
NeRF-LOAM: Neural Implicit Representation for Large-Scale
Incremental LiDAR Odometry and Mapping

Junyuan Deng1 Xieyuanli Chen2* Songpengcheng Xia1 Zhen Sun1

Guoqing Liu1 Wenxian Yu1 Ling Pei1,∗
1Shanghai Jiao Tong University 2College of Intelligence Science and Technology, NUDT

Abstract

Simultaneously odometry and mapping using LiDAR
data is an important task for mobile systems to achieve
full autonomy in large-scale environments. However, most
existing LiDAR-based methods prioritize tracking quality
over reconstruction quality. Although the recently devel-
oped neural radiance fields (NeRF) have shown promis-
ing advances in implicit reconstruction for indoor environ-
ments, the problem of simultaneous odometry and mapping
for large-scale scenarios using incremental LiDAR data re-
mains unexplored. To bridge this gap, in this paper, we pro-
pose a novel NeRF-based LiDAR odometry and mapping
approach, NeRF-LOAM, consisting of three modules neural
odometry, neural mapping, and mesh reconstruction. All
these modules utilize our proposed neural signed distance
function, which separates LiDAR points into ground and
non-ground points to reduce Z-axis drift, optimizes odome-
try and voxel embeddings concurrently, and in the end gen-
erates dense smooth mesh maps of the environment. More-
over, this joint optimization allows our NeRF-LOAM to be
pre-trained free and exhibit strong generalization abilities
when applied to different environments. Extensive eval-
uations on three publicly available datasets demonstrate
that our approach achieves state-of-the-art odometry and
mapping performance, as well as a strong generalization
in large-scale environments utilizing LiDAR data. Fur-
thermore, we perform multiple ablation studies to validate
the effectiveness of our network design. The implementa-
tion of our approach will be made available at https:
//github.com/JunyuanDeng/NeRF-LOAM .

1. Introduction
Simultaneous odometry and mapping is an important

component for autonomous mobile systems to achieve full
autonomy in large-scale environments. It estimates the 6-
degree-of-freedom poses of the vehicle and simultaneously
builds a map of the environment, which are fundamen-
tal prerequisites for downstream tasks like path planning

*corresponding authors

1.684

1.106

0.527ATE【M】

Figure 1. Simultaneously odometry and dense mapping results on
KITTI07. We present the reconstruction and the odometry result.
The odometry results are colored by the absolute trajectory errors
(ATE). Our proposed novel NeRF-LOAM accurately estimates the
poses of a mobile system and reconstructs the dense mesh map of
the outdoor large-scale environment.

and collision avoidance. LiDAR sensors have been widely
adopted for odometry and mapping due to their ability to
provide precise range measurements and robustness to illu-
mination changes. However, it can be argued that the cur-
rent LiDAR odometry and mapping algorithms prioritize
tracking quality over dense reconstruction quality, which
may overlook the potential benefits of accurately capturing
environmental geometry and generating high-fidelity recon-
structions. Despite the popularity of LiDAR-based incre-
mental pose estimation [15, 41, 26, 39], research on high-
level dense map reconstruction, especially deep-learning-
based algorithms remains scarce.

Recently, neural radiance fields (NeRF) [32] has shown
promising potentials in representing 3D scenes implicitly
using a neural network and parallelly pose tracking meth-
ods [33, 51, 45]. Although such representation can achieve
seminal reconstruction with accurate poses, they concen-
trate on indoor pose tracking and scene representation with
RGB-D sensors. The sparsity of LiDAR data and the lack
of RGB information present significant challenges for ap-
plying previous algorithms to LiDAR data in outdoor en-
vironments. Developing practical LiDAR-based algorithms
to address these issues is currently a critical task.

ar
X

iv
:2

30
3.

10
70

9v
1

 [
cs

.C
V

]
 1

9
M

ar
 2

02
3

https://github.com/JunyuanDeng/NeRF-LOAM
https://github.com/JunyuanDeng/NeRF-LOAM

To this end, we propose a novel NeRF-based LiDAR
odometry and mapping method, dubbed NeRF-LOAM. It
employs sparse octree-based voxels combined with neural
implicit embeddings, decoded into a continuous signed dis-
tance function (SDF) by a neural implicit decoder. The
embeddings, decoder, and poses are optimized simultane-
ously by minimizing the SDF errors. NeRF-LOAM targets
the outdoor driving environments and separates the LiDAR
points into ground and non-ground points, and a precise
SDF for ground points can be obtained with the help of nor-
mals. Such an operation depresses Z-axis drift and smooths
our dense 3D map. To tackle the incremental odometry
and mapping under the unknown large-scale outdoor envi-
ronment, a dynamic voxel embedding generation strategy
without any pre-allocation or time-consuming loop is de-
signed. Finally, we use key-scans to not only jointly refine
the pose and the map but also relieve the catastrophic for-
getting or pre-training process. Extensive experiments were
conducted on three publicly available datasets. The exper-
imental results demonstrate that our method attains state-
of-the-art odometry and mapping performance in outdoor
large-scale environments using LiDAR data.

To sum up, the contributions of our work are threefold:

1. To the best of our knowledge, our NeRF-LOAM is the
first neural implicit odometry and mapping method for
large-scale environments using LiDAR data.

2. We propose a novel neural SDF module combined
with dynamic generation and key-scans refine strategy,
which realizes a fast allocation of voxel embeddings in
the octree and a high-fidelity 3D representation.

3. Based on the proposed online joint optimization, our
method is pre-training free and generalizes well in dif-
ferent environments.

2. Related Work
Odometry and mapping in outdoor large-scale environ-

ments using LiDAR data has been investigated for decades.
One of the primary methods is the iterative closest point
(ICP) algorithm [3, 30], which directly aligns consecutive
point clouds together and calculates the relative transfor-
mation between pairs of LiDAR scans. Tackling the spar-
sity of LiDAR data, Zhang and Singh [48] use point-to-
edge and point-to-plane distance to optimize the ICP error
and achieve accurate odometry estimates. However, these
types of algorithms mainly focus on odometry estimation,
while the reconstructed map is coarse. The successive re-
search [3, 31, 2, 8] also explores the scene geometry to
get more accurate odometry results without considering the
quality of the reconstruction map. Meanwhile, learning-
based methods on LiDAR odometry [15, 41, 26, 39, 6] at-
tract much attention. These methods employ a network to
learn features from points or projected 2D images. How-

ever, they often require large data for training and cannot
generalize well to other environments.

To represent the 3D scene, there are many tech-
niques such as surfels [28], occupancy grids [10], trian-
gle meshes [19, 7], and polynomial representations [14].
Traditionally, Poisson surface reconstruction [23, 24] pro-
vides geometrically accurate reconstruction. Newcombe et
al. [12] popularizes the concept of truncated signed distance
function (TSDF) and volumetric integration methods to re-
construct triangle meshes [13, 37]. Behley and Stachniss [2]
use surfels to realize the reconstruction of 3D range sen-
sors. For learning-based reconstruction, they usually focus
on the small objects [20] or reconstruct directly from the
point clouds [43] as a map database. The dense reconstruc-
tion from 3D incremental LiDAR data still remains to ex-
plore.

Compared to the existing 3D representations, the success
of neural implicit representation [1, 18, 32, 40, 50] for novel
view synthesis attach great attention, and many research in-
vestigates the possibility to use this concept realizing simul-
taneous localization and mapping (SLAM) [42, 46, 27, 33,
51, 45]. These neural SLAM use multilayer perceptrons
(MLPs) to represent the entire scene and achieve seminal
results. Extensive related works have been done such as
the training and inference speed [18, 17], sparse training
view [47, 5] and scene composition[49, 44]. However, they
are mainly designed to process the image [25, 32] or RGBD
inputs [9, 4] and are employed indoors. Extending them
to LiDAR-based outdoor environments is hard to achieve
because of the model limitation of simple MLPs and the
sparsity character of LiDAR data. Although [45, 50] adopt
an octree-based sparse grid with voxel embeddings and can
be applied in larger areas, the pre-allocated embeddings or
time-consuming loop to search the voxels is not available in
outdoor for both odometry and mapping.

Unlike the above-mentioned methods, we propose a
novel neural implicit odometry and mapping method for in-
cremental LiDAR inputs under large-scale environments to
obtain both dense 3D representation and accurate poses. We
adopt voxel embeddings with an MLP decoder to represent
the local geometry instead of the entire scene, which gener-
alizes well in most environments. We also design a dynamic
voxel embedding generation strategy to reduce processing
time significantly as well as a key-scans refine strategy to
improve the reconstruction quality.

3. Our Neural SDF
Before delving into the details of our NeRF-LOAM net-

work, we first introduce a novel neural SDF module shown
in Fig. 2, which plays a crucial role in all of our processes,
including optimizing the poses, maps, and networks.

To realize the neural representation of large-scale out-
door incremental, the octree [21, 35, 34] structure is often

{𝒑𝒔}

Rays & Points sampling

Neural SDF Query

Neural SDF

SDF value

Training SDF Pairs

Loss

Ground Separation

Voxel
Embeddings

Neural SDF

Figure 2. The modified neural SDF. After the rays and points sam-
pling, the voxel embeddings are fed to a network to query the neu-
ral SDF after ground separation.

adopted to recursively divide the scene into leaf nodes with
basic scene units voxels. These axis-aligned voxels attach
an Ne-dimension embedding at each vertex and share with
neighbor voxels. The SDF values can be inferred from the
embeddings through a neural network Fθ. Different from
existing methods [45, 50], we treat the environments dif-
ferently when optimizing the SDF values, e.g., ground and
non-ground, and propose a novel loss function to realize
more suitable neural SDF for LiDAR data in outdoor large-
scale environments.

Rays and points sampling. The first step in all of our
processes is based on effective sampling. Instead of ran-
domly selecting samples across the space or around the
points, we first select rays that intersect with the currently
allocated voxel and then select the points along the intersec-
tion part of the ray and voxels. Note that we set a hit number
threshold of voxels Mn to avoid the influence of the unseen
surface. Since the LiDAR rays are transformed by the scan
pose Ti, each ray contains the pose information of the scan.
This sampling strategy allows us to optimize the pose and
voxel embeddings simultaneously.

Neural SDF value. For most visual-based NeRFs [1,
51], the scalar value like weight or color are obtained by dif-
ferentiable rendering along the ray. Since the SDF is a direct
method to represent the scene, the rendering method is un-
suitable for LiDAR data in outdoor environments [50]. The
neural SDF filed Ψ : R3 → R can be represented by Eq. (1):
each sampled point can be regressed via the trilinear inter-
polation of voxel embeddings:

Ψ(ps) = Fθ(TriInpo(ps, e1, ..., en)), (1)

where ps = Tipf is the transformed sampled points by cur-
rent scan pose Ti from the original point pf in LiDAR coor-
dinate, TriInpo(ps, e1, ..., en) represents the trilinear inter-
polation of the sampled point ps surrounded by n neighbor
voxel embeddings, and Fθ is the neural implicit network
with parameter θ. Since all processes involved are differen-
tiable, we can optimize the scan pose, voxel embeddings,
and network parameters jointly through back projection.
Because the voxel embeddings primarily store geometric
information, our network does not require pre-training and
can adjust online to different environments.

Training SDF pairs. The LiDAR sensors provide highly
accurate range measurements, which allow us to compute

𝐧𝐩
𝚯

𝒑𝒔

Figure 3. The geometric information SDF value at point ps should
stay invariant w.r.t the view (blue line). While the approximated
SDF is significantly different with view change (red line). The
alignment of SDF forces the car to shift along the ray.

the signed distance from the sampled points to the endpoints
along the ray. This signed distance is often called the SDF
value in many SLAM or mapping approaches [37, 13]. This
approximation is generally acceptable for simple mapping
or indoor SLAM tasks while leading to sub-optimal results
when applied to outdoor SLAM as shown in Fig. 3. It illus-
trates the issue with the SDF approximation when used with
a far LiDAR point. The blue line represents the true SDF
value, while the red line is the SDF approximation. The dif-
ference between the two distances can be significant when
the angle θ is close to 0◦. This can decrease odometry qual-
ity due to the inaccurate SDF value. This problem is even
more significant in the Z-axis, as there are fewer points in
LiDAR scan to constrain Z-drift. While obtaining the nor-
mals of all LiDAR points can be challenging, the “smooth”
ground allows access to the rectified SDF value.

Therefore, we propose to first separate LiDAR points
into ground points G and non-ground points GC . The SDF
field Φ : R3 → R can then be represented as:

Φ(ps) =

{
(ps − p)np if p ∈ G
‖ps − p‖ else

, (2)

where ps is the sampled point and p is the LiDAR point
alone the ray, np is the normal of point p.

Optimization. We train the network using the weighted
sum of three different losses. The first free space loss forces
the neural SDF of points between LiDAR and the positive
truncation region Pf to be truncation distance Tr:

Lf =
1

|Pf |

|Pf |∑
i=0

(Ψ(pi)− Tr)2 (3)

The negative truncation region is beyond our consideration
following the suggestion of [1] to avoid surface intersec-
tion ambiguities [40]. This loss plays an important role in
removing dynamic objects. Secondly, we define an SDF
loss of points within the truncation region Ps to supervise
the SDF estimates:

Ls =
1

|Ps|

|Ps|∑
i=0

(Ψ(pi)− Φ(pi))
2. (4)

LiDAR Scan

Key Scan
Decision

Neural SDF

Neural Odometry

Neural Mapping

Mesh Reconstruction

Tracked
Scan

Pose 𝑻

Pose 𝑻Loss

Scan
Poses

Final Mesh

Marching
Cube

Output

Yes

First
Frame

KeyScan Buffer

Input

No

Neural SDF Loss

Neural SDF

SDF
Map

Voxel Embeddings Map
Dynamic Voxels

Generation

Figure 4. Our NeRFLOAM Overview. The dashed line represents
the back projection. Given a LiDAR stream, our approach out-
puts the poses of each scan and a reconstructed mesh map of the
environment with three modules: 1) neural odometry takes the
pre-processed scan and optimizes the pose via back projecting the
queried neural SDF; 2) neural mapping jointly optimizes the voxel
embeddings map and pose while selecting the key-scans; 3) key-
scans refined map returns SDF value and the final mesh is recon-
structed by marching cube.

Different to [27, 50] using a sigmoid function to increase
the credits around the LiDAR points, we treat the points
equally in this region for the reason that these points are all
important for odometry. Finally, because the SDF values are
differentiable and equal to one within the truncation area,
we add an Eikonal loss:

Le =
1

|Ps|

|Ps|∑
i=0

(
∂Ψ(pi)

∂pi
− 1)2. (5)

4. NeRF-LOAM Framework
4.1. Overview

The architecture of our framework is illustrated in Fig. 4.
Our method takes an incremental LiDAR stream as input
and outputs a 3D reconstructed mesh with poses of each Li-
DAR scan through three modules: neural odometry, neural
mapping, and mesh reconstruction. The first two parts run
parallel as frontend and backend, while the third runs sepa-
rately to obtain a global mesh map and refined scan poses.

Given the incoming LiDAR scan Pt =
{
pi ∈ R3

}N
i=1

,
the neural odometry estimates a 6-DoF Pose T ∈ SE(3)
for that scan by minimizing the SDF error from a fixed im-
plicit network Fθ (see Sec. 4.2). The tracked scan is then
fed to neural mapping, which utilizes the tracked pose T to
transform the point cloud into the world coordinate system
(see Sec. 4.3). The implicit map representation and pose
are then jointly optimized. During mapping, we add a scan
into the key-scan buffer after a certain distance or when the
vehicle reaches a new area. This key-scan buffer maintains
the long-map consistency but also enhances the mapping

quality. Finally, the key scans are utilized to refine both the
odometry and map results (see Sec. 4.4). The 3D mesh is
reconstructed by the marching cube method [19] based on
the SDF values predicted by our network. More details of
each component are provided in the following sections.

4.2. Neural Odometry

For every incoming LiDAR scan Pt, we randomly select
N rays and transform them into the world coordinate sys-
tem. A set of points are sampled along the ray as described
in Sec. 3. The pose and voxel embeddings are optimized by
decreasing the loss.

For our neural odometry, the parameter which needs to
be optimized is the 6-DoF pose T in SE(3) space. All up-
dates of the pose ξ ∈ se(3) is performed in tangent space of
SE(3). The Lie-algebra representation enables us to update
the pose by a gradient descent method. We randomly select
N rays and transform them into the world coordinate sys-
tem. Note that we use a constant move model to initialize
our pose. This model can relieve our learning burden. We
sample the points, compute the loss and optimize the pose
via back-projection, as mentioned in Sec. 3. Here, the voxel
embeddings and the network are obtained after the neural
mapping process of the last tracked scan.

To tackle the problem of catastrophic forgetting when
performing online incremental odometry, we freeze the net-
work parameters after K scans which does not decline our
result because local geometry is mainly stored in voxels.
The voxel embeddings and poses of the first K scans will
be refined later by key scan refinement, detailed in Sec. 4.4.

4.3. Neural Mapping

Dynamic voxel embeddings generation. For neural
mapping, we employ an octree-based approach to parti-
tion the scene. Following the odometry process, the esti-
mated pose enables us to convert all points of the current
scan into the world coordinate system. Subsequently, any
points not in existing voxels are assigned to newly gen-
erated ones. These voxels are added to the octree along
with their corresponding voxel embeddings. To quickly lo-
cate the desired embeddings, we encode the 3D voxel co-
ordinates into a unique scalar value, namely the Morton
code [35]. Although utilizing the code, the pre-allocate em-
beddings [34, 45] or time-consuming on by one search in
hash table [50] is not suitable for our task, especially when
it needs to retrieve hundreds of thousands of embeddings
from a hash table containing millions of entries.

Inspired by the concept of a look-up table, we devise an
efficient and scalable method for generating voxel embed-
dings dynamically, as outlined in Alg. 1. The lookup table
is extended with the maximum Morton code to store the ac-
cess information of voxels. The unvisited voxels will be as-
signed initialized embeddings and added to the embedding

Algorithm 1: Dynamic Embeddings Generation.
Input: Look-up list L; Incoming voxels IDs (i.e.,

Morton code) Iv; Embedding list Le;
Output: Embedding list Le with new embeddings;

Updated look-up list L.

1 m←max(I), maximum index.
2 l← len(L), length of the look-up list.
3 s← len(Le), length of the embeddings list.
4 if m > l then
5 Extend the length of the look-up list to m,

initialized with value -1.
6 Ie ← L[Iv], look the embeddings IDs.
7 Iv ← {Iv[i] | Ie[i] = −1}, unvisited voxels IDs.
8 lv ← len(Iv), length of unvisited voxels.
9 L′e ← [ei|i ∈ {1, ..., lv}], new embeddings.

10 Le ← Le + L′e, final embedding list.
11 L[Iv]← [s+ 1, ..., s+ l + v], update the look-up

list.

list while updating the look-up table by the current embed-
ding number, eliminating time-consuming loop queries.

Joint optimization of the map and pose. Similar to
neural odometry, we sample the rays and points to calculate
the loss. Here we mainly optimize the voxel embeddings
while fine-tuning the poses.

4.4. Mesh Reconstruction

Key-scans selection and refinement. We maintain a
key-scan buffer to relieve the catastrophic forgetting of the
firstK scans as well as improve the mapping quality. A key
scan is added to the buffer if the number of newly added
voxels Nv exceeds a threshold of Nt or the distance be-
tween the current scan and the last key-scan df is suffi-
ciently large. The map and poses are in the end refined with
all the key-scans in the buffer. This simple strategy is effec-
tive, as demonstrated in the mapping results in Sec. 5.5. Ad-
ditionally, to improve the efficiency of the refinement pro-
cess, only rays or LiDAR points within a truncation distance
dt based on the point density are included.

Final mesh and poses. After the key-scans refine, the
map and the poses are well-trained and ready to output final
results. Our modified SDF is continuous, so we can theoret-
ically infer SDF values at an arbitrary position. We query
the SDF values with the same fixed size (i.e., voxel size),
and the final mesh is obtained via marching cube [19].

5. Experiments

5.1. Experimental Setup

Datasets. We evaluate our method and compare it
with state-of-the-art (SOTA) methods using three publicly

available outdoor LiDAR datasets, including MaiCity [36],
Newer College [29], and KITTI odometry [11] datasets.
MaiCity [36] contains 64-beam noise-free synthetic LiDAR
scans in urban environments, and the ground truth map is
provided. Newer College [29] contains a hand-carried Li-
DAR sequence collected at Oxford University with motion
distortion. To make it more challenging and the scans more
distinctive, we take one out of every five. We compare our
odometry and mapping results with provided ground truth
trajectories and mesh maps by these two datasets. KITTI
odometry [11] does not provide ground truth maps, so we
present our odometry accuracy hereby qualitative mapping
results.

Evaluation metric. We evaluate both the odometry
and mapping performance of our method. For odometry
accuracy, we present the root-mean-square error (RMSE)
of absolute trajectory errors (ATEs) by SE(3) align-
ment. And for mapping accuracy, we use the commonly
used reconstruction metrics adopted in most reconstruction
method [22, 36, 50], i.e., accuracy, completion, Chamfer-L1
distance, and F-score, obtained by comparing the resulting
mesh with ground truth.

Implemental details. The whole process shared net-
work is an MLP consisting of 2 FC layers, and each layer
has 256 hidden units. The length of our voxel embeddings
is 16 with a voxel size 0.2 m. For sampling, we set the step
size ratio to 0.2 for odometry and 0.5 for mapping and the
truncation distance Tr = 0.3 m. To distinct the ground
from the LiDAR points, we use the seminal work of [16].
More studies on our hyperparameter selection are presented
in Sec. 5.5 and supplementary materials (see Sec. D).

5.2. Simultaneously Odometry & Mapping Results

The first experiment shows the simultaneous odometry
and dense mapping results of our method compared with ex-
isting SOTA methods. For example, Poisson surface recon-
struction SLAM method Puma [36], a TSDF fusion-based
approach Vdbfusion [37], and an implicit neural network-
based map representation SHINE-Mapping [50]. Since both
Vdbfusion and SHINE-Mapping only focus on dense map-
ping, we combine them with the current SOTA odometry
method KissICP [38]. For fair comparison, we also show
the results of our methods using KissICP poses. The re-
sults of all baseline methods are produced using their offi-
cial open-source code with the same voxel size.

Tab. 1 shows our odometry mapping results on the
MaiCity[36] and Newer College[29] datasets. As can be
seen, our mapping process combined with KissICP outper-
forms all baselines on the MaiCity dataset and has compa-
rable quality in the Newer College dataset. The correspond-
ing qualitative results are demonstrated in Fig. 5. In the
case of the MaiCity dataset, KissICP produces false pose
estimates in the initial scans, which will lead to entangled

Method Pose MaiCity Newer College
Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score (10cm) ↑ Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score (20cm) ↑

SHINE [50]
KissICP [38]

5.75 38.45 22.10 67.00 14.87 20.02 17.45 68.85
Vdbfusion [37] 4.95 46.79 25.87 68.15 14.03 25.46 19.75 69.50
Ours 4.16 37.20 20.67 73.31 14.31 24.39 19.35 68.70

Puma [36] Odometry 7.89 9.14 8.51 68.04 15.30 71.91 43.60 57.27
Ours 5.69 11.23 8.46 77.26 12.89 22.21 17.55 74.37

Table 1. Simultaneously odometry & mapping results of different methods on MaiCity [36] and Newer College [29] datasets in terms of
map accuracy, completion and Chamfer-L1 distance and F-scores.

(a) Ours with KissICP (b) Vdb with KissICP (c) Shine With KissICP (d) Ours with KissICP (e) Vdb with KissICP (f) Shine With KissICP
Figure 5. The Odometrey mapping results for different methods. The first three are on MaiCity [36] while the last three are on Newer
College [29]. The artifacts are highlighted in Red boxes.

mapping if there are no specific processes to remove these
artifacts. Vdbfusion provides space carving to address this
problem. However, it removes both the artifacts and impor-
tant objects such as roads, trees, and cars. Shine-Mapping
offers some improvement by removing certain artifacts. Our
proposed method outperforms both of these techniques by
effectively removing the majority of the artifacts and pro-
ducing a smoother mapping result. Similar benefits can be
observed in the Newer College dataset, where Vdbfusion
removes the trajectory caused by a person holding a device,
resulting in an incomplete map.

Compared to Puma, which involves both odometry and
mapping processes, our approach also realizes both odom-
etry and mapping using an implicit neural network and
achieves superior performance in almost all metrics. In the
MaiCity dataset, the slightly inaccurate trajectory of our
method results in a larger distance compared to the com-
pletion distance, as also presented in Sec. 5.4. However,
with a more precise trajectory in the Newer College dataset,
our approach significantly outperforms Puma. These results
are visually depicted in Fig. 6(d) and Fig. 6(e) for MaiCity,
and Fig. 7(d) and Fig. 7(e) for Newer College. Although
Puma appears more complete, the second row of the figures
indicates that this comes at the expense of mapping accu-
racy. Also, on the Maicity dataset, we can see the ground
folds for Puma as it tries to reconstruct a watertight surface
and thus is influenced by surrounding objects. As shown
on the Newer College dataset, Puma cannot remove the dy-
namic objects and insufficient points on the wall hinder a
complete reconstruction.

5.3. Mapping Quality

To eliminate the influence of pose estimation and thor-
oughly investigate the mapping ability of different methods,
we employ ground truth poses to reconstruct the mesh map
of the environments. We compare our approach with two
pure mapping methods, Shine-Mapping [50] and VdbFu-

sion [37], and provide quantitative results in Tab. 2. As
can be seen, our approach outperforms all baseline meth-
ods across almost all metrics when compared in terms of
pure mapping ability. The superiority of our mapping ap-
proach is also evident in Fig. 6 and Fig. 7, where our recon-
struction is the most complete, particularly in terms of the
ground. The error maps enforce our claims by demonstrat-
ing the greater accuracy of our reconstruction. Note that in
the Newer College dataset, we reconstruct every five scans,
and the results indicate that our mapping process still per-
forms well even with sparse and noisy observations.

5.4. Odometry Evaluation

As discussed, the quality of odometry largely influences
the mapping quality. An accurate trajectory can directly
improve the reconstruction result and avoid undesired arti-
facts. Here we present the results of our odometry compared
with other non-learning-based and learning-based methods.
As mapping methods like Shine-Mapping [50] and Vdbfu-
sion [37] do not provide pose estimations, they are omitted
from the comparison. For non-learning-based methods, we
compare our odometry results with Puma [36], SuMA [2],
and two registration algorithms based on ICP: point-to-
point ICP [3] and generalized-ICP [31]. For learning-based
methods, we adopt two SOTA algorithms with code avail-
able: DeLORA [26] and PWC-LONet [39]. For other code-
unavailable learning-based methods like LO-Net [15] and
DeepPCO [41], we report their quantitative results from
their papers in our supplementary materials (see Sec. C)
along with the above-mentioned methods.

We present the RMSE results in Tab. 3. Our method
achieves comparable results to other methods on the syn-
thetic MaiCity dataset and KITTI09 datasets while achiev-
ing the best performance on the Newer College. Notably,
our method does not require any pre-training and exhibits
strong generalization ability across different datasets, while
pre-trained methods such as DeLORA and PWC-LONet,

(a) Ours with GT pose (b) Vdb with GT pose (c) Shine With GT pose (d) Our odometry mapping (e) Puma odometry mapping

Figure 6. The mapping result with ground truth pose or odometry results on the MaiCity [36] dataset are shown in the first row. The second
row presents the error maps with ground truth mesh as a reference, where the redder points mean larger error up to 25cm.

(a) Ours with GT pose (b) Vdb with GT pose (c) Shine With GT pose (d) Our odomery mapping (e) Puma odometry mapping

Figure 7. The mapping result with ground truth pose or odometry results on the Newer College [29] dataset are shown in the first row. The
second row presents the error maps with ground truth mesh as a reference, where the redder points mean larger error up to 25cm.

which are pre-trained on the KITTI dataset, exhibit worse
performance on other datasets. Although PWC-LONet still
obtains acceptable results on the MaiCity dataset, it almost
fails on the Newer College dataset. More results on KITTI
can be found in the supplementary materials (see Sec. C).

5.5. Ablation Study

Ground separation. We compare the performance of
our method with and without ground separation and show
the odometry and mapping accuracy in Tab. 4. For odome-
try accuracy, we see that RMSE error declines with ground
separation for the MaiCity dataset and for Newer College,
the approach even failed without ground separation. More-
over, when checking pose error in each axis (supplementary
materials Sec. D), the trajectory with ground separation is
consistent in the z-axis, while without ground separation, it
diverges fast. For mapping accuracy, all mapping metrics
indicate that our method achieves significantly better map-
ping results with ground separation. We can also see a clear
improvement visually in Fig. 8. With ground separation, the
“ripples effect” is suppressed and the holes are disappeared.

Key-scan refine strategy. We further analyze the effec-
tiveness of our key-scan refine strategy and show the result
in Tab. 4. The numerical results show improvement with

(a) Map with ground separation (b) Map with ground separation

(c) Map w/o ground separation (d) Map w/o ground separation

Figure 8. Ablation study for ground separation in mapping using
the pose provided by our neural odometry. With ground separa-
tion, the mapping result is neater and completer.

key-scan refinement, and the visual improvement is even
more significant, as shown Fig. 9. The key-scan refinement
produces smoother and more complete results, as evidenced
by the improved maps of roads, walls, and vehicles.

Voxel size. We analyze the mapping quality, memory
consumption, and processing time v.s. the voxel size shown

Method Pose MaiCity Newer College
Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score ↑ Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score ↑

SHINE [50]
GT pose

4.17 5.30 4.74 89.67 8.32 14.36 11.34 90.65
Vdbfusion [37] 4.12 8.01 6.07 90.16 6.87 18.37 12.61 89.96
Ours 3.15 4.84 4.00 92.96 6.86 15.59 11.24 91.83

Table 2. Odometry and Mapping results of the reconstruction quality on the MaiCity [36] and Newer College [29] dataset. The voxel size
is 20 cm and F-score in % with a 10 cm error threshold.

Method Mai00 Mai01 NC KT09

ICP [3] 1.90 0.05 15.84 5.86
GICP [31] 1.24 0.13 1.02 34.25
Puma [36] 0.25 0.06 0.39 3.58
SuMA [2] 2.01 0.04 1.22 5.00

DeLORA [26] 57.57 5.12 - 29.09
PWC-LONet [39] 3.28 0.09 15.78 4.60
Ours 1.27 0.13 0.15 4.26

Table 3. RMSE results of odometry. Mai for MaiCity [36], NC for
Newer College [29], KT for KITTI [11], “-” for failed

Dataset Ground KF-ref. RMSE↓ Acc.↓ Comp.↓ C-l1.↓ F↑

MaiCity

7 7 0.20 6.15 69.64 37.90 49.39
7 X 0.20 6.13 70.48 38.30 48.78
X 7 0.17 5.93 11.49 8.71 76.15
X X 0.17 5.69 11.23 8.46 77.26

Newer
College

7 7 - - - - -
7 X - - - - -
X 7 0.15 16.41 25.75 21.08 61.10
X X 0.15 12.89 22.21 17.55 74.37

Table 4. Ablation study of our designs on Maicity [36], Newer
College [29]. “-” stands for failed

(a) Mapping with key-scan refine (b) Mapping with key-scan refine

(c) Mapping w/o key-scan refine (d) Mapping w/o key-scan refine

Figure 9. Ablation study for key-scan refine in terms of mapping.
The pose is obtained by the SLAM odometry. The key-scan refine
makes the reconstruction result clearer.

in Fig. 10. We text our NeRF-LOAM on an Intel Xeon CPU
with 2.1 GHz and an Nvidia NVIDIA Titan RTX with 24
GB of memory. The results show that the mapping per-
formance decreases as the voxel size exceeds 20 cm, while

0 20 40 60
Voxel Size (cm)

0

1

2

3

Ti
m

e
(s

)

6

7

8

Ac
cu

ra
cy

 (c
m

)

(a) Time vs Acc. on Newer College

0 20 40 60
Voxel Size (cm)

0

2

4

M
em

or
y

(*
10

0
M

B
)

6

7

8

Ac
cu

ra
cy

 (c
m

)

(b) Me. vs Acc. on Newer College

Figure 10. Study on voxel size v.s. processing time, memory con-
sumption and accuracy distance on Newer College [29].

processing time and memory consumption remain constant.
Thus, we set the voxel size as 20 cm. More studies on pa-
rameters are provided in the appendix (see Sec. D).

6. Conclusion
In this paper, we presented a novel approach for si-

multaneous odometry and mapping using neural implicit
representation with 3D LiDAR data. The devised NeRF-
LOAM network tackles incremental LiDAR inputs in out-
door large-scale environments. It uses voxel embeddings
to record the geometrical structure and avoids any pre-
training, thus generalizing well in different situations. We
further conceive a dynamic embedding generation, which
realizes fast query and allocation to support outdoor large-
scale applications. Experiments conducted on simulated
and real-world datasets showed that our approach recon-
structs higher-quality 3D mesh maps compared to other
learning-based or non-learning-based methods. Our method
estimates at the same time an accurate pose and generalizes
well without any offline pre-training.

Limitation and future work. Our NeRF-LOAM cannot
currently operate in real-time with our unoptimized Python
implementation. The primary bottleneck is the intersection
query between the ray and the map. For future work, we
can facilitate the runtime by using sliding windows or local
searching based on the estimated odometry pose and opti-
mize the code in C++. Additionally, we plan to combine our
work with loop closures to handle drift in long-term track-
ing and mapping, ultimately achieving a full SLAM system.

Societal Impacts. Our approach provides accurate tra-
jectories and reconstructs a dense environmental awareness
map. This is particularly important for safety-critical real-
world applications, such as autonomous cars.

References
[1] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,

Matthias Nießner, and Justus Thies. Neural rgb-d surface
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6290–
6301, 2022.

[2] Jens Behley and Cyrill Stachniss. Efficient surfel-based slam
using 3d laser range data in urban environments. In Proc. of
Robotics: Science and Systems (RSS), 2018.

[3] P.J. Besl and Neil D. McKay. A Method for Registration of
3D Shapes. IEEE Trans. on Pattern Analysis and Machine
Intelligence (TPAMI), 14(2):239–256, 1992.

[4] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-
d data in indoor environments. International Conference on
3D Vision (3DV), 2017.

[5] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14124–14133, 2021.

[6] Xieyuanli Chen, Thomas Läbe, Lorenzo Nardi, Jens Behley,
and Cyrill Stachniss. Learning an Overlap-based Obser-
vation Model for 3D LiDAR Localization. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2020.

[7] Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe, Jens Behley,
and Cyrill Stachniss. Range Image-based LiDAR Local-
ization for Autonomous Vehicles. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2021.

[8] Xieyuanli Chenn, Andres Milioto, Emanuele Palazzolo,
Philippe Giguère, Jens Behley, and Cyrill Stachniss.
SuMa++: Efficient LiDAR-based Semantic SLAM. In Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2019.

[9] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017.

[10] Alberto Elfes. Using occupancy grids for mobile robot per-
ception and navigation. Computer, 1989.

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for Autonomous Driving? The KITTI Vision Bench-
mark Suite. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2012.

[12] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. KinectFusion: Real-time 3D Re-
construction and Interaction using a Moving Depth Camera.
pages 559–568, 2011.

[13] Matthew Klingensmith, Ivan Dryanovski, Siddhartha S
Srinivasa, and Jizhong Xiao. Chisel: Real time large scale
3d reconstruction onboard a mobile device using spatially

hashed signed distance fields. In Robotics: science and sys-
tems, volume 4. Citeseer, 2015.

[14] Ravikrishna Kolluri. Provably good moving least squares.
ACM Transactions on Algorithms (TALG), 4(2):18, 2008.

[15] Qing Li, Shaoyang Chen, Cheng Wang, Xin Li, Chenglu
Wen, Ming Cheng, and Jonathan Li. Lo-net: Deep real-time
lidar odometry. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8473–
8482, 2019.

[16] Hyungtae Lim, Oh Minho, and Hyun Myung. Patch-
work: Concentric zone-based region-wise ground segmenta-
tion with ground likelihood estimation using a 3d lidar sen-
sor. IEEE Robotics and Automation Letters, 2021.

[17] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural volume ren-
dering. In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognitio (CVPR), 2021.

[18] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Advances
in Neural Information Processing Systems, 33:15651–15663,
2020.

[19] William E. Lorensen and Harvey E. Cline. Marching Cubes:
a High Resolution 3D Surface Construction Algorithm. In
Proc. of the Intl. Conf. on Computer Graphics and Interac-
tive Techniques (SIGGRAPH), pages 163–169, 1987.

[20] Baorui Ma, Yu-Shen Liu, Matthias Zwicker, and Zhizhong
Han. Surface reconstruction from point clouds by learning
predictive context priors. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
6316–6327, 2022.

[21] Donald Meagher. Octree Encoding: A New Technique for
the Representation, Manipulation and Display of Arbitrary
3-D Objects by Computer. Technical Report, 1980.

[22] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

[23] Kazhdan Michael, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing,
volume 7, 2006.

[24] Kazhdan Michael and Hugues Hoppe. Screened poisson
surface reconstruction. ACM Transactions on Graphics,
32(3):1–13, 2013.

[25] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 2019.

[26] Julian Nubert, Shehryar Khattak, and Marco Hutter. Self-
supervised learning of lidar odometry for robotic applica-
tions. In IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021.

[27] Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar,
David Novotny, Michael Zollhoefer, and Mustafa Mukadam.
isdf: Real-time neural signed distance fields for robot per-
ception. arXiv preprint arXiv:2204.02296, 2022.

[28] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and
Markus Gross. Surfels-surface elements as rendering prim-
itives. In ACM Transactions on Graphics (Proc. ACM SIG-
GRAPH), pages 335–342, 7/2000 2000.

[29] Milad Ramezani, Yiduo Wang, Marco Camurri, David
Wisth, Matias Mattamala, and Maurice Fallon. The newer
college dataset: Handheld lidar, inertial and vision with
ground truth. In Proc. of the IEEE/RSJ Intl. Conf. on In-
telligent Robots and Systems (IROS), 2020.

[30] Szymon M. Rusinkiewicz and Marc Levoy. Efficient variants
of the icp algorithm. Proceedings Third International Con-
ference on 3-D Digital Imaging and Modeling, pages 145–
152, 2001.

[31] Aleksandr Segal, Dirk Hähnel, and Sebastian Thrun.
Generalized-ICP. In Proc. of Robotics: Science and Systems
(RSS), 2009.

[32] Ben Mildenhalland Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View
Synthesis. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), 2020.

[33] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J. Davi-
son. imap: Implicit mapping and positioning in real-time. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 6229–6238, October 2021.

[34] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten
Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Neural geometric level
of detail: Real-time rendering with implicit 3d shapes. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 11358–11367,
June 2021.

[35] Emanuele Vespa, Nikolay Nikolov, Marius Grimm, Luigi
Nardi, Paul HJ Kelly, and Stefan Leutenegger. Efficient
octree-based volumetric slam supporting signed-distance
and occupancy mapping. IEEE Robotics and Automation
Letters (RA-L), 3(2):1144–1151, 2018.

[36] Ignacio Vizzo, Xieyuanli Chen, Nived Chebrolu, Jens
Behley, and Cyrill Stachniss. Poisson Surface Reconstruc-
tion for LiDAR Odometry and Mapping. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[37] Ignacio Vizzo, Tiziano Guadagnino, Jens Behley, and Cyrill
Stachniss. Vdbfusion: Flexible and efficient tsdf integration
of range sensor data. Sensors, 22(3), 2022.

[38] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis
Wiesmann, Jens Behley, and Cyrill Stachniss. KISS-ICP:
In Defense of Point-to-Point ICP – Simple, Accurate, and
Robust Registration If Done the Right Way. IEEE Robotics
and Automation Letters (RA-L), 8(2):1–8, 2023.

[39] Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang.
Pwclo-net: Deep lidar odometry in 3d point clouds using hi-
erarchical embedding mask optimization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15910–15919, June 2021.

[40] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021.

[41] Wei Wang, Muhamad Risqi U Saputra, Peijun Zhao, Pedro
Gusmao, Bo Yang, Changhao Chen, Andrew Markham, and
Niki Trigoni. Deeppco: End-to-end point cloud odometry
through deep parallel neural network. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 3248–3254. IEEE, 2019.

[42] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and
Victor Adrian Prisacariu. NeRF−−: Neural radiance
fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021.

[43] Louis Wiesmann, Andres Milioto, Xieyuanli Chen, Cyrill
Stachniss, and Jens Behley. Deep Compression for Dense
Point Cloud Maps. IEEE Robotics and Automation Letters
(RA-L), 6:2060–2067, 2021.

[44] Christopher Xie, Keunhong Park, Ricardo Martin-Brualla,
and Matthew Brown. Fig-nerf: Figure-ground neural radi-
ance fields for 3d object category modelling. In International
Conference on 3D Vision (3DV), 2021.

[45] Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqian
Liu, and Guofeng Zhang. Vox-fusion: Dense tracking and
mapping with voxel-based neural implicit representation. In
2022 IEEE International Symposium on Mixed and Aug-
mented Reality (ISMAR), pages 499–507, 2022.

[46] Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. iNeRF: Invert-
ing neural radiance fields for pose estimation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2021.

[47] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In 2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognitio (CVPR), 2021.

[48] Ji Zhang and Sanjiv Singh. LOAM: Lidar Odometry and
Mapping in Real-time. In Proc. of Robotics: Science and
Systems (RSS), 2014.

[49] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv:2010.07492, 2020.

[50] Xingguang Zhong, Yue Pan, Jens Behley, and Cyrill Stach-
niss. Shine-mapping: Large-scale 3d mapping using sparse
hierarchical implicit neural representations. In Proceedings
of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 2023.

[51] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R Oswald, and Marc Polle-
feys. Nice-slam: Neural implicit scalable encoding for slam.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12786–12796, 2022.

NeRF-LOAM: Neural Implicit Representation for Large-Scale
Incremental LiDAR Odometry and Mapping Supplementary Material

A. Simultaneously Odometry & Mapping Re-
sults

We present in Fig. 11 and Fig. 12 our odometry map-
ping results compared with Puma [36] herewith the cor-
responding ground truth map. To reconstruct more com-
plete results, Puma uses polynomial function and normals
to simulate the surrounding meshes, resulting in loss of de-
tail (e.g., windows, curb) and unreal reconstruction (e.g.,
the connection of tree and wall), while our reconstruction
can provide higher accuracy and neater results.

We also present in Fig. 13 and Fig. 14 the mapping re-
sults on MaiCity dataset of SHINE-Mapping [50] and Vdb-
fusion [37] combined with KissICP [38] odometry. These
results also demonstrate that ours can provide a complete
and smooth map.

(a) Ground Truth point cloud map

(b) Ours Odometry mapping result with error map

(c) Puma Odometry mapping result with error map

Figure 11. The simultaneously odometry & mapping results with
error maps on the MaiCity [36] dataset. The error maps are with
the ground truth map as a reference, where the redder points mean
larger errors up to 20 cm.

To demonstrate our odometry and mapping under large-
scale environments. We provide in Fig. 15 the qualitative
results of odometry mapping on the KITTI [11] dataset.

(a) Ground Truth point cloud map

(b) Ours Odometry mapping result with error map

(c) Puma Odometry mapping result with error map

Figure 12. The simultaneously odometry & mapping results with
error maps on the MaiCity [36] dataset. The error maps are with
the ground truth map as a reference, where the redder points mean
larger errors up to 20 cm. The red box illustrates the unreal recon-
struction.

(a) Ground Truth point cloud map (b) Ours with KissICP

(c) Vdbfusion with KissICP (d) SHINE-Mapping with KissICP

Figure 13. The mapping results combined with KissICP[38]
odometry on the MaiCity [36] dataset.

Method 00 01 03 04 05 07 09 10

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

ICP-po2po [3] 6.88 2.99 11.21 2.58 11.07 5.05 6.64 4.05 3.97 1.93 5.17 3.35 6.93 2.89 8.91 4.47
ICP-po2pl [30] 3.80 1.73 13.53 2.58 2.72 1.63 2.96 2.58 1.55 1.42 1.55 1.42 3.95 1.71 6.13 2.60

GICP [31] 1.29 0.64 4.39 2.58 1.68 1.08 3.76 1.93 1.02 0.54 0.64 0.46 1.97 0.77 1.31 0.62
SUMA [2] 2.93 0.92 4.05 1.22 1.43 0.75 11.90 1.06 1.46 0.79 1.75 1.17 1.92 0.78 1.81 0.97

PUMA(NN)[36] 2.15 1.14 4.32 1.04 1.34 1.07 2.09 1.46 1.56 1.07 1.88 1.36 1.80 0.82 2.24 1.67
PUMA(RC)[36] 1.55 0.74 3.38 1.00 1.60 1.10 1.63 0.92 1.20 0.61 0.72 0.55 1.51 0.66 1.38 0.84

DeLORA [26] - - - - - - - - - - - - 9.07 3.14 6.53 4.22
DeepPCO [41] - - - - - - 2.63 3.05 - - - - - - 2.21 1.67

LONet [15] 1.47* 0.72* 1.36* 0.47* 1.03* 0.66* 0.51* 0.64* 1.04* 0.69* 1.70 0.89 1.37 0.58 1.80 0.93
PWCLONet [39] 0.78* 0.42* 0.67* 0.23* 0.76* 0.44* 0.37* 0.40* 0.45* 0.27* 0.60 0.44 0.79 0.35 1.69 0.62

Ours 1.34 0.54 2.07 0.52 2.22 1.57 1.74 1.00 1.40 0.65 1.00 0.65 1.63 0.57 2.08 0.69

Table 5. The odometry results on KITTI dataset [11]. trel and rrel mean the average translational RMSE (%) and rotational RMSE
(◦/100 m) respectively on all possible subsequences in the length of 100, 200, ..., 800 m. “*” means the results on the training sequence,
“-” means not provided, RC for ray casting, NN for nearest neighbor. The best results are bold whereas the results on training sequences
are beyond our consideration.

(a) Ground Truth point cloud map (b) Ours with KissICP

(c) Vdbfusion with KissICP (d) SHINE-Mapping with KissICP

Figure 14. The mapping result combined with KissICP[38] odom-
etry on the MaiCity [36] dataset.

Our method can obtain a fine reconstruction of city envi-
ronments without a loop. However, for trajectories with a
loop, our method cannot maintain a consistent global map.

B. Mapping Quality

The ground truth pose is used in this section to compare
our mapping ability with SHINE-Mapping [50] and Vdbfu-
sion [37]. As the detailed reconstruction results are similar
to the results of Sec. A, we provide in Fig. 16 the bird-eye
view of reconstruction on Maicity [36] dataset. As we can
see, SHINE-Mapping provides a relatively complete map
but is not smooth enough. While Vdbfusion provides the
smoothest map but the map is not complete. Our mapping
process can provide the most complete and smooth result.

Dataset Grd KS GT RMSE ↓ Acc. ↓ Comp. ↓ C-l1. ↓ F↑

MaiCity

7 7 7 0.20 6.15 69.64 37.90 49.39
7 X 7 0.20 6.13 70.48 38.30 48.78
X 7 7 0.17 5.93 11.49 8.71 76.15
X X 7 0.17 5.69 11.23 8.46 77.26
7 7 X - 3.57 5.61 4.59 90.61
7 X X - 3.43 5.40 4.42 90.81
X 7 X - 3.27 5.03 4.15 92.80
X X X - 3.15 4.84 4.00 92.96

Newer
College

7 7 7 Failed - - - -
7 X 7 - - - -
X 7 7 0.15 16.41 25.75 21.08 61.10
X X 7 0.15 12.89 22.21 17.55 74.37
7 7 X - 7.01 15.58 11.29 91.58
7 X X - 6.73 14.86 10.79 91.92
X 7 X - 7.50 16.75 12.13 90.98
X X X - 6.86 15.62 11.24 91.84

Table 6. Ablation study of our designs on Maicity [36], Newer
College [29]. “-” stands for no meaning data. ”Grd” means the
ground separation, ”KS” means the key-scan refine, and GT for
application of ground truth pose

C. Odometry Evaluation on KITTI Dataset

In this section, we present the odometry evaluation on
KITTI [11] dataset. As can be seen from Tab. 5, our odom-
etry results show comparative performance compared to the
non-learning-based method and outperform them on some
sequences. Compared to the learning-based method, our
method does not need to be pre-trained by numerous labeled
data, and it can be directly employed in other environments,
where some existing learning-based methods fail. This is
important when we lack adequate data and ground truth la-
bels or explore unknown environments. We also present
our qualitative results on Fig. 17. Our odometry process
shows the ability of generalization on different sequences
and large-scale environments.

Figure 15. The qualitative result of our odometry mapping on KITTI [11] dataset. From left upper to right bottom, we list the results of
sequences 00, 01, 03, 04, 05, 09, 10

(a) Ground truth map (b) Ours with GT pose

(c) Shine With GT pose (d) Vdbfusion with GT pose

Figure 16. The mapping result with ground truth pose on the MaiCity [36] dataset. We present the bird-eye view of the results, indicating
that our method can reconstruct a complete and smooth map.

D. Additional Ablation Study

We show the full table of ablation study on Tab. 6 con-
cerning the ground separation, key-scan refine, and appli-
cation of ground truth pose. First, the ground separation
can directly improve the odometry result, especially at the
z-axis, where the ground separation takes effect. The qual-
itative results in Fig. 18 also prove its indispensable, and

we can see that our method stays consistent at the z-axis
on both datasets. Second, the key-scan refine can greatly
improve the mapping quality when no ground truth pose is
applied. Although this improvement becomes slight when
the ground truth pose is applied, we still adopt this strategy
as it can help us reconstruct a smooth and complete map.
Third, the ground truth pose plays a significant role in map-
ping, especially for loops, which usually cause overlapping

Figure 17. The qualitative results of our odometry on KITTI [11] dataset. From left to right, we list the results of sequences 00, 01, 03, 04,
05, 07, 09, 10. The dashed line corresponds to the ground truth and the blue line to our odometry method.

(a) Trajectory for MaiCity Dataset[36] (b) Trajectory for Newer College Dataset[29]

Figure 18. Ablation study for ground separation in terms of trajectory. The blue line is the trajectory with ground separation, and the green
line is the one without ground separation. The dashed line represents the ground truth trajectory.

0 20 40 60
Voxel Size (cm)

2

4

6

Ti
m

e
(s

)

2

3

4

Ac
cu

ra
cy

 (c
m

)

(a) Time vs Acc. on Maicity

0 20 40 60
Voxel Size (cm)

0.0

0.5

1.0

1.5

M
em

or
y

(*
10

0
M

B
)

2

3

4

Ac
cu

ra
cy

 (c
m

)

(b) Mem. vs Acc. on Maicity

Figure 19. Study on voxel size v.s. processing time, memory con-
sumption and accuracy distance on Maicity [36].

meshes. Dealing with loop detection is an important task
for our future work.

We then complement in Fig. 19 the effect of voxel size
on Maicity[36] dataset on the processing time, accuracy dis-
tance, and memory consumption. The two lines cross at
voxel size between 15 cm and 20 cm. We choose 20 cm as
our choice for the reason that the processing time still de-
creases a lot while the accuracy remains. As indicated in

0 20 40 60
Voxel Size (cm)

1

2

3

4

Ac
cu

ra
cy

 (c
m

)

4

5

6

C
om

pl
et

io
n

(c
m

)

(a) Maicity

0 20 40 60
Voxel Size (cm)

5

6

7

8

9

Ac
cu

ra
cy

15

16

17

C
om

pl
et

io
n

(c
m

)

(b) Newer College

Figure 20. Study on voxel size v.s. accuracy distance and comple-
tion distance on Maicity [36] and Newer College [29]

Fig. 20, we find that the Chamfer-L1 distance stays almost
invariant, as the completion distance decrease with a larger
voxel size. A smaller voxel size brings finer reconstruc-
tion while a larger voxel size can make it more complete.
Similarly, we choose 20 cm as the voxel size since the com-
pletion distance stays almost constant.

We explore here the influence of network architecture
(i.e., hidden units and depth) and embedding length. Figure

1 2 4

128

256

512

H
id

de
n

un
its

MaiCity

1 2 4

128

256

512

 N. College

1 2 4
Depth

128

256

512

H
id

de
n

un
its

1 2 4
Depth

128

256

512
Lo

w
 R

M
SE

H
ig

h
R

M
SE

(a) Trajectory Accuracy

1 2 4

128

256

512

H
id

de
n

un
its

MaiCity

1 2 4

128

256

512

 N. College

1 2 4
Depth

128

256

512

H
id

de
n

un
its

1 2 4
Depth

128

256

512

Lo
w

 C
-L

1
H

ig
h

C
-L

1

(b) Mapping Accuracy

Figure 21. Ablation study for Network architecture and Embed-
ding length. First low represent 8-embedding length, and second
row is 16-length.

21 show the normalized result of RMSE, Chamfer-L1 dis-
tance for various embedding length and network. During
our study of the processing time, we found that a more pro-
found and more hidden units network consumes more time
while the embedding length affects little. We can also find
from the figure that although a short embedding length can
sometimes achieve exceptional results, it is unstable with
the change of network. We choose 16 as our embedding
length as it generalizes well and does not lower time ef-
ficiency. For the network, we use 2 layers deep and 256
hidden units architecture for it performs well in tracking as
well as the mapping on two datasets while keeping time ef-
ficiency.

