS is non-
parameter and high efficient to reduce the heavy bandwidth
burden brought by multi-resolution feature information.

To further compress bandwidth requirements, the ego
agent i and collaborator will first compress their encoder
features F e,ti,j ,F

e,t
k→i,j ∈ RK,K,C along channels into the

query matrix M e,t
i,j ,M

e,t
k→i,j ∈ RK,K through a trainable

1×1 convolution kernelW 1×1, which is supervised by the
downstream loss function. Then, we construct the two-stage
entropy-based selective-region communication mechanism:

Self-select stage We first let the k-th collaborator deter-
mine locationSe,tk→k,j itself, where potentially contains use-
ful information for later collaboration:

Se,tk→k,j = Γ(Φ(M e,t
k→i,j ,M

e,t
k→i,j), δs) (1)

where the Γ(·, δs) is an element-wise function, zeroing out
elements smaller than the values of top-δs% in ·, and Φ is
the entropy estimation function, which measures the corre-
lation from K ∈ RK,K to Q ∈ RK,K at the location of L.
Note that if L is not assigned, the Φ will compute all region
ofK,Q:

Φ(K,Q,L) = {pmn ∗ log(pmn)}m,n∈L,with

pmn =
1

M ∗N

M,N∑
j,k

σ(K(m+ j, n+ k)−Q(m,n))

where σ(·) is Sigmoid function. Note that if ‖Se,tk→k,j‖ ' 0,
represents that the k-th collaborator almost has no sufficient
information. The entropy-CS will close the later cross-
select communication stage, which can further reduce the
bandwidth requirements.

Cross-select stage After the self-entropy selection stage,
we thus derive the cross-entropy selection to obtain the
communication location Se,tk→i,j with the broadcastM e,t

i,j :

Se,tk→i,j = Γ(Φ(M e,t
i,j ,M

e,t
k→i,j ,S

e,t
k→k,j), δc) (2)

As demonstrated in Figure 3, the entries of the de-
rived matrix Se,tk→i,j indicate where to communicate, which
requires about 1

δsδc
bandwidth of existing SRAR-based

methods[40, 19, 23]. However, the transmission T e,tk→i,j ←
F e,tk→i,j [S

e,t
k→i,j ] is sparse, with many positions being

0. This could potentially harm further collaboration
process[25]. To compensate for this, after the ego agent
receives, we spatially interpolate these positions from their
neighbors across all channels at local, using a similar ap-
proach in [43]: F

′e,t
k→i,j ← Interpolate(T e,tk→i,j).

3.3. Graph-based Collaborative GRU

Once a requesting ego agent collects the information
from its linked supporting collaborators, it is important to
design how to integrate its local observation with the se-
lected multi-resolution feature maps from supporters[19].

We observe that the detected agents in perception area

change slowly over time in the urban low-speed collabora-
tive scenes[46, 17]. Hence, the collaborative feature maps
from last time are actually helpful to the present process.

However, the general RNN model[35, 10] can only pro-
cess one-dimensional features, which makes it hard to pre-
serve the spatial structure and local details of the agent’s
observation.

Based on the above considerations, we propose a novel
graph-based collaborative GRU module named G-CGRU
for each resolution collaboration process, as demonstrated
in Figure 2. The key intuition of G-CGRU is that the collab-
oration depends not only on supporters but also on request-
ing the ego agent’s previous information.

For the ego agent i of the j-th resolution intermedi-
ate feature maps, the inputs of G-CGRU are hidden states
he,t−1
i,j ∈ RK,K,C , the ego agent observation F e,ti,j , and the

supporters’ selected feature maps {F
′e,t
k→i,j}k 6=i. The mod-

ule mainly has three key gates as follows:
Update and Reset gates The Update gate is responsible

for determining where the previous information needs to
be passed along the next state and the Reset is to decide
how much of the past information is needed to neglect. The
Update and Reset gates share the same structure but dif-
ferent weights. Here we take Reset as an examples:

W ir = σ(W 3×3 ∗ ([he,t−1
i,j ;F e,ti,j ]))

Rt
i,j = σ(W ir � ĥ

e,t−1

i,j + (1−W ir)� F e,ti,j )
(3)

where�, σ(·), [·; ·] represent dot product, Sigmoid function,
and concatenation operation along channel dimensions, re-
spectively. ∗ indicate a 3 × 3 convolution operation. The
Rt
i,j ∈ RK,K,C learns where the hidden features he,t−1

i,j are
conducive to the present.

Collab gate Based on the above Reset and Update
gates, we thus derive the Collab gate. To make bet-
ter collaborative feature integration, we construct a col-
laboration graph Gtc(V ,E) in Collab gate, where node
V = {Vi}i∈1,...,N is the set of collaborative agents with
the real-time pose information in the environment and
E = {W i→j}i,j∈1,...,N,i6=j is the set of trainable edge ma-
trix weights between agents and models the collaboration
strength between two agents. Let CGt

c
(·) be the collabora-

tion process defined in the Collab module’s graph Gtc. The
j-th resolution enhanced maps of ego i agent after collabo-
ration are Ee,t

i,j ← CGt
c
(he,t−1
i,j ,F

′e,t
k→i,j ,F

e,t
i,j ). This process

has two stages: message attention (S1) and message aggre-
gation (S2).

In the message attention stage (S1), each agent deter-
mines the matrix-valued edge weights, which reflect the
strength from one agent to another at each individual cell.
To determine the edge weights, we firstly get the conductive
history information from hidden features by Reset gates
through ĥ

e,t−1

i,j ← he,t−1
i,j �Rt

i,j . Then, we utilize the edge



encode Π to correlate the history information, the feature
map from another agent and ego feature map; that is, the
matrix-value edge weight from k-th agent to the i-th agent is
W k→i = Π(ĥ

e,t−1

i,j ,F
′e,t
k→i,j ,F

e,t
i,j ) ∈ RK,K , where Π con-

catenates three feature maps along the channel dimension
and then utilizes four 1 × 1 convolutional layers to grad-
ually reduce the number of channels from 3C to 1. Also,
to normalize the edge weights across different agents, we
implement a softmax operation on each cell of the feature
map. Compared with previous work[23, 12, 45] generally
consider time-discrete edge weight to reflect the static col-
laboration strength between two agents; while we consider
time-continuous edge weight W k→i. which dynamically
models the collaboration strength from the k-th agent to the
i-th agent from t− 1 to t. In the message aggregation stage
(S2), each agent aggregates the feature maps from collabo-
rators based on the normalized matrix-valued edge weights,
the updated feature map Ce,t

i,j is utilized by
∑N
k=1W k→i ◦

F
′e,t
k→i,j , where ◦ represents the dot production broadcasting

along the channel dimension. Finally, the collaborative map
isEe,t

i,j = Zti,j �C
e,t
i,j + (1−Zti,j)�h

e,t−1
i,j . Note that the

Zti,j is generated by Update gate and � is the dot product.

3.4. Multi-grain Feature Enhancement Module

The final ego agent i collaborative feature maps
{Ee,t

i,j}j=1,...,M with different resolutions generated from
G-CGRU contain various visual context information, and
each of them can be used to yield the downstream task.

To make the best use of multi-grain feature maps, we
further propose a multi-grain feature enhancement (MGFE)
module, which utilizes coarse- to fine-grained collaborative
feature maps to guide the reconstruction process from a lo-
cal to global perspective, as demonstrated in Figure 4. The
MGFE consists of two stages:

Stage one A 1 × 1 convolution is applied to adjust the
feature space of the collaborative feature map Ee,t

i,j to the
ego observed feature map F e,ti,j , then through global pooling
along channels to the adjusted collaborative feature to ob-
tain highlighted informative regions, following multiplied
with the local feature map. The output f1

s as follows:

f1
s = G(σ(W 1×1 ∗Ee,t

i,j + b)) ◦ F e,ti,j (4)

where G, ◦ denotes global max pooling operation along the
channels and dot production broadcasting along the channel
dimension, respectively. W 1×1 indicates trainable parame-
ters, b refers bias.

Stage two The coarse-grained, ego-observed feature map
F e,ti,j−1 is upsampled to the same dimension as the high-
resolution map, and then concatenated with the f1

s,E
e,t
i,j .

The output of stage two f2
s as follows:

f2
s = [L2(upsample(F e,ti,j−1));L2(f1

s);L2(Ee,t
i,j )] (5)
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Figure 4. The architecture of multi-grain feature enhancement
module. The fine- and coarse-grained feature maps guide the re-
construction process from the local to global perceptive, respec-
tively.

where upsample denotes the deconvolution operation, L2

refers to the L2 norm layer[22], which is helpful for com-
bining two (or more) feature maps. To adjust the channels
dimension of f2

s, a 3 × 3 convolution is applied to f2
s:

F e,ti,j+1 ← σ(W 3×3 ∗ f2
s + b).

After the reconstruction process of the MGFE module,
we can obtain the ego agent enhancement feature De,t

i . To
obtain the final detection outputs Ỹ t

i , we employ an output
header H(·): Ỹ t

i ← H(De,t
i ). To implement the header

H(·), we employ two branches of convolutional layers to
classify the foreground-background categories and regress
the bounding boxes.

To train our model, we employ the binary cross-entropy
loss to supervise foreground-background classification and
the smooth L1 loss to supervise the bounding-box regres-
sion:

L =

N∑
i=1

Ldet(Y i, Ỹ i) (6)

where Ldet denotes the classification and regression losses
and Y i, Ỹi represents the ground-truth detection and pre-
dicted detection in the perception region of the i-th agent,
respectively.

4. Experiment

4.1. Collaborative 3D Object detection dataset

To validate our proposed UMC on the LIDAR-based 3D
object detection task. Same as [19, 15, 20], we utilize
the multi-agent datasets of V2X-Sim[17] and OPV2V[46].
The V2X-Sim is built by the co-simulation of SUMO[26]
and CARLA[8], which contains 90 scenes, and each scene
includes 100 frames. The OPV2V is co-simulated by
OpenCDA[46] and CARLA, including 12K frames of 3D
point clouds with 230K annotated 3D boxes.



Table 1. Detection comparison on V2X-Sim dataset. Key: [Best,
Second Best, Third Best]

Models ARSV50/70 ↑ ARCV50/70 ↑ ARCI50/70 ↓ ARTC50/70 ↑ AP50/70 ↑
No Fusion 76.90/72.35 4.62/3.45 2.30/1.27 7.85/4.62 51.87/45.05

Early Fusion 86.70/83.72 64.17/60.49 9.55/7.88 15.67/13.33 67.79/62.29
Who2com 74.60/69.30 4.70/3.95 1.80/1.30 7.58/7.25 49.77/42.30
When2com 75.10/69.69 4.79/4.08 1.83/1.28 7.58/7.25 52.06/44.21

V2VNet 80.13/75.17 44.66/32.00 1.33/0.97 10.70/6.83 58.51/48.98
DiscoNet 86.64/82.16 58.58/46.47 3.02/1.91 12.86/9.32 65.89/56.74

Where2comm 81.96/77.24 44.97/30.90 11.45/8.45 16.51/11.61 62.05/54.59
UMC(ours) 84.67/80.68 67.01/60.04 2.38/1.70 12.35/9.46 67.80/60.01

Table 2. Detection comparison on OPV2V dataset. Key: [Best,
Second Best, Third Best]

Models ARSV50/70 ↑ ARCV50/70 ↑ AP50/70 ↑
No Fusion 69.33/46.35 12.32/ 4.36 54.69/23.94

Early Fusion 64.62/46.95 45.00/24.39 55.88/25.89
Who2com 69.43/45.68 15.84/6.21 55.36/23.39
When2com 69.27/45.54 15.90/6.22 55.13/23.27

V2VNet 73.42/48.21 24.65/11.16 59.03/24.71
DiscoNet 72.04/46.94 37.25/22.57 55.46/23.04

Where2comm 69.79/47.60 13.89/6.09 56.02/25.38
UMC(ours) 76.56/47.68 47.82/25.06 61.90/24.50

(a) No fusion (b) Early fusion (c) UMC (d) (e) 
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Figure 5. Detection and communication selection for Agent 1. The green and red boxes represent the ground truth (GT) and predictions,
respectively. (a-c) shows the results of no fusion, early fusion, and UMC compared to GT. (d) The coarse-grained collaborative feature
of Agent 1. (e) Matrix-valued entropy-based selected communication coarse-grained feature map from Agent 2. (f) The fine-grained
collaborative feature of Agent 1. (g) Matrix-valued entropy-based selected communication fine-grained feature map from Agent 2.

4.2. Implementation details

Experimental setting Same as [19, 15, 46], we crop
the point clouds located in the region of [−32m, 32m] ×
[−32m, 32m] × [0, 5m] defined in the ego-vehicle Carte-
sian coordinate system. The size of each voxel cell is set as
0.25m × 0.25m × 0.4m to get the Bird’s-Eyes view map
with dimension 256 × 256 × 13. The SRAR-based trans-
mitted collaborative feature map (TCF) has a dimension of
32 × 32 × 256. Our proposed UMC’s TCFs have the di-
mension of 32× 32× 256, 64× 64× 128. We train all the
models using NVIDIA RTX 3090 GPU with PyTorch[27].

Baselines We consider the single-agent perception model,
called No Fusion, which only processes a single-view point
cloud. Also, we consider the holistic-view perception
model based on early collaboration, called Early Fusion.
We consider five collaboration methods: Who2com[24],
When2com[23], Where2comm[12], DiscoNet[19] and
V2VNet[40]. To ensure fairness, all the methods share the
same encoder and detection header architecture and collab-
orate at the same intermediate feature layer.

Evaluation Metrics We employ the Average Precision
(AP) to validate the overall performance of the model. To
systematically analyze the performance of the model, we
introduce new metrics from four aspects: i) ARSV de-
notes the Average Recall of agents that are visible from
Singe-vehicle View; ii) ARCV denotes the Average Recall
of agents that are invisible from single-vehicle view but
visible from Collaborative-View, which evaluates model’s
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Figure 6. Performance-bandwidth trade-off in log scale.

performance of collaborative process; iii) ARCI denotes
the Average Recall of Completely-Invisible agents, which
evaluates the performance of detecting agents with limited
information; iv) ARTC denotes the Average Recall of the
agents that were visible at the last time but not visible at
this time, which evaluates model’s performance of Time
Continuity. Note that more technical details are shown in
Appendix.1, and we employ all evaluation metrics at the
Intersection-over-Union (IoU) threshold of 0.5 and 0.7.
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Figure 7. UMC qualitatively outperforms the state-of-the-art meth-
ods. The green and red boxes denote ground truth and detection,
respectively. (a) Results of When2com. (b) Results of DiscoNet.
(c) Results of UMC. (d)-(e) Agent 1’s coarse-grained and fine-
grained collaborative feature maps, respectively.

4.3. Quantitative evaluation

Overall performance comparison Table 1 of AP50/70 col-
umn shows the comparisons in terms of AP(@IoU=0.5/0.7).
We see that i) early fusion achieves the best detection per-
formance when AP@0.7, and there is an obvious improve-
ment over no fusion, i.e., AP@0.5 and AP@0.7 are in-
creased by 30.69% and 38.26% respectively, revealing the
effectiveness of collaboration; ii) among the SRAR-based
intermediate collaboration methods, the proposed UMC
achieves the best performance. Compared to When2com,
UMC improves by 30.23% in AP@0.5 and 35.71% in
AP@0.7. Compared to the knowledge distillation (KD)
based DiscoNet, UMC improves by 2.9% in AP@0.5 and
5.76% in AP@0.7.
Proposed new metric performance comparison From the
rest column of Tabel 1, we see that i) the ARSV reflects
that collaboration can improve the performance of original
single-view based objects. The early fusion achieves the
best performance, and there is an obvious improvement over
no fusion, i.e., ARSV@0.5 and ARSV@0.7 are increased
by 12.74% and 15.72% respectively. Note that the DiscoNet
inherits the performance of early fusion through knowledge
distillation; ii) the ARCV reflects the quality of the collab-
oration process. The proposed UMC achieves the best per-
formance. Compared to the DiscoNet, UMC improves by
14.39% in ARCV@0.5 and 29.07% in ARCV@0.7. Note
that in when2com and who2com, the collaboration is sim-
ply integrated by stacking features along channels, resulting
in the low quality of collaboration; iii) the ARCI reflects
the detection performance under limited information. Thus,
a high ARCI may cause more false positives, reducing the
precision of the model; iv) the ARTC reflects the time con-
tinuity of the model, and the ARTC of existing methods is
relatively low, In that sense, our work may unlock the future
temporal reasoning in collaborative perception.
Performance-bandwidth trade-off analysis As demon-
strated in Figure 6, we comprehensively compare the pro-
posed UMC under different (δs, δc) values with the baseline

Table 3. Detection performance with different grains selection.
F e,t

i,n(n = 1, 2, 3) denotes different grained collaborative features.
Note that the C. V. is the short for Communication Volume.

Multi-Grains Selection
F e,ti,1 F e,ti,2 F e,ti,3

AP50/70 ↑ C. V. ↓

X X 67.80/60.01 19.23
X X 58.36/50.71 19.84

X X 60.27/53.63 20.02

methods in terms of the trade-off between performance and
communication bandwidth. The no fusion model is shown
as a dashed line since the communication volume is zero.
We see that i) UMC achieves the best trade-off among the
other methods; ii) the detect performance of where2comm
is more stable than UMC when bandwidth is reduced. The
where2comm is specific for the detection downstream task,
which is based on the sparsity of foreground information
to reduce communication by filtering the background in-
tensively with a small performance sacrifice. And, our
entropy-CS aims to optimize not only detection but also
general downstream tasks based on the traditional informa-
tion theory. Hence, when setting small value of (δs, δc),
the detection performance will degrade more easily than
where2comm, shown in Figure 6 (c)-(d).

4.4. Qualitative evaluation

Visualization of UMC working mechanism To under-
stand the working mechanism of the proposed UMC, we
visualize the detection results, different grains collaborative
feature maps, and the corresponding entropy-based trans-
mission maps; see Figure 5. Note that the proposed entropy-
based selection is matrix-based, reflecting the informative
regions in a cell-level resolution, which is shown as the 2D
communication map that is compressed along channels by
a sum operation. Figure 5 (a), (b), and (c) represent three
detection results of Agent 1 based on the no fusion, early
fusion, and the proposed UMC, respectively. We see that
with collaboration, UMC is able to detect objects in these
sheltered and long-range zones. To further explain the ratio-
nale behind the results, Figure 5 (d) and (f) provide the cor-
responding ego coarse- and fine-grained collaborative fea-
ture maps, respectively. We clearly observe that the coarse-
grained feature reflects the global structure information and
the fine-grained feature contains rich local texture details,
the proposed UMC complements their advantages. Figure 5
(e) and (g) show the coarse- and fine-grained communica-
tion maps from agent 2 to agent 1, respectively. We observe
that with the grains being finer, the communication map be-
comes more sparse, meaning the entropy-based selection
can more precisely find the informative regions relative to
ego agents, also, the entropy-based selection ensures lower
bandwidth under the multi-grain collaborative process.
Comparison with DiscoNet and When2com Figure 7
shows two examples to compare the proposed UMC with



Table 4. Quantitative results of ablation experiments on V2X-Sim.
Variants Entropy-CS G-CGRU MGFE ARSV50/70 ↑ ARCV50/70 ↑ ARCI50/70 ↓ ARTC50/70 ↑ AP50/70 ↑

(1) X X X 86.67/80.68 67.01/60.04 2.38/1.70 12.35/9.46 67.80/60.01
(2) X X 87.67/83.29 67.88/62.17 2.87/1.66 12.01/9.55 65.72/58.78
(3) X X 79.38/74.90 40.35/34.14 1.49/1.28 3.79/3.52 56.73/49.22
(4) X 87.72/82.13 60.58/46.53 3.13/1.43 12.78/9.98 67.30/56.19
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Figure 8. Detection and feature map visualization for Agent 1. Green/red boxes represent GT/predictions. (a) and (b) denote the re-
sults of early fusion and UMC. (c) and (d) denote the coarse- and fine-grained collaborative maps generated from the G-CGRU module.
respectively. (e) and (f) denote the UMC and early fusion’s downstream features D1 for final detection output Ỹ1, respectively.

When2com and DiscoNet. We see that UMC is able to
detect more objects, especially in edge regions with sparse
measurement. The reason is that both When2com and Dis-
coNet employ only a single coarse-grained global feature
map for collaborations, which loses many details of the
scene, while UMC combines coarse- and fine-grained fea-
tures for collaboration, see the visualization in Figure 7
(d)-(e). Remarkably, compared to knowledge-distillation-
based DiscoNet, the UMC does not need to pretrain differ-
ent teacher models (early fusion) when switching to differ-
ent datasets, and the performance will be influenced greatly
when the teacher model is not performing well, as shown in
Table 2.

4.5. Ablation study

We validate several key designs of our framework, in-
cluding the entropy-based communication selection, the G-
CGRU, and the MGFE module. The quantitative results are
shown in Table 4.
Effect of grains selection In tabel 3 we investigate the de-
tection performance when employing different grain selec-
tions. Note that the shape of F e,ti,n(n = 1, 2, 3) ∈ RW,H,C
is 32×32×256, 64×64×128 and 128×128×64, respec-
tively. We see that i) applying collaborative feature maps
on the selection of (F e,ti,1,F

e,t
i,2) has the best trade-off be-

tween performance and bandwidth; and ii) the selection of
(F e,ti,1,F

e,t
i,3) for collaboration has the worst detection per-

formance. This is because the grains of feature difference
between the two is too large, resulting in deviation in fea-
ture fusion process; and iii) the performance of selection
of (F e,ti,2,F

e,t
i,3) is slightly worse than (F e,ti,1,F

e,t
i,2), because

both (F e,ti,2,F
e,t
i,3) focus on the local texture details, result-

ing in the loss of global structure information; and iv) on
the premise of performance of (F e,ti,1,F

e,t
i,2), the heavy band-

width of the (F e,ti,1,F
e,t
i,2,F

e,t
i,3) selection makes the potential

performance improvement meaningless.
Effect of collaboration strategy Table 4 compares the dif-
ferent ablated networks. We see that i) the UMC (vari-
ants 1) achieves the best detection performance among the
other ablated networks; and ii) variant 4 reflects that the
redesigned graph-based collaborative GRU module has an
obvious improvement over no fusion, i,e, AP@0.5 and
AP@0.7 are increased by 26.66% and 24.72% respectively,
see the Figure 8 (c) and (d); and iii) variant 2 is com-
posed of variants 4 and multi-grain feature enhance module.
Compared to variant 4, variant 2 improves by 12.05% in
ARCV@0.5 and 33.61% in ARCV@0.7, showing the effec-
tiveness of the MGFE module. Meanwhile, as demonstrated
in Figure 8 (e) and (f), the MGFE module can enhance
the downstream feature map compared to the early fusion
method; and iv) from the results of variants 3 and 4, and
the results of variants 1 and 2, we observe that the MGFE
module can give positive guidance to the trainable entropy-
based communication selection module because the MGFE
module allows the entropy-CS to comprehensively select re-
gions from local and global viewpoints.

5. Conclusion

We propose a unified, bandwidth-efficient collaborative
perception framework named UMC. Its core concept is to
utilize the multi-resolution technique to cover the intrinsic



interactions among the communication, collaboration, and
reconstruction processes in MCP. To validate it, we con-
duct experiments on the V2X-Sim and OPV2V datasets and
propose a brand new evaluation metric. Comprehensive
quantitative and qualitative experiments show that the UMC
achieves an outstanding performance-bandwidth trade-off
among the existing collaborative perception methods.

References
[1] Qi Chen. F-cooper: feature based cooperative perception for

autonomous vehicle edge computing system using 3d point
clouds. Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing, 2019.

[2] Qi Chen, Sihai Tang, Qing Yang, and Song Fu. Cooper:
Cooperative perception for connected autonomous vehicles
based on 3d point clouds. 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS),
pages 514–524, 2019.

[3] Shanzhi Chen, Jinling Hu, Yan Shi, Li Zhao, and Wen Li. A
vision of c-v2x: Technologies, field testing, and challenges
with chinese development. IEEE Internet of Things Journal,
7(5):3872–3881, 2020.

[4] Wei-Ting Chen, H. Fang, Cheng-Lin Hsieh, Cheng-Che
Tsai, I-Hsiang Chen, Jianwei Ding, and Sy-Yen Kuo. All
snow removed: Single image desnowing algorithm using hi-
erarchical dual-tree complex wavelet representation and con-
tradict channel loss. 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 4176–4185, 2021.

[5] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. On the properties of neu-
ral machine translation: Encoder–decoder approaches. In
SSST@EMNLP, 2014.

[6] Gavin E Crooks. On measures of entropy and information.
Tech. Note, 9:v4, 2017.

[7] Jiaxun Cui, Hang Qiu, Dian Chen, Peter Stone, and Yuke
Zhu. Coopernaut: End-to-end driving with cooperative per-
ception for networked vehicles. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[8] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on
Robot Learning, pages 1–16, 2017.

[9] Lingxiao He, Jian Liang, Haiqing Li, and Zhenan Sun.
Deep spatial feature reconstruction for partial person re-
identification: Alignment-free approach. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7073–7082, 2018.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[11] Xin Hong, Pengfei Xiong, Renhe Ji, and Haoqiang Fan.
Deep fusion network for image completion. In Proceedings
of the 27th ACM International Conference on Multimedia,
MM ’19, page 2033–2042, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

[12] Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Si-
heng Chen. Where2comm: Communication-efficient collab-

orative perception via spatial confidence maps. In Thirty-
sixth Conference on Neural Information Processing Systems
(Neurips), November 2022.

[13] Hongwu Kuang, Bei Wang, Jianping An, Ming Zhang, and
Zehan Zhang. Voxel-fpn: Multi-scale voxel feature aggrega-
tion for 3d object detection from lidar point clouds. Sensors
(Basel, Switzerland), 20, 2020.

[14] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12689–12697, 2019.

[15] Zixing Lei, Shunli Ren, Yue Hu, Wenjun Zhang, and Si-
heng Chen. Latency-aware collaborative perception. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2022.

[16] Ruoteng Li, Robby T. Tan, and Loong Fah Cheong. All in
one bad weather removal using architectural search. 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3172–3182, 2020.

[17] Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong,
Siheng Chen, and Chen Feng. V2x-sim: Multi-agent col-
laborative perception dataset and benchmark for autonomous
driving. IEEE Robotics and Automation Letters, 7(4):10914–
10921, 2022.

[18] Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong,
Siheng Chen, and Chen Feng. V2x-sim: Multi-agent col-
laborative perception dataset and benchmark for autonomous
driving. IEEE Robotics and Automation Letters, 7:10914–
10921, 2022.

[19] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen
Feng, and Wenjun Zhang. Learning distilled collaboration
graph for multi-agent perception. In NeurIPS, 2021.

[20] Yiming Li, Juexiao Zhang, Dekun Ma, Yue Wang, and Chen
Feng. Multi-robot scene completion: Towards task-agnostic
collaborative perception. In 6th Annual Conference on Robot
Learning, 2022.

[21] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,
Bharath Hariharan, and Serge J. Belongie. Feature pyra-
mid networks for object detection. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
936–944, 2017.

[22] Wei Liu, Andrew Rabinovich, and Alexander C.
Berg. Parsenet: Looking wider to see better. ArXiv,
abs/1506.04579, 2015.

[23] Yen-Cheng Liu, Junjiao Tian, Nathan Glaser, and Zsolt
Kira. When2com: Multi-agent perception via communica-
tion graph grouping. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4105–
4114, 2020.

[24] Yen-Cheng Liu, Junjiao Tian, Chih-Yao Ma, Nathan Glaser,
Chia-Wen Kuo, and Zsolt Kira. Who2com: Collaborative
perception via learnable handshake communication. 2020
IEEE International Conference on Robotics and Automation
(ICRA), pages 6876–6883, 2020.

[25] Zhuang Liu, Zhiqiu Xu, Hung-Ju Wang, Trevor Darrell, and
Evan Shelhamer. Anytime dense prediction with confidence



adaptivity. International Conference on Learning Represen-
tations (ICLR), 2022.

[26] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz,
Jakob Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leon-
hard Lücken, Johannes Rummel, Peter Wagner, and Eva-
marie Wießner. Microscopic traffic simulation using sumo.
In The 21st IEEE International Conference on Intelligent
Transportation Systems. IEEE, 2018.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017.

[28] Jialun Peng, Dong Liu, Songcen Xu, and Houqiang Li. Gen-
erating diverse structure for image inpainting with hierarchi-
cal vq-vae. In 2021 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 10770–10779,
2021.

[29] C. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Point-
net: Deep learning on point sets for 3d classification and seg-
mentation. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 77–85, 2017.

[30] C. Qi, L. Yi, Hao Su, and Leonidas J. Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric
space. In NIPS, 2017.

[31] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick,
and Ali Farhadi. You only look once: Unified, real-time ob-
ject detection. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 779–788, 2016.

[32] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39:1137–1149, 2015.

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
ArXiv, abs/1505.04597, 2015.

[35] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating er-
rors. nature, 323(6088):533–536, 1986.

[36] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jian-
ping Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn:
Point-voxel feature set abstraction for 3d object detection.
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10526–10535, 2020.

[37] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–779, 2019.

[38] Martin Simon, Stefan Milz, Karl Amende, and Horst-
Michael Groß. Complex-yolo: An euler-region-proposal
for real-time 3d object detection on point clouds. In ECCV
Workshops, 2018.

[39] Angtian Wang, Yihong Sun, Adam Kortylewski, and
Alan Loddon Yuille. Robust object detection under occlu-
sion with context-aware compositionalnets. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12642–12651, 2020.

[40] Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang,
Binh Yang, Wenyuan Zeng, James Tu, and Raquel Urtasun.
V2vnet: Vehicle-to-vehicle communication for joint percep-
tion and prediction. In ECCV, 2020.

[41] Wentao Wang, Jianfu Zhang, Li Niu, Haoyu Ling, Xue Yang,
and Liqing Zhang. Parallel multi-resolution fusion network
for image inpainting. 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 14539–14548, 2021.

[42] Pengxiang Wu and Siheng Chen. Motionnet: Joint percep-
tion and motion prediction for autonomous driving based on
bird’s eye view maps. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 11382–11392,
June 2020.

[43] Zhenda Xie, Zheng Zhang, Xizhou Zhu, Gao Huang, and
Steve Lin. Spatially adaptive inference with stochastic fea-
ture sampling and interpolation. In European Conference on
Computer Vision (ECCV), August 2020.

[44] Runsheng Xu, Zhengzhong Tu, Hao Xiang, Wei Shao, Bolei
Zhou, and Jiaqi Ma. Cobevt: Cooperative bird’s eye view
semantic segmentation with sparse transformers. In Confer-
ence on Robot Learning (CoRL), 2022.

[45] Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-
Hsuan Yang, and Jiaqi Ma. V2x-vit: Vehicle-to-everything
cooperative perception with vision transformer. ArXiv,
abs/2203.10638, 2022.

[46] Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and
Jiaqi Ma. Opv2v: An open benchmark dataset and fusion
pipeline for perception with vehicle-to-vehicle communica-
tion. In ICRA, 2022.

[47] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors (Basel, Switzerland),
18, 2018.

[48] Binh Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-
time 3d object detection from point clouds. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7652–7660, 2018.

[49] Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang Yang,
Yifeng Shi, Zhenglong Guo, Hanyu Li, Xing Hu, Jirui Yuan,
and Zaiqing Nie. Dair-v2x: A large-scale dataset for vehicle-
infrastructure cooperative 3d object detection. In IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR),
June 2022.

[50] Xiaoding Yuan, Adam Kortylewski, Yihong Sun, and
Alan Loddon Yuille. Robust instance segmentation through
reasoning about multi-object occlusion. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11136–11145, 2021.

[51] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling
Shao. Multi-stage progressive image restoration. In 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14816–14826, 2021.



[52] Yanhong Zeng, Jianlong Fu, Hongyang Chao, and Baining
Guo. Learning pyramid-context encoder network for high-
quality image inpainting. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1486–
1494, 2019.

[53] Kaihao Zhang, Rongqing Li, Yanjiang Yu, Wenhan Luo, and
Changsheng Li. Deep dense multi-scale network for snow
removal using semantic and depth priors. IEEE Transactions
on Image Processing, 30:7419–7431, 2021.

[54] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4490–4499, 2018.



False

Object type at last 

frame whether in 

[ARSV,ARCV]

False

False

ARSV ARCV

ARCI

ARTC

sp

True True True

cp

Objects
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Figure 10. The detailed process of manually labelling.

A. Detailed information of Proposed Metrics
The detailed process of proposed metrics are shown in

Figure 9. We traverse all objects in each frame to ob-
tain their corresponding types. Note that the type of AR-
SV/ARCV can be automatically generated with code, as
shown in Listing 1. And the type of ARCI/ARTC needs to
be manually labeled, because whether it is visible at the last
moment cannot be directly determined due to the movement
of the vehicles from t− 1 to t, as shown in Figure 10.

For detailed process of manually labelling, e.g., at times-
tamp t, we firstly label vehicles with yellow background as
ARCI type. Then, by comparing with time t − 1, we find
that agent 1,2 are visible at time t−1 (with no yellow back-
ground). Based on that, we change the type of agent 1,2
from ARCI to ARTC. The pseudo code are as follows:

1 s i n g l e v i e w = np . l o a d ( . . . )
2 c o l l a b v i e w = np . l o a d ( . . . )
3 f o r o b j e c t i n l e n ( s i n g l e v i e w . o b j e c t s ) :
4 i f s i n g e l v i e w [ o b j e c t ] . p o i n t s > t h r e h o l d :
5 o b j e c t . t y p e = ARSV
6 e l s e :
7 i f c o l l a b v i e w [ o b j e c t ] . p o i n t s > t h r e h o l d :
8 o b j e c t . t y p e = ARCV
9 e l s e :

10 o b j e c t . t y p e = ARCI
11

12 % F i n a l l y , we w i l l manua l ly l a b e l p a r t i a l ARCI
t o ARTC, as shown i n F i g u r e 2 .

Listing 1. Pseudo code for proposed metrics

As for the threshold points τ , the proposed metrics dis-
tinguish between ARSV and ARCV based on whether they
are visible. Nevertheless, whether they are visible depends
on the number of points included in each object and the per-

Table 5. The ARSV and ARCV performance with different thresh-
old points τ .

Points ARSV50/70 ARCV50/70

10 81.48/77.48 23.72/19.34
7 79.44/75.05 15.34/11.88
5 77.73/73.21 6.08/4.07
4 76.90/72.35 4.62/3.45

formance of the detector. To verify at how many points the
detector can not detect the object, we conducted the follow-
ing experiments on the No Fusion model.

Table 5 shows the ARSV and ARCV in terms of different
points. We can see that i) as the number of points decreases,
so does the ARCV. This is because, as the points become
more accurate, the no fusion model should theoretically be
0 in terms of ARCV; ii) when the points are greater than 5,
the decline in ARCV is very large. When points are less
than 5, the decline of the ARCV slows down, indicating it
is close to the accurate points; iii) when points equal 4, the
ARCV is 4.62% in IoU@0.5 and 3.45% in IoU@0.7, which
are within the acceptable error range of 5%. So, to decide if
an object is visible, we look at how many points it has and
whether that number is greater than 4.

Note that the ‘last frame’ of ARTC’s time interval varies
based on the sampling frequency (5Hz in V2X-Sim, 10Hz
in OPV2V). And, the ARSV and ARCV only take recall
into account, while the AP is weighted by both recall and
precision. Hence, a high AP does not necessarily mean
high ARSV or ARCV values. Based on that, you may
wonder why not utilize APSV/APCV as the new metric. It
is because the each proposed model can only predict the
classifications (background or foreground) and regressions
(x,y,w,h) of each pixel. Therefore, there is no prediction of
the corresponding types for each detected objects.

B. Experiments details

B.1. Basic parameters

Our experiments are all performed on the workstation
with AMD Core Ryzen Threadripper 3960X CPU and
Nvidia 3090 GPU with Pytorch v1.7.1, CUDA 11.0. The
SRAR-based’s transmitted collaborative feature map (TCF)
has a dimension of 32 × 32 × 256. Our proposed UMC’s
TCFs have the dimension of 32 × 32 × 256, 64 × 64 ×
128. As for hyper-parameter tuning, we choose Adam as
the optimizer and set the batch size to 4 for both V2X-Sim
and OPV2V datasets. Also, we utilize the same number of
scenes (total 80 scenes) for training. For testing stage, the
V2X-sim utilizes 10 scenes, and OPV2V utilizes 15 scenes.
Meanwhile, we use initial learning rate of 0.001 and set the
random seed to 622.
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Figure 11. Difference between where2comm and UMC commu-
nication strategy. (a) The ego agent’s observation. (b) The ego
agent’s observation at feature level. (c) The collaborator’s obser-
vation, red box denoted for the detected agents. (d) The collab-
orator’s observation at feature level. (e) Communication map of
where2comm. (f) Communication map of UMC.

B.2. Baseline setting

To ensure fairness, we fix the structure of the
shared feature extractor MotionNet[42] and detector,
and transplant the collaborative part of the different
methods without modification. Meanwhile, all the
models are trained 100 epoch with initial learning
rate of 0.001 and set the learning rate update strat-
egy as ‘torch.optim.lr scheduler.MultiStepLR(self. opti-
mizer head, milestones=[50, 100], gamma=0.5)’.

B.3. Communication Volume

The communication volume for each method is calcu-
lated by: mean(log(

∑agents
i=1

∑T
t=1(F.size+Q.size))) dur-

ing the test stage. F represents the transmitted feature map,
and Q represents the query matrix, which is calculated in
UMC, who2com, and when2com, and equals 0 in other
methods.

B.4. Setting of δs, δc

Table 6. The performance-bandwidth trade off with different δs, δc
values on V2X-Sim dataset.

δs δc ARSV50/70 ↑ ARCV50/70 ↑ ARCI50/70 ↓ ARTC50/70 ↑ AP50/70 ↑ C.V. ↓
50 100 85.66/81.87 70.76/63.15 2.41/1.7 11.88/8.12 68.97/61.35 20.58
50 50 84.78/80.73 67.46/60.72 2.50/1.78 11.88/8.12 67.83/60.02 19.92
50 10 80.62/75.39 31.48/23.53 2.17/1.37 12.03/7.20 59.57/50.50 18.4
20 100 87.30/84.08 74.08/66.77 16.68/12.24 22.15/17.41 66.98/59.24 19.68
20 50 83.23/78.98 56.49/48.87 2.12/1.51 11.23/8.08 64.77/56.79 19
20 10 80.53/75.38 19.02/12.33 2.14/1.38 9.16/6.74 58.00/49.46 17.63
10 100 86.57/82.97 59.37/51.68 14.57/10.51 19.09/15.15 63.59/55.84 19.06
10 50 82.12/77.44 38.52/31.28 2.16/1.47 10.77/8.35 61.57/53.43 18.376
10 10 80.78/75.51 13.29/8.97 2.21/1.39 10.77/8.35 57.62/49.27 17.171
5 100 86.04/82.59 47.19/40.44 14.17/9.9 19.25/15.14 61.04/53.99 18.375
5 20 80.87/75.72 15.09/10.76 2.12/1.36 10.77/8.35 57.67/49.45 17.17
1 100 85.44/81.49 34.59/28.72 13.47/9.88 20.49/17.35 58.07/50.72 17.15

We record the proposed UMC under different (δs, δc) in

terms of the trade-off between performance and communi-
cation bandwidth, as shown in Table 6.

Meanwhile, we comprehensively analyze the commu-
nication strategy between where2comm[12] and our pro-
posed UMC. As shown in Figure 11, where2comm takes
the advantages of sparsity of foreground information and
only transmits the regions that the agents have. However, as
for different downstream tasks, such as segmentation[44] or
scene completion[20], there are other no-measurement or
sparse-measurement regions that need collaborator’s com-
munication, as shown in Figure 11.(b). Hence, our pro-
posed UMC aim to optimize not only detection but also gen-
eral downstream tasks based on the traditional information
theory. From the Figure 11.(f), we can observe that UMC
can transmit the necessary regions to ego agent for general
downstream tasks.

Note that in addition to discussing the top-δ% based
filtering strategy of Eq.1 in manuscript, we also explored
the mean based filtering strategy, the corresponding perfor-
mance is shown as follows:

Table 7. The performance of mean based filtering strategy on V2X-
Sim dataset.

δs δc ARSV50/70 ↑ ARCV50/70 ↑ ARCI50/70 ↓ ARTC50/70 ↑ AP50/70 ↑ C.V. ↓
mean 84.67/80.68 67.01/60.04 2.38/1.70 12.35/9.46 67.80/60.01 19.23

C. Performance analysis

C.1. Computation complexity

The configuration of the experiment platform has been
described in Section B.1. Based on that, in terms of compu-
tations, the proposed entropy-cs only requires about 0.136G
FLOPS with 0.66 ms latency to process a 256 × 32 × 32
(C,H,W) feature map (more architecture details are shown
in Section F.1).

Compared to DiscoNet[19], the proposed C-GRU costs
about 4.10G FLOPS more with 12.7 ms latency.

C.2. Is Early Fusion always be better?

We discuss the performance of early fusion model. As
we all know, Early fusion aggregates the raw measurements
from all collaborators, promoting a holistic perspective.
From the Table 1 in manuscript, the early fusion performs
extremely good, even better than all the other baselines in
some metrics. However, V2VNet[40] actually shows early
fusion is far from optimal due to noises in real sensors. To
address the above issue, since the dataset of V2VNet is not
open source, we conduct experiments on OPV2V[46] with
Gaussian noises. As shown in Table 8, we agree that the
performance of Early Fusion may be degraded by noises to
some extent.



Table 8. Comparisons on OPV2V dataset.[Best, Worst]
Method ARSV50/70 ARCV50/70 AP50/70

No Fusion 69.33/46.35 12.32/4.36 54.69/23.94
Early Fusion 64.62/46.95 45.00/24.39 55.88/25.89

UMC 76.56/47.68 47.82/25.06 61.90/24.50

C.3. Grains selection

Table 3 in manuscript compares the performance of dif-
ferent selections of grain level. We also include compar-
isons of single-grain, as shown in Table 9. Note that the
heavy memory burden of all resolution baseline is not ap-
plicable on our RTX 3090.

Table 9. Comparisons of single-grain selection.
Multi-Grains Selection
F e,ti,1 F e,ti,2 F e,ti,3

AP50/70 ↑ C. V. ↓

X 56.73/49.22 7.88
X 58.96/52.86 8.12

X 57.43/51.66 8.36

D. More details about ablations analysis
Table 4 in manuscript shows that a tremendous drop

when adding Entropy-CS in variant 3 and 4. From our per-
spectives, variant 3 and 4 are based on single-resolution,
then variant 3 (w/ entropy-cs)costs about 1

4 communication
of variant 4. Based on [12], when the communication is too
small, the collaborative detection performance will suffer,
resulting in a tremendous drop in variant 3. However, vari-
ant 3 still achieves detection gain compared with No Fusion
(improved by 9.40%/9.25% ↑ in AP50/70, respectively).

Meanwhile, AP of variant 2 is worse than variant 4 with
comparable ARSV and better ARCV, this is because The
ARSV and ARCV only take recall into account, while the
AP is weighted by both recall and precision. Therefore,
in variants 2 and 4, a high AP does not necessarily mean
high ARSV or ARCV values, more details about proposed
metrics can be found in Section A.

E. Unified framework design
We summarize the main contributions of recent collab-

orative algorithms in Table 10, , where X indicates that
a unique module is designed and − indicates that general
operations are utilized. Our proposed UMC optimizes the
communication, collaboration, and reconstruction process
with multi-resolution technique.

F. Detailed architecture of the model
Note that we will release the source code.

F.1. Architecture of entropy-CS

Table 10. Contribution summary.
Method Comm. Collab. Recons.

Who2com (ICRA 2020 [24]) X - -
When2com (CVPR 2020 [23]) X - -
V2VNet (ECCV 2020 [40]) - X -
DiscoNet (NIPS 2021 [19]) - X -
V2X-ViT (ECCV 2022 [45]) - X -
Where2comm (NIPS 2022 [12]) X X -

UMC (ours) X X X

1 d e f a c c e n t r o p y s e l e c t i o n ( s e l f , t g a g e n t ,
n b a g e n t , d e l t a 1 , d e l t a 2 , M=3 , N=3) :

2 s e l f . s t a c k = s t a c k c h a n n e l ( 1 , 9 , k e r n e l s i z e =3 ,
padd ing =1)

3 w = n b a g e n t . shape [ −2]
4 h = n b a g e n t . shape [ −1]
5 b a t c h n b = n b a g e n t . r e s h a p e ( −1 , 1 , 1 , 1 )
6 s t a c k = s e l f . s t a c k ( n b a g e n t ) . pe rmute ( 2 , 3 , 1 , 0 ) .

c o n t i g u o u s ( ) . r e s h a p e ( −1 , 9 , 1 , 1 )
7

8 p = F . s igmoid ( ( s t a c k − b a t c h n b ) ) . mean ( dim =1) .
r e s h a p e (w, h )

9 e n t r o p y t m p = p * t o r c h . l o g ( p )
10

11 wi th t o r c h . n o g r a d ( ) :
12 t o p d e l t a = t o r c h . s o r t ( e n t r o p y t m p . r e s h a p e ( −1) ,

d e s c e n d i n g =True )
13 s e l f h o l d e r = t o p d e l t a [ 0 ] [ i n t (w*h* d e l t a 1 ) ]
14

15 masker = t o r c h . where ( en t rop y tm p>=s e l f h o l d e r )
16

17 s t a c k t g = s e l f . s t a c k ( t g a g e n t ) . pe rmute
( 2 , 3 , 1 , 0 ) . c o n t i g u o u s ( ) . r e s h a p e ( −1 , 9 , 1 , 1 )

18 p t = F . s igmoid ( ( s t a c k t g − b a t c h n b ) ) . mean ( dim
=1) . r e s h a p e (w, h )

19 e n t r o p y t = p t * t o r c h . l o g ( p t )
20

21 tmp masker = − t o r c h . o n e s l i k e ( e n t r o p y t )
22 tmp masker [ masker ] = e n t r o p y t [ masker ]
23

24 wi th t o r c h . n o g r a d ( ) :
25 t o p d e l t a 2 = t o r c h . s o r t ( tmp masker [ tmp masker

! = − 1 ] . r e s h a p e ( −1) , d e s c e n d i n g =True )
26 t h r e s h o l d s = t o p d e l t a 2 [ 0 ] [ i n t (w*h* d e l t a 2 ) ]
27

28 r e t u r n t o r c h . where ( tmp masker>=t h r e s h o l d s )
29

30

31 c l a s s s t a c k c h a n n e l ( nn . Conv2d ) :
32 d e f i n i t ( s e l f , i n c h a n n e l s , o u t c h a n n e l s ,

k e r n e l s i z e , s t r i d e =1 , padd ing =0 , b i a s = F a l s e ,
i n t e r p l a t e = ’ none ’ ) :

33 s u p e r ( s t a c k c h a n n e l , s e l f ) . i n i t ( i n c h a n n e l s
, o u t c h a n n e l s , k e r n e l s i z e = k e r n e l s i z e ,
s t r i d e = s t r i d e , padd ing = padding , b i a s = b i a s )

34

35 s q u a r e d i s = np . z e r o s ( ( o u t c h a n n e l s ,
k e r n e l s i z e , k e r n e l s i z e ) )

36

37 f o r i i n r a n g e ( o u t c h a n n e l s ) :
38 s q u a r e d i s [ i , i / / 3 , i %3] = 1
39

40 s e l f . s q u a r e d i s = nn . P a r a m e t e r ( t o r c h . Tensor (
s q u a r e d i s ) , r e q u i r e s g r a d = F a l s e )

41

42 d e f f o r w a r d ( s e l f , x ) :
43
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Figure 12. The architecture of G-CGRU.

44 k e r n e l = s e l f . s q u a r e d i s . d e t a c h ( ) . unsqueeze ( 1 )
45 s t a c k = F . conv2d ( x , k e r n e l , s t r i d e =1 , padd ing

=1 , g ro ups =1)
46

47 r e t u r n s t a c k
Listing 2. Entropy-CS code

Our contribution of entropy-based selection is both the-
oretical and practical. The intuition of entropy-cs is low
computational complexity and high interpretability. The
entropy-cs is no parameter and single-round communica-
tion to reduce heavy bandwidth burden brought by multi-
resolution technique.

F.2. Architecture of G-CGRU

To facilitate understanding, we have simplified
many formulas and steps in manuscript. Hence,
we add more technique details about the section of
Graph-based Collaborative GRU.

For the ego agent i of the j-th resolution intermedi-
ate feature maps, the inputs of G-CGRU are hidden states
he,t−1
i,j , the ego agent observation F e,ti,j , and the supporters’

selected feature maps {F
′e,t
k→i,j}k 6=i, then the updates for G-

CGRU at t-th step can be formulated as:

ĥ
e,t−1

i,j = Λ(he,t−1
i,j , ξt−1→t

i )

Rt
i,j = Reset(F e,ti,j , ĥ

e,t−1

i,j )

Zti,j = Update(ĥ
e,t−1

i,j ,F e,ti,j )

h
′e,t−1
i,j = ĥ

e,t−1

i,j �Rt
i,j

Ce,t
i,j = Collab(h

′e,t−1
i,j , {F

′e,t
k→i,j}k 6=i,F

e,t
i,j )

Ee,t
i,j = Zti,j �C

e,t
i,j + (1−Zti,j)� ĥ

e,t−1

i,j

he,ti,j = W 3×3 ∗Ee,t
i,j

(7)

where �, ∗ represent dot product and 3 × 3 convolution
operation, respectively. W 3×3 indicates trainable param-
eters. The last time hidden feature he,t−1

i,j needs conduct

feature alignment operation from t − 1 to t to get ĥ
e,t−1

i,j ,

which ensure the ĥ
e,t−1

i,j and F e,ti,j are supported in the same
coordinate system.

The Reset and Update gate modules share the same
structure. Here we take Reset as an example:

W ir = σ(W 3×3 ∗ ([ĥ
e,t−1

i,j ;F e,ti,j ]))

Rt
i,j = σ(W ir � ĥ

e,t−1

i,j + (1−W ir)� F e,ti,j )
(8)

where σ(·), [·; ·] represent Sigmoid function and con-
catenation operation along channel dimensions. The gate
Rt
i,j ∈ RK,K,C learns where the hidden features he,t−1

i,j are
conducive to the present.

Based on the above Reset and Update modules, we
thus derive the Collab module. To make better collab-
orative feature integration, we construct a collaboration
graph Gtc(V ,E) in Collab module, where node V =
{Vi}i=1,...,N is the set of collaborative agents in environ-
ment and E = {W i→j}i,j=1,...,N is the set of trainable
edge matrix weights between agents and models the col-
laboration strength between two agents. Let CGt

c
(·) be the

collaboration process defined in the Collab module’s graph
Gtc. The j-th resolution enhanced maps of ego i agent after
collaboration are Ee,t

i,j ← CGt
c
(he,t−1
i,j ,F

′e,t
k→i,j ,F

e,t
i,j ). This

process has two stages: message attention (S1) and message
aggregation (S2).

W k→i = Π([h
′e,t−1
i,j ;F

′e,t
k→i,j ;F

e,t
i,j ] ∈ RK,K

W̄ k→i =
eW k→i∑N

m=1 e
W t

m→i

Ce,t
i,j =

N∑
m=1

W̄m→i ◦ F
′e,t
m→i,j

(9)

In the message attention stage (S1), each agent deter-
mines the matrix-valued edge weights, which reflect the
strength from one agent to another at each individual cell.
To determine the edge weights, we firstly get the conductive
history information from hidden features by Reset gates
through h

′e,t−1
i,j ← ĥ

e,t−1

i,j �Rt
i,j . Then, we utilize the edge

encode Π to correlate the history information, the feature
map from another agent and ego feature map; that is, the
matrix-value edge weight from k-th agent to the i-th agent
is W k→i = Π(h

′e,t−1
i,j ,F

′e,t
k→i,j ,F

e,t
i,j ) ∈ RK,K , where Π

concatenates three feature maps along the channel dimen-
sion and then utilizes four 1×1 convolutional layers to grad-
ually reduce the number of channels from 3C to 1, more de-
tails are shown in Section F.6. Also, to normalize the edge
weights across different agents, we implement a softmax
operation on each cell of the feature map.



In the message aggregation stage (S2), each agent ag-
gregates the feature maps from collaborators based on the
normalized matrix-valued edge weights, the updated feature
map Ce,t

i,j is utilized by
∑N
k=1W k→i ◦ F

′e,t
k→i,j , where ◦

represents the dot production broadcasting along the chan-
nel dimension.

Finally, the collaborative map is Ee,t
i,j = Zti,j � C

e,t
i,j +

(1 − Zti,j) � h
e,t−1
i,j . Note that the Zti,j is generated by

Update gate and � is the dot product. And, the hidden
state is updated as he,ti,j ←W 3×3 ∗Ee,t

i,j .

F.3. Architecture of shared encoder

We use the main architecture of MotionNet[42] as our
shared encoder. The input BEV map’s dimension is
(c, w, h) = (13, 256, 256). We describe the architecture
of the encoder below:

1 nn . S e q u e n t i a l (
2 nn . Conv2d ( 1 3 , 32 , 3 , s t r i d e =1 , padd ing =1)
3 nn . BatchNorm2d ( 3 2 )
4 nn . ReLU ( )
5 nn . Conv2d ( 3 2 , 32 , 3 , s t r i d e =1 , padd ing =1)
6 nn . BatchNorm2d ( 3 2 )
7 nn . ReLU ( )
8 nn . Conv3D ( 6 4 , 64 , ( 1 , 1 , 1 ) , s t r i d e =1)
9 nn . Conv3D ( 1 2 8 , 128 , ( 1 , 1 , 1 ) , s t r i d e =1)

10 nn . Conv2d ( 3 2 , 64 , 3 , s t r i d e =2 , padd ing =1)
11 nn . BatchNorm ( 6 4 )
12 nn . ReLU ( )
13 nn . Conv2d ( 6 4 , 128 , 3 , s t r i d e =2 , padd ing =1)
14 nn . BatchNorm ( 1 2 8 )
15 nn . ReLU ( )
16 nn . Conv2d ( 1 2 8 , 128 , 3 , s t r i d e =1 , padd ing =1)
17 nn . BatchNorm ( 1 2 8 )
18 nn . ReLU ( )
19 nn . Conv2d ( 1 2 8 , 256 , 3 , s t r i d e =2 , padd ing =1)
20 nn . BatchNorm ( 2 5 6 )
21 nn . ReLU ( )
22 nn . Conv2d ( 2 5 6 , 256 , 3 , s t r i d e =1 , padd ing =1)
23 nn . BatchNorm ( 2 5 6 )
24 nn . ReLU ( )
25 nn . Conv2d ( 2 5 6 , 512 , 3 , s t r i d e =2 , padd ing =1)
26 nn . BatchNorm ( 5 1 2 )
27 nn . ReLU ( )
28 nn . Conv2d ( 5 1 2 , 512 , 3 , s t r i d e =1 , padd ing =1)
29 nn . BatchNorm ( 5 1 2 )
30 nn . ReLU ( ) )

Listing 3. Shared encoder code

F.4. Architecture of SRAR-based shared decoder

The input of the SRAR-based shared decoder is the in-
termediate feature output by each layer of the encoder. Its
architecture is shown below:

1 nn . S e q u e n t i a l (
2 nn . Conv2d (512 + 256 , 256 , 3 , 1 , 1 )
3 nn . BatchNorm2d ( 2 5 6 )
4 nn . ReLU ( )
5 nn . Conv2d ( 2 5 6 , 256 , 3 , 1 , 1 )
6 nn . BatchNorm2d ( 2 5 6 )
7 nn . ReLU ( )

8 nn . Conv2d (256 + 128 , 128 , 3 , 1 , 1 )
9 nn . BatchNorm2d ( 1 2 8 )

10 nn . ReLU ( )
11 nn . Conv2d ( 1 2 8 , 128 , 3 , 1 , 1 )
12 nn . BatchNorm2d ( 1 2 8 )
13 nn . ReLU ( )
14 nn . Conv2d (128 + 64 , 64 , 3 , 1 , 1 )
15 nn . BatchNorm2d ( 6 4 )
16 nn . ReLU ( )
17 nn . Conv2d ( 6 4 , 64 , 3 , 1 , 1 )
18 nn . BatchNorm2d ( 6 4 )
19 nn . ReLU ( )
20 nn . Conv2d (64 + 32 , 32 , 3 , 1 , 1 )
21 nn . BatchNorm2d ( 3 2 )
22 nn . ReLU ( )
23 nn . Conv2d ( 3 2 , 32 , 3 , 1 , 1 )
24 nn . BatchNorm2d ( 3 2 )
25 nn . ReLU ( ) )

F.5. Architecture of query generator

The entropy-CS compresses the intermediate feature to
generate query matrix by query generator, which is for light
communication. Its architecture is shown below:

1 nn . S e q u e n t i a l (
2 nn . Conv2d ( 2 5 6 , 64 , 1 , 1 , 0 )
3 nn . BatchNorm2d ( 6 4 )
4 nn . ReLU ( )
5 nn . Conv2d ( 6 4 , 1 , 1 , 1 , 0 )
6 nn . ReLU ( ) )

Listing 4. Query generator code

F.6. Architecture of edge encoder Π

1 c l a s s EdgeEncoder ( nn . Module ) :
2 d e f i n i t ( s e l f , c h a n n e l ) :
3 s u p e r ( EdgeEncoder , s e l f ) . i n i t ( )
4

5 s e l f . conv1 1 = nn . Conv2d ( channe l , 128 ,
k e r n e l s i z e =1 , s t r i d e =1 , padd ing =0)

6 s e l f . bn1 1 = nn . BatchNorm2d ( 1 2 8 )
7

8 s e l f . conv1 2 = nn . Conv2d ( 1 2 8 , 32 , k e r n e l s i z e
=1 , s t r i d e =1 , padd ing =0)

9 s e l f . bn1 2 = nn . BatchNorm2d ( 3 2 )
10

11 s e l f . conv1 3 = nn . Conv2d ( 3 2 , 8 , k e r n e l s i z e =1 ,
s t r i d e =1 , padd ing =0)

12 s e l f . bn1 3 = nn . BatchNorm2d ( 8 )
13

14 s e l f . conv1 4 = nn . Conv2d ( 8 , 1 , k e r n e l s i z e =1 ,
s t r i d e =1 , padd ing =0)

15

16 d e f f o r w a r d ( s e l f , x ) :
17 x = x . view ( −1 , x . s i z e ( −3) , x . s i z e ( −2) , x . s i z e

( −1) )
18 x 1 = F . r e l u ( s e l f . bn1 1 ( s e l f . conv1 1 ( x ) ) )
19 x 1 = F . r e l u ( s e l f . bn1 2 ( s e l f . conv1 2 ( x 1 ) ) )
20 x 1 = F . r e l u ( s e l f . bn1 3 ( s e l f . conv1 3 ( x 1 ) ) )
21 x 1 = F . r e l u ( s e l f . conv1 4 ( x 1 ) )
22

23 r e t u r n x 1
Listing 5. Edge encoder code



UMC Early Fusion Where2comm V2VNet DiscoNet

Figure 13. Detection results of UMC, Early Fusion, Where2comm, V2VNet and DiscoNet on OPV2V dataset.
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Figure 14. Detection results of UMC, Early Fusion, When2com[23], V2VNet and DiscoNet on V2X-Sim dataset.

F.7. Architecture of MGFE

1 c l a s s MGFE( nn . Module ) :
2 d e f i n i t ( s e l f , i n p u t c h a n n e l ) :

3 s u p e r (MGFE, s e l f ) . i n i t ( )
4

5 s e l f . g u i d e v 1 = nn . Conv2d ( 1 2 8 , 128 , k e r n e l s i z e
=1 , s t r i d e =1 , padd ing =0)



6 s e l f . g u i d e v 1 b n = nn . BatchNorm2d ( 1 2 8 )
7 s e l f . g u i d e = nn . Conv2d ( 2 5 6 , 256 , k e r n e l s i z e =1 ,

s t r i d e =1 , padd ing =0)
8 s e l f . g u i d e b n = nn . BatchNorm2d ( 2 5 6 )
9

10 s e l f . conv5 1 = nn . Conv2d (512 + 256 + 256 , 256 ,
k e r n e l s i z e =3 , s t r i d e =1 , padd ing =1)

11 s e l f . bn5 1 = nn . BatchNorm2d ( 2 5 6 )
12

13 s e l f . conv5 2 = nn . Conv2d ( 2 5 6 , 256 , k e r n e l s i z e
=3 , s t r i d e =1 , padd ing =1)

14 s e l f . bn5 2 = nn . BatchNorm2d ( 2 5 6 )
15

16 s e l f . conv6 1 = nn . Conv2d (256 + 128 + 128 , 128 ,
k e r n e l s i z e =3 , s t r i d e =1 , padd ing =1)

17 s e l f . bn6 1 = nn . BatchNorm2d ( 1 2 8 )
18

19 s e l f . conv6 2 = nn . Conv2d ( 1 2 8 , 128 , k e r n e l s i z e
=3 , s t r i d e =1 , padd ing =1)

20 s e l f . bn6 2 = nn . BatchNorm2d ( 1 2 8 )
21

22 s e l f . conv7 1 = nn . Conv2d (128 + 64 , 64 ,
k e r n e l s i z e =3 , s t r i d e =1 , padd ing =1)

23 s e l f . conv7 2 = nn . Conv2d ( 6 4 , 64 , k e r n e l s i z e =3 ,
s t r i d e =1 , padd ing =1)

24

25 s e l f . conv8 1 = nn . Conv2d (64 + 32 , 32 ,
k e r n e l s i z e =3 , s t r i d e =1 , padd ing =1)

26 s e l f . conv8 2 = nn . Conv2d ( 3 2 , 32 , k e r n e l s i z e =3 ,
s t r i d e =1 , padd ing =1)

27

28 s e l f . bn7 1 = nn . BatchNorm2d ( 6 4 )
29 s e l f . bn7 2 = nn . BatchNorm2d ( 6 4 )
30

31 s e l f . bn8 1 = nn . BatchNorm2d ( 3 2 )
32 s e l f . bn8 2 = nn . BatchNorm2d ( 3 2 )
33

34 s e l f . norm1 = L2Norm ( 5 1 2 )
35 s e l f . norm2 = L2Norm ( 2 5 6 )
36 s e l f . norm3 = L2Norm ( 1 2 8 )
37 s e l f . norm4 = L2Norm ( 6 4 )
38 s e l f . norm5 = L2Norm ( 3 2 )
39

40 d e f f o r w a r d ( s e l f , x , x 1 , x 2 , x 3 , x 4 ,
enhance v1 , enhance , ba tch , k d f l a g = 0) :

41

42 enhance v1 = enhance v1 . view ( ba tch , −1 ,
enhance v1 . s i z e ( 1 ) , enhance v1 . s i z e ( 2 ) ,
enhance v1 . s i z e ( 3 ) )

43 enhance v1 = enhance v1 . permute ( 0 , 2 , 1 , 3 , 4 ) .
c o n t i g u o u s ( )

44 enhance v1 = enhance v1 . permute ( 0 , 2 , 1 , 3 , 4 ) .
c o n t i g u o u s ( )

45 enhance v1 = enhance v1 . view ( −1 , enhance v1 .
s i z e ( 2 ) , enhance v1 . s i z e ( 3 ) , enhance v1 . s i z e
( 4 ) ) . c o n t i g u o u s ( )

46

47 g u i d e v 1 = t o r c h . max ( F . r e l u ( s e l f . g u i d e v 1 b n (
s e l f . g u i d e v 1 ( enhance v1 ) ) ) , dim =1 , keepdim=
True ) [ 0 ]

48 g u i d e = t o r c h . max ( F . r e l u ( s e l f . g u i d e b n ( s e l f .
g u i d e ( enhance ) ) ) , dim =1 , keepdim=True ) [ 0 ]

49 x 3 g u i d e = g u i d e * x 3
50

51 x 5 = F . r e l u ( s e l f . bn5 1 ( s e l f . conv5 1 ( t o r c h . c a t
( ( s e l f . norm1 ( F . i n t e r p o l a t e ( x 4 , s c a l e f a c t o r
= ( 2 , 2 ) ) ) , s e l f . norm2 ( x 3 g u i d e ) , s e l f . norm2 (

enhance ) ) , dim =1) ) ) )
52 x 5 = F . r e l u ( s e l f . bn5 2 ( s e l f . conv5 2 ( x 5 ) ) )
53

54 x 2 = x 2 . view ( ba tch , −1 , x 2 . s i z e ( 1 ) , x 2 . s i z e
( 2 ) , x 2 . s i z e ( 3 ) )

55 x 2 = x 2 . permute ( 0 , 2 , 1 , 3 , 4 ) . c o n t i g u o u s ( )
56 x 2 = x 2 . permute ( 0 , 2 , 1 , 3 , 4 ) . c o n t i g u o u s ( )
57 x 2 = x 2 . view ( −1 , x 2 . s i z e ( 2 ) , x 2 . s i z e ( 3 ) ,

x 2 . s i z e ( 4 ) ) . c o n t i g u o u s ( )
58

59 x 2 g u i d e = g u i d e v 1 * x 2
60

61 x 6 = F . r e l u ( s e l f . bn6 1 ( s e l f . conv6 1 ( t o r c h . c a t
( ( s e l f . norm2 ( F . i n t e r p o l a t e ( x 5 , s c a l e f a c t o r
= ( 2 , 2 ) ) ) , s e l f . norm3 ( x 2 g u i d e ) , s e l f . norm3 (
enhance v1 ) ) , dim =1) ) ) )

62

63 x 6 = F . r e l u ( s e l f . bn6 2 ( s e l f . conv6 2 ( x 6 ) ) )
64

65 x 1 = x 1 . view ( ba tch , −1 , x 1 . s i z e ( 1 ) , x 1 . s i z e
( 2 ) , x 1 . s i z e ( 3 ) )

66 x 1 = x 1 . permute ( 0 , 2 , 1 , 3 , 4 ) . c o n t i g u o u s ( )
67 x 1 = x 1 . permute ( 0 , 2 , 1 , 3 , 4 ) . c o n t i g u o u s ( )
68 x 1 = x 1 . view ( −1 , x 1 . s i z e ( 2 ) , x 1 . s i z e ( 3 ) ,

x 1 . s i z e ( 4 ) ) . c o n t i g u o u s ( )
69

70 x 7 = F . r e l u ( s e l f . bn7 1 ( s e l f . conv7 1 ( t o r c h . c a t
( ( s e l f . norm3 ( F . i n t e r p o l a t e ( x 6 , s c a l e f a c t o r
= ( 2 , 2 ) ) ) , s e l f . norm4 ( x 1 ) ) , dim =1) ) ) )

71 x 7 = F . r e l u ( s e l f . bn7 2 ( s e l f . conv7 2 ( x 7 ) ) )
72

73

74 x = x . view ( ba tch , −1 , x . s i z e ( 1 ) , x . s i z e ( 2 ) , x .
s i z e ( 3 ) )

75 x = x . permute ( 0 , 2 , 1 , 3 , 4 ) . c o n t i g u o u s ( )
76 x = x . permute ( 0 , 2 , 1 , 3 , 4 ) . c o n t i g u o u s ( )
77 x = x . view ( −1 , x . s i z e ( 2 ) , x . s i z e ( 3 ) , x . s i z e ( 4 ) )

. c o n t i g u o u s ( )
78

79 x 8 = F . r e l u ( s e l f . bn8 1 ( s e l f . conv8 1 ( t o r c h . c a t
( ( s e l f . norm4 ( F . i n t e r p o l a t e ( x 7 , s c a l e f a c t o r
= ( 2 , 2 ) ) ) , s e l f . norm5 ( x ) ) , dim =1) ) ) )

80 r e s x = F . r e l u ( s e l f . bn8 2 ( s e l f . conv8 2 ( x 8 ) ) )
81

82 r e t u r n r e s x
83

84 c l a s s L2Norm ( nn . Module ) :
85 d e f i n i t ( s e l f , n c h a n n e l s , s c a l e = 1 0 . 0 ) :
86 s u p e r ( L2Norm , s e l f ) . i n i t ( )
87 s e l f . n c h a n n e l s = n c h a n n e l s
88 s e l f . s c a l e = s c a l e
89 s e l f . eps = 1e −10
90 s e l f . w e i gh t = nn . P a r a m e t e r ( t o r c h . Tensor ( s e l f .

n c h a n n e l s ) )
91 s e l f . w e i gh t . d a t a *= 0 . 0
92 s e l f . w e i gh t . d a t a += s e l f . s c a l e
93

94 d e f f o r w a r d ( s e l f , x ) :
95 norm = x . pow ( 2 ) . sum ( dim =1 , keepdim=True ) . s q r t ( )

+ s e l f . eps
96 x = x / norm * s e l f . w e i gh t . view ( 1 , −1 , 1 , 1 )
97

98 r e t u r n x
99

Listing 6. MGFE code



G. Detailed information of Interpolation
We utilize the main architecture of ADP-C[25] as our

interpolate function in entropy-CS module. We assume the
input feature as f in ∈ RK,K,C and suppose the pixels of the
f in are indexed by p. Then, we form a maskM ∈ RK,K :

M(p) =

{
0, if f in(p) = 0

1, otherwise
(10)

AssumingC is a convolution layer with input f in, the by
applying the mask, the output fout at position p becomes:

fout(p) =

{
C(f in)(p), ifM(p) = 1,

0, ifM(p) = 0.
(11)

Denoting the interpolation operation as I , the final out-
put feature f∗out is:

f∗out(p) =

{
fout(p), ifM(p) = 1,

I(fout)(p), ifM(p) = 0.
(12)

The value of I(fout)(p) is weighted average of all the
neighboring pixels centered at p within a radius r:

I(fout)(p) =

∑
s∈Ψ(p)W (p,s)fout(s)∑

s∈Ψ(p)W (p,s)
(13)

where s indicates p’s neighboring pixels and Ψ(p) =
{s|‖s−p‖∞ 6 r, s 6= p}, the neighborhood of p. In UMC,
we set radius r = 7. W(p,s) is the weight assigned to point
s for interpolating at p, for which we utilize the RBF kernel,
a distance-based exponential decaying weighting scheme:

W (p,s) = exp(−λ2‖p− s‖22) (14)
with λ being a trainable parameter. This indicates that

the closer s is to p, the larger its assigned weight will be.
Note that masked-out features M(p) = 0 still participate
in the interpolation process as inputs with values of 0.

H. Detailed Qualitative results
We visualize the detection results between different col-

laborative approaches on V2X-sim[18] and OPV2V[46]
datasets, as shown in Figure 13 and 14.

I. Loss curve
We visualize the loss curve of UMC, Early Fusion,

When2com, Where2comm, V2VNet and DiscoNet on
V2X-Sim and OPV2V on Figure 15 and 16, respectively.
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Figure 15. Epoch vs. loss on V2X-Sim dataset.
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Figure 16. Epoch vs. loss on OPV2V dataset.


