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Abstract

Despite tremendous advancements in bird’s-eye view
(BEV) perception, existing models fall short in generating
realistic and coherent semantic map layouts, and they fail to
account for uncertainties arising from partial sensor infor-
mation (such as occlusion or limited coverage). In this work,
we introduce MapPrior, a novel BEV perception framework
that combines a traditional discriminative BEV perception
model with a learned generative model for semantic map
layouts. Our MapPrior delivers predictions with better accu-
racy, realism and uncertainty awareness. We evaluate our
model on the large-scale nuScenes benchmark. At the time of
submission, MapPrior outperforms the strongest competing
method, with significantly improved MMD and ECE scores
in camera- and LiDAR-based BEV perception. Furthermore,
our method can be used to perpetually generate layouts with
unconditional sampling.

1. Introduction
Accurately understanding the surrounding environment

of autonomous vehicles is crucial to guarantee the safety
of riders and other traffic participants. Among various per-
ception approaches, Bird’s-Eye View (BEV) perception has
drawn significant attention in recent years thanks to its ca-
pacity to densely model scene layouts and its tight coupling
with downstream planning [80, 56, 49].

Existing perception models encounter two challenges.
The first challenge pertains to the limitations of observa-
tions, particularly in distant or occluded regions, resulting in
inaccurate predictions. This may manifest in choppy, out-of-
distribution, or missing map elements. The second challenge
is that most existing models do not consider uncertainty and
diversity in possible road layouts. Taking Fig. 1 as an exam-
ple, the state-of-the-art LiDAR perception model [80] gener-
ates incoherent lane markings and sidewalks with massive
gaps and cannot quantify the uncertainty and multi-modality
as it only produces a single prediction per input.

This paper presents MapPrior, a novel BEV perception
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Figure 1: Existing predictive BEV perception models do not
provide realistic scene structures (e.g., the lane and sidewalks
have gaps and are not straight). In contrast, our MapPrior
is able to accurately recover the layout with a learned prior.
These results are validated with a quantitative comparison,
showing our method’s superior accuracy, realism and uncer-
tainty awareness.

method that is accurate, realistic, and uncertainty-aware. At
the heart of our method is a novel combination of the stan-
dard discriminative BEV perception model with a learned
deep generative traffic layout prior. Incorporating genera-
tive modeling in this predictive task attempts to address the
two aforementioned challenges – modeling the data distribu-
tion improves realism, and using a sampling process allows
generating multiple realistic predictions. Combining our
generative model with a discriminative perception model
ensures that our method retains a strong predictive ability.

Our approach comprises two steps, namely the predic-
tion and generative steps. In the prediction step, we use an
off-the-shelf BEV perception model [49] to make an initial
layout estimate of the traffic scene from sensory input. In the
generative step, we use our MapPrior model and initial esti-
mate to sample one or multiple refined layouts. We perform
sampling in a learned discrete latent space using a condi-
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tional transformer that is provided with the initial prediction.
Finally, the generated tokens are passed into a decoder to
output the final layout prediction, which is diverse, realistic,
and coherent with the input. The encoder, decoder, and code-
book of the MapPrior are trained from real-world map data
in an unsupervised way.

We benchmark our method on the nuScenes dataset
against various state-of-the-art BEV perception methods
with varying modalities. Our results show that MapPrior out-
performs existing methods in terms of accuracy (as reflected
by mean intersection-over-union), realism (as reflected by
maximum-mean discrepancy), and uncertainty awareness
(as reflected by expected calibration error). Furthermore,
we demonstrate the unconditional generation capabilities of
MapPrior by generating a realistic and consistent HD map
of a 30 km-long road.

2. Related Work
Self-driving perception aims to interpret sensory input and
establish a representation of the surrounding environment
from onboard sensors. It is a critical component for en-
suring the safety and efficiency of autonomous vehicles,
and various methods have been proposed to improve ac-
curacy and robustness [71, 39]. Traditional approaches
for self-driving perception involve multiple (isolated) sub-
tasks, such as localizing against a pre-scanned environment
[40, 4], object detection and tracking [38, 80, 68, 44, 50],
image segmentation [62, 85, 10] and trajectory predic-
tion [23, 64, 84, 43, 7, 82].

Recently, there has been a growing interest in a uni-
fied Bird’s Eye View (BEV) perception, both in academia
[60, 87, 56, 76, 8, 50] and industry [26]. This approach
aims to produce a top-down semantic layout of the traffic
scene from sensory input, which is efficient, informative,
and compact. Notably, the top-down layout is closely linked
to downstream 2D motion planning for wheeled robots, mak-
ing BEV perception particularly suitable for self-driving
navigation.

Various BEV perception modules have been studied in
robotics and computer science to improve perception accu-
racy. These approaches typically take LiDAR [80, 38, 51,
67], multi-view camera [60, 87, 56, 76, 11, 46, 26, 59, 21],
or both [81, 75, 49, 2, 57] as input, and output segmenta-
tions for road elements and detections for dynamic traffic
participants like cars, cyclists or pedestrians. The major-
ity of these methods are supervised and rely on predictive
networks like CNNs [59, 67, 80, 38, 44, 60, 56] and trans-
formers [2, 57, 11, 46, 51, 87, 21, 26, 27]. Despite their
success, there are still unresolved challenges. For example,
real-world traffic layouts are highly structured, with straight
lane marks, strong topological relationships, and sharp road
element boundaries. But such structures have proven dif-
ficult to preserve in the BEV perception output map, even

with state-of-the-art methods, as shown in Fig. 1. This can
harm the realism of perception output and the practicality of
the resulting map for motion planning. Additionally, most
networks make a single layout estimation without diversity
or calibrated uncertainty, leaving the autonomy vulnerable
to catastrophic failure.

HDMapNet [42], VectorMapNet [47], and others [52, 8]
have been proposed to address the issue of layout struc-
ture by introducing a vectorized output map format with
implicitly structured priors. However, this approach fails
to account for all layer types and still produces significant
artifacts in regions with limited observations. Very recently,
calibrated confidence scores have been investigated to ad-
dress the aforementioned uncertainty issue [37, 13], but the
inherent multi-modal uncertainty in BEV perception remains
under-explored.

In contrast, our approach leverages generative modeling
as a map prior, which encodes the rich structure of the traffic
scene. Our conditional generative modeling also allows
us to sample multiple diverse outputs for the same input.
Consequently, our results are more accurate and realistic
with better multi-modal uncertainty modeling.

Generative models. Our approach to generative BEV per-
ception involves learning a map prior and performing con-
ditional sampling using deep generative models. Gener-
ative models learn to capture the underlying structure of
the data distribution and create new, diverse samples. Sev-
eral well-known approaches include VAEs (variational au-
toencoders) [34, 73], which use variational inference to
learn a latent space model, and autoregressive models [55],
which decompose the generation problem into simpler con-
ditional generation tasks. GANs (generative adversarial net-
works) [20, 83, 1, 31, 28, 72, 5] use an adversarial loss
to train networks to convert noise into samples. Flow-
based models [33, 15] exploit an invertible process to sam-
ple from a proposal distribution. Recently, diffusion mod-
els [14, 24] have been developed that generate samples
through a denoising-diffusion process. Our method leverages
vector-quantized generative models [74, 18, 9], which use a
discrete-valued latent space representation that is powerful,
structure-preserving, and efficient for conditional sampling.
Specifically, we build our map prior on top of this approach
to capture the discrete structure of the map data and generate
high-quality samples.

Generative approach for vision. Our approach belongs
to the broader category of generative modeling approaches
in computer vision [79, 53, 58, 69], which includes Markov
random fields (MRFs), factor graphs, energy-based models,
deep generative models, among others. These practices date
back to the 1970s. In contrast to discriminative or predic-
tive approaches, generative approaches often tackle the task
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Figure 2: MapPrior first makes use of an off-the-shelf perception model to generate an initial noisy estimate from the sensory
input. It then encodes the noisy estimate into a discrete latent code using a generative encoder and generates various samples
through a transformer-based controlled synthesis. Finally, MapPrior decodes these samples into outputs with a decoder.

as a marginal sampling or MAP inference problem, which
is more effective at utilizing strong prior knowledge and
modeling uncertainty. Representative works can be seen
in low-level vision [19, 89], optical flow [70, 63], and im-
age segmentation [66, 35, 86]. Generative approaches with
conditional sampling have often been investigated in vision
tasks involving multimodality or uncertainty, such as image
editing [88, 28, 12, 54], image segmentation [41] and stereo
estimation [16, 77]. However, few studies have explored
their use in self-driving perception, despite its inherent multi-
modal uncertainty nature.

3. Approach
The objective of this research is to develop a method that

can generate a precise, realistic, and uncertainty-aware map
layout from sensory input in one or a few modalities. To
achieve this, we introduce a new framework named Map-
Prior that combines the predictive capability of discrimina-
tive models with the capacity of generative models to capture
structures and uncertainties. We present a two-stage con-
ditional sampling framework to explain our approach and
detail the implementation of each module. Additionally, we
discuss our design decisions, the learning process, and how
our approach relates to previous methods.

3.1. Overview

Formulation. We formulate the probabilistic BEV per-
ception problem as a conditional sampling task. Given the
sensory input x ∈ X (which could be from a camera, LiDAR
or multiple sensors), we aim to find one or multiple plausible
traffic layouts y ∈ Y from the top-down bird’s-eye view.
The traffic layout y is a multi-layer binary map centered at
the ego vehicle. Conventional methods [49, 80, 56, 81, 76]
rely on a deterministic predictive network y = fθ(x) to pro-
vide a single output estimation. We propose, instead, to use
a generative vector-quantized latent space model to model

the uncertainty and diversity. Specifically, we aim to design
a conditional probability model pθ(y|x) that can sample our
desired output y from a distribution. This allows us to ex-
plicitly model uncertainty and generate multiple plausible
traffic layouts.

Motivation. Intuitively speaking, the objective of a pre-
dictive perception model is to produce a coherent semantic
layout that best represents the sensory input. However, this
training objective does not necessarily optimize for struc-
ture preservation or realism. For example, minor defects in
lane markers might not significantly affect cross-entropy, but
could drastically impact downstream modules due to topo-
logical changes. On the other hand, a generative prior model,
such as a GAN, is trained to capture realism in structures.
The advantage of such a model is that it can be trained on
HD map collections, without paired data, in an unsupervised
manner. This insight inspires our proposed solution, which
combines a predictive model with a generative model to
tackle the conditional sampling task with both coherence
and realism in mind.

3.2. Inference

In our framework, the distribution pθ(y|x) is defined im-
plicitly using a latent model z. The framework comprises of
a predictive stage and a generative stage. During the predic-
tive stage, the perception module F (x) generates an initial
noisy estimate y′ for input x. For the generative stage, we
take inspiration from recent successful techniques in vector-
quantized generation [18, 9, 61] for conditional sampling
and use a VQGAN-like model to generate multiple realis-
tic samples. To achieve this, we encode the noisy estimate
y′ into a discrete latent code z′ using a generative encoder
E(y′). This latent code z′ and the sensory input x then guide
the generative synthesis process through a transformer-based
controlled synthesis in the latent space, producing various



samples {z(k) ∼ p(z|z′,x)}. Finally, these samples are de-
coded into multiple output samples using a decoder G(·):
y(k) = G(z(k)), which provides our final layout estimation
samples. Fig. 2 depicts the overall inference framework.

Predictive stage. The predictive stage aims to establish
reliable initial layout estimation that can act as a guiding
control during the conditional sampling stage. To achieve
this, we have incorporated a predictive sensory backbone,
VoxelNet [78, 80] for LiDAR and Swin Transformer [48]
for multi-view camera inputs. The sensory backbone net-
works first extract features from the sensory space and then
project them into bird’s eye view features. For the LiDAR
input, a 3D convolution backbone is utilized as a feature
extractor, and the LiDAR features are flattened along the
height dimension to project them to BEV. In contrast, for
the camera input, a hierarchical transformer is used as a
feature extractor for each view, and monocular depth esti-
mation and view transformation are applied to project the
features to BEV. The predictive model employs a convolu-
tional segmentation head to generate the layout estimates,
denoted by y′ = F (x). It should be noted that the result-
ing BEV map achieves a reasonable intersection-over-union
score (IoU). However, as Fig. 1 highlights, the model suffers
from unrealistic structures, missing road elements, and noise,
particularly in regions with limited observations.

Generative stage. To enhance the quality and diversity of
our perception, we incorporate a generative map prior in the
second stage for conditional generation. The generative map
prior is built on a VQGAN architecture [18], which consists
of three learnable components: the encoder E, the decoder
G, and the codebook C = {cj} with j being the code index.
The encoder transforms a traffic layout into a latent feature
map, where each element of the spatial map is chosen from
one of the codes in the codebook as follows:

zt(y) = argmax
cj∈Z

∥cj − Et(y)∥22, ∀t (1)

where t is the t-th entry of the feature map z. The decoder
then transforms the latent code back to the layout map space:
G(z(y)). Sampling from this prior can be done by randomly
drawing a latent code and decoding it into a layout map. The
discrete-valued auto-encoder architecture greatly regularizes
the output space in a structured manner, preventing it from
producing unrealistic reconstructions, as shown in Fig 1.

During conditional sampling at inference, we first encode
the noisy estimate y′ into a discrete latent code z′ using a
generative encoder E. This latent code z′ and the sensory
input x are then used as guidance by a transformer T (z′,x)
for the generative synthesis of the latent space, producing
various samples z(k) ∼ p(z|z′,x) = T (z′,x). Specifically,
we use an autoregressive scheme to progressively sample

each code, i.e. p(z|z′,x) =
∏

t p(zt|z
(k)
<t , z

′,x). At the t-th
step, the transformer takes as input the current latent code
z<t, the guidance code z′ as well as encoded sensory feature
x as input tokens, and outputs the next token’s probability
over the codebook p(zt|z(k)<t , z

′,x):

z
(k)
t ∼ p(zt|z(k)<t , z

′,x) (2)

where p(zt|z(k)<t , z
′,x) is the conditional probability esti-

mated from the transformer. We use nucleus sampling [25]
to get multiple diverse z(k), which trades-off between sam-
pling quality and diversity. Finally, these samples are de-
coded into multiple output samples using a decoder G(·):
y(k) = G(z(k)), which provides our final layout estimation
samples. Formally speaking, the entire second stage can be
written as follows:

y(k) = G(z(k)) where z(k) ∼ p(z|z′,x). (3)

One-step generation. To enhance inference speed, we
introduce a one-step variant of MapPrior, which generates
a single sample rather than multiple diverse ones. It also
produces tokens in a single step, bypassing the autoregressive
sampling strategy:

y = G(z) where z ∼ p(z|x). (4)

This provides an effective way to trade off between the gen-
eration quality and efficiency.

3.3. Learning

The training process consists of three individual com-
ponents. Firstly, the perception module, denoted as F , is
learned to produce a reliable initial layout estimation. Sec-
ondly, the encoder, decoder, and codebook (denoted as E, G,
and C, respectively) are jointly trained to represent a strong
map prior model. Lastly, given a fixed map prior model,
the conditional sampling transformer T is learned to sample
high-quality final results. In the following, we will provide a
detailed description of each component’s training procedure.

Training the perception module. To train the perception
module F , we follow the standard practice adopted in prior
works [49, 56] and employ a binary cross-entropy loss. The
objective function is defined as follows: minF − [ygt logy

′],
where ygt denotes the ground-truth label, and y′ = F (x) is
the corresponding prediction given the input x.

Training the map prior model. The training procedure
for the map prior model involves jointly optimizing the en-
coder E, decoder G, and the fixed-size codebook C in an
end-to-end fashion. We use a vector-quantized auto-encoder
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Figure 3: MapPrior can be exploited in a progressive manner to generate perpetual traffic layouts. At each step, we choose a
local area to sample to fill unexplored regions and expand the frontiers.

to reconstruct the input data y through ŷ = G(z(yi)) fol-
lowing Eq. 1. The following losses are minimized:

min
E,G,C

max
D

Lrecon + λGANLGAN + Llatent. (5)

The first term, Lrecon, is the reconstruction loss, which
is designed to maximize the agreement between the input y
and the reconstructed output:

Lrecon = ∥ŷ − y∥2. (6)

In addition to the reconstruction loss, the second term
is a GAN loss inspired by VQGAN [18] to encourage the
reconstructed output to be realistic with a clear local struc-
ture and topology. A local discriminator D(·) is trained to
differentiate between real and reconstructed BEV layout us-
ing cross-entropy loss, and the LGAN loss aims to make the
reconstructed image as realistic as possible through fooling
the discriminator:

LGAN = logD(y) + log(1−D(ŷ)), (7)

where y is a real sample and ŷ is a reconstructed sample.
Following VQGAN [18], this loss is rescaled by

λGAN = grec/(gGAN + σ), (8)

where grec and gGAN are gradients of Lrec and LGAN with
respect to the last layer of the generator.

The last term promotes the expressiveness of the code-
book. We expect the latent feature E(y) to be close to its
nearest codebook token and vice versa. Thus, the latent loss
is defined as

Llatent = ∥z− sg[E(y)]∥2 + ∥sg[z]− E(y)∥2, (9)

where sg[·] is a gradient detach operator.

Training the conditional sampler. Our conditional sam-
pling transformer, denoted as T , is trained in the latent code
space to sample high-likelihood latent codes given input con-
trolling guidance. Given a paired input and output (x,y)
and fixed perception module F , map prior model E,G, C,
the transformer is trained using the following objective:

min
T

LCE + Lout. (10)

The first loss, LCE, optimizes the transformer to max-
imize the estimated probability of the latent code of the
ground-truth layout. We use a cross-entropy loss between the
transformer’s estimated probability T (z′,x) and the ground-
truth sample y:

LCE =
∑
t

∑
i

yi,t log Ti,t(z
′,x), (11)

where, i represents the i-th output label, and t represents the
t-th autoregressive step.

Although making the latent code closer to the ground-
truth map’s latent code is essential, it is not sufficient to
ensure high output fidelity. Hence, we include an additional
reconstruction output loss that encourages the transformer to
favor samples that produce high-accuracy layouts. Similar
to the reconstruction loss in auto-encoding training, an L2
reconstruction loss is used:

Lout = ∥y − ŷ∥22, (12)

where y is the true map and ŷ is the predicted map. Note that
codebook selection in latent code space is non-differentiable;
thus, we use Gumbel-Softmax [29] to ensure differentiability
in practice throughout the training processes.

3.4. Discussions

Uncertainty quantification. Our latent transformer offers
diverse results y(k) by using a conditional sampling scheme.
By estimating the variance of y(k), we can estimate the
uncertainty map for our results. By using the average of
y(k), we aggregate the diverse result samples to a more
stable and better calibrated results.

Perpetual layout generation. Our trained map prior en-
ables the continuous generation of realistic and varied driv-
ing sequences, which are extremely valuable for content
creation and autonomous driving simulations. We use a
progressive generation strategy, which builds upon prior
works [3, 17, 45, 65, 18, 9]. The strategy involves iteratively
expanding our visual horizon and generating new content
by leveraging our map prior model to fill in the previously
unseen areas. We illustrate this process in Fig. 3.



Table 1: Quantitative results of BEV map segmentation on nuScenes. Our MapPrior achieves better accuracy (IoU), realism
(MMD) and uncertainty awareness (ECE) than discriminative BEV perception baselines.

Modality
IoU (↑)

MMD (↓) ECE (↓)
Drivable Ped. X Walkway Stop Line Carpark Divider Mean

OFT [60] C 74.0 35.3 45.9 27.5 35.9 33.9 42.1 54.5 0.045
LSS [56] C 75.4 38.8 46.3 30.3 39.1 36.5 44.4 43.2 0.041
BEVFusion-C [49] C 81.7 54.8 58.4 47.4 50.7 46.4 56.6 39.6 0.038
MapPrior-C C 81.7 54.6 58.3 46.7 53.3 45.1 56.7 28.4 0.026
MapPrior-C (1 step) C 81.6 54.6 58.4 46.8 53.9 45.1 56.7 28.7 –

PointPillars [38] L 72.0 43.1 53.1 29.7 27.7 37.5 43.8 153.0 0.111
BEVFusion-L [80, 49] L 75.6 48.4 57.5 36.5 31.7 41.9 48.6 115.2 0.090
MapPrior-L L 81.0 49.7 58.0 37.5 38.2 42.4 51.1 35.8 0.038
MapPrior-L (1 step) L 80.1 49.0 57.8 37.8 33.0 42.5 50.0 50.2 –

PointPainting [75] C+L 75.9 48.5 57.1 36.9 24.5 41.9 49.1 109.8 0.099
MVP [81] C+L 76.1 48.7 57.0 36.9 33.0 42.2 49.0 115.3 0.096
BEVFusion [49] C+L 85.5 60.5 67.6 52.0 57.0 53.7 62.7 21.6 0.038
MapPrior-CL C+L 85.3 61.4 67.1 51.7 60.0 53.3 63.1 28.0 0.020
MapPrior-CL (1 step) C+L 85.3 61.3 67.0 51.7 59.6 53.1 63.0 28.1 –

4. Experiments
We evaluate our MapPrior on BEV map segmentation and

generation tasks for both LiDAR and camera modalities. We
evaluate our approach to generate an accurate and realistic
traffic layout both quantitatively and qualitatively in Sec. 4.2.
We show how output loss and BEV features can affect our
performance in Tab. 2. We finally estimate how our model
can generate diverse samples and how our model is calibrated
using the diverse samples in Fig. 5 and 6. Specifically, we
are interested in seeing how using a generative prior affects
accuracy (reflected by mIoU), realism (reflected by MMD),
and model calibration (reflected by ECE).

4.1. Experimental Setup

Datasets. We evaluate our model on nuScenes [6], a large-
scale outdoor autonomous driving dataset containing 1000
driving scenes, consisting of 700 scenes for training, 150
for validation, and 150 scenes for testing. It has around
40,000 annotated key-frames, each with six monocular cam-
era images encompassing a 360-degree FoV (used by cam-
era models), and a 32-beam LiDAR scan (used by LiDAR
models). We follow the train/validation split provided by
nuScenes. We evaluate all models on the validation set fol-
lowing common practices in BEV layout estimation [49, 56].
The ground truth segmentation map is provided by nuScenes
and was labeled manually [6]. We rasterized the map layers
from the nuScenes map into the ego frame.

Metrics. We provide quantitative results for both segmen-
tation and generative tasks. For BEV map segmentation,

our metric is the Intersection-over-Union (IoU score) for six
map classes (drivable area, pedestrian crossing, walkway,
stop line, car-parking area, and lane divider), as well as the
mean IoU averaged over all six map classes. Since different
classes may overlap, we separately compare the IoU score
for each class. For all baseline predictive models, we choose
the best threshold that maximizes IoU for comparison to
ensure no bias is introduced due to the suboptimal threshold
selection. For MapPrior, we simply use 0.5 as the threshold.

To evaluate generated map layout realism, we use the
maximum mean discrepancy (MMD) metric. MMD effec-
tively measures the distance between two distributions of
two sets of samples by measuring the squared difference of
their mean in different spaces:

MMD =

n∑
i

n∑
i′

k(xi,xi′)/n
2 +

m∑
j

m∑
j′

k(xj ,xj′)/m
2

−2 ·
n∑
i

m∑
j

k(xi,xj)/nm.

(13)
To evaluate a set of predicted layouts, we compare it with a
set of ground truth layouts from nuScenes.

To evaluate uncertainty in our diversity results, we use
Expected Calibration Error (ECE) [36, 22]. ECE compares
output probabilities to model accuracy. It splits the results
into several bins and measures a weighted average discrep-
ancy between accuracy and confidence within each bin:

ECE =

B∑
b

nb|acc(b)− conf(b)|/n, (14)



Figure 4: Qualitative results of BEV map segmentation on nuScenes. Discriminative BEV perception baselines produce results
with clear artifacts (e.g., lane markings are discontinuous, roads and pedestrian walkways have unrealistic gaps, etc.). In
contrast, our MapPrior produces semantic map layouts that are clean, realistic, and in-distribution.

Input GT Our Sample 1 Our Sample 2 Our Sample 3 Uncertainty Map

Figure 5: Qualitative results of diversity on NuScenes.

where acc is the empirical accuracy, and conf is the esti-
mated confidence for each bin, nb is the # of samples per
each bin and n is the total # of samples. ECE is an important
metric in BEV map segmentation, as ignoring uncertainties
can lead to bad consequences in driving planning. We gener-

ate 15 diverse outputs for every instance and use the mean
as the confidence. The baseline model is trained end-to-end
with cross-entropy loss, so the predictions produced by the
softmax function are assumed to be the pseudo probabilities.
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Figure 6: Prediction, uncertainty, and error map comparison between BEVFusion-C and MapPrior. BEVFusion generates
a misguided uncertainty boundary by giving high weight to areas where map elements are unlikely to be. In comparison,
MapPrior’s uncertainty is constrained to map element boundaries. This is further confirmed with the error map, where
MapPrior’s uncertainty map closely matches the error map.

Table 2: Ablation studies for MapPrior on nuScenes.

Output Loss Lout T (z′) or T (z′,x) mIoU (↑) MMD (↓)

– T (z′) 45.6 33.3
✓ T (z′) 49.0 45.6
✓ T (z′,x) 51.1 35.8

Baselines. For LiDAR-only segmentation, we use Point-
Pillars [38], and BEVFusion-L [49, 80] as our baselines. To
the best of our knowledge, BEVFusion-L is the current state-
of-the-art method in LiDAR-based BEV map segmentation.

For camera-only segmentation, our baseline model are
LSS [56], OFT [60], and BEVFusion-C [49]. Among them,
BEVFusion-C is the current state-of-the-art model with a
significantly higher IoU score than other methods. We use
open-source code from BEVFusion. We also provide results
of multi-modal models [49, 75, 81] for reference.

Implementation details. Following [49], we perform seg-
mentation in a [-50m, 50m]×[-50m, 50m] region around the
ego car with a resolution of 0.5 meters/pixel, resulting in a fi-
nal image size of 200× 200. Since map classes may overlap,
our model performs binary segmentation for all classes. The
encoder and decoder comprise four downsampling and four
upsampling blocks processing a series of 128-256-512-256-
128 channels. Each block comprises 2 resnet blocks and one
convolution and uses sigmoid activation and GroupNorm.
The resolution of the latent space is [12,12].

For the generative step, we train a minGPT [30] trans-
former conditioned on the generated sequence, extracted
BEV features, and the initial noisy map. We train the whole
model using Adam [32] with a learning rate of 9.0e-6. The

transformer’s BEV feature encoder for the transformer has a
similar structure to the model encoder consisting of 3 down-
sampling blocks. The BEV feature encoder converts the
original BEV features shaped [128, 128] into latent space
tokens shaped [12, 12]. We apply a multiplier of 100 on the
output loss to balance the magnitude of different losses.

4.2. Map Segmentation as Generation

Quantitative results. We show our quantitative results for
map segmentation in Tab. 1. The results show that Map-
Prior achieves state-of-the-art performance. Comparing with
BEVFusion-L, our MapPrior-L offers 2.5% improvement in
mIoU, which is brought purely by our proposed generative
stage. Furthermore, MapPrior provides a substantial im-
provement in the MMD score compared to baselines. MMD
is a metric of distance between the generated layout pre-
dictions and the ground truth distribution. This shows that
MapPrior’s outputs closely match the ground truth data distri-
bution. In addition, this stark difference in MapPrior’s MMD
performance compared to the baselines implies that the real-
ism metric and precision metric are not closely coupled. It is
possible to achieve higher IoU while generating non-realistic
samples, or vice versa. Our approach simultaneously pushes
the limit of the two.

Moreover, inference speed is vital for MapPrior. Using an
RTX A6000 GPU, we compared the inference speeds of our
model and BEVFusion in terms of frames per second (FPS).
Our findings are presented in Tab. 3. These results indicate
that one-step MapPrior is significantly closer to real-time
performance compared to the standard MapPrior, with only
a minor trade-off in IoU for increased uncertainty awareness.

Qualitative results. We show our qualitative results in
Fig. 4. Compared to other methods, MapPrior can consis-



Figure 7: Results for perpetual traffic scene generation. Two road subsections are shown here.

Table 3: Performance of one-step MapPrior.

Modality mIoU (↑) MMD (↓) FPS

BEVFusion-C [49] C 56.6 39.6 8.85
MapPrior-C C 56.7 28.4 0.60
MapPrior-C (1 step) C 56.7 28.7 4.26

BEVFusion-L [80, 49] L 48.6 115.2 7.52
MapPrior-L L 51.1 35.8 0.57
MapPrior-L (1 step) L 50.0 50.2 4.88

BEVFusion [49] C+L 62.7 21.6 5.52
MapPrior-CL C+L 63.1 28.0 0.55
MapPrior-CL (1 step) C+L 63.0 28.1 3.61

tently generate coherent and realistic class predictions within
the entire map region. Our model has a more coherent di-
vider layout, whereas the baseline methods usually have
broken/missing lane dividers. In the baseline methods, the
stopline is often jagged and appears disconnected from the
road. In distant areas from the ego car, our model tries to
make a plausible layout estimate when other methods fail
due to limited observations (this is especially noticeable in
the pedestrian walkways). The edges from our method are
also more smooth, resulting in a more realistic estimation.

Diversity and uncertainty calibration. We show that our
model can produce a better-calibrated layout with diversity.
In Fig. 5, we show that our model can generate multiple
diverse and feasible layouts, All of which are realistic.

By aggregating the diverse samples, our model can pro-
duce a calibrated uncertainty map. We show our results
in Fig. 6. Compared to the baselines (which are unable to
generate multiple samples), our uncertainty map aligns with
the error map much more accurately. ECE scores in Tab. 1
further validate this quantitatively.

Perpetual generation. We show our qualitative results for
generating ’infinite’ roads in Fig. 7. We have generated a
single 30km long road. Due to size constraints, we are only
able to show a subsection. The generated traffic scene con-
tains a highway with intermittent intersections resembling a

road layout in a city. We provide the entire road as a gif in
our supplementary materials.

4.3. Discussions

Ablation studies. To justify our design, we provide abla-
tion studies in Tab. 2. L2 loss at the output end changes the
model’s optimization target. It puts more weight on gener-
ating accurate results as opposed to generating i.i.d. data.
Therefore, the model achieves a higher IoU score at the cost
of a slightly worse MMD. Providing the transformer with
BEV features boosts the performance by around 3% in the
IoU score, and decreases MMD by around 21%.

Inference speed. Inference speed is essential for Map-
Prior, especially given the real-time demands of autonomous
driving. While transformers offer remarkable generative
abilities, they inherently slow down performance due to
their sequential token generation process. Moreover, the
need for MapPrior to produce diverse outcomes further cur-
tails its inference speed. To address this, we introduced the
one-step variant of MapPrior, which predicts a single sam-
ple for each input and generates all tokens simultaneously.
As evidenced in Tab. 3, the one-step MapPrior registers a
marginally worse MMD score and falls short in uncertainty
awareness. Nonetheless, the one-step MapPrior markedly
outpaces the standard MapPrior in speed.

5. Conclusion
This paper presents MapPrior, a novel generative method

for performing BEV perception. The core idea is to lever-
age a learned generative prior over traffic layouts to provide
diverse and accurate layout estimations, which potentially
enable more informed decision-making and motion planning.
Our experiments show that our approach produces more real-
istic scene layouts, enhances accuracy, and better calibrates
uncertainty compared to current methods.
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stein generative adversarial networks. In ICML, 2017. 2
[2] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun

Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust
lidar-camera fusion for 3d object detection with transformers.
In CVPR, 2022. 2

[3] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. PatchMatch: A randomized correspondence
algorithm for structural image editing. 2009. 5

[4] Ioan Andrei Barsan, Shenlong Wang, Andrei Pokrovsky, and
Raquel Urtasun. Learning to localize using a lidar intensity
map. In CoRL, 2018. 2

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis. In
ICLR, 2019. 2

[6] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In CVPR, 2020. 6

[7] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet:
Learning to predict intention from raw sensor data. In CoRL,
2018. 2

[8] Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A
unified model to map, perceive, predict and plan. In CVPR,
2021. 2

[9] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T.
Freeman. Maskgit: Masked generative image transformer. In
CVPR, 2022. 2, 3, 5

[10] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-
illov. Per-pixel classification is not all you need for semantic
segmentation. In NeurIPS, 2021. 2

[11] Kashyap Chitta, Aditya Prakash, and Andreas Geiger. Neat:
Neural attention fields for end-to-end autonomous driving. In
CVPR, 2021. 2

[12] Min Jin Chong and David Forsyth. Jojogan: One shot face
stylization. In ECCV, 2022. 3

[13] Laurène Claussmann, Marc Revilloud, Dominique Gruyer,
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