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Abstract

Point cloud analysis (such as 3D segmentation and detec-
tion) is a challenging task, because of not only the irregular
geometries of many millions of unordered points, but also the
great variations caused by depth, viewpoint, occlusion, etc.
Current studies put much focus on the adaption of neural
networks to the complex geometries of point clouds, but are
blind to a fundamental question: how to learn an appropriate
point embedding space that is aware of both discriminative
semantics and challenging variations? As a response, we
propose a clustering based supervised learning scheme for
point cloud analysis. Unlike current de-facto, scene-wise
training paradigm, our algorithm conducts within-class clus-
tering on the point embedding space for automatically dis-
covering subclass patterns which are latent yet representative
across scenes. The mined patterns are, in turn, used to re-
paint the embedding space, so as to respect the underlying
distribution of the entire training dataset and improve the
robustness to the variations. Our algorithm is principled
and readily pluggable to modern point cloud segmentation
networks during training, without extra overhead during test-
ing. With various 3D network architectures (i.e., voxel-based,
point-based, Transformer-based, automatically searched),
our algorithm shows notable improvements on famous point
cloud segmentation datasets (i.e., 2.0-2.6% on single-scan and
2.0-2.2% multi-scan of SemanticKITTI, 1.8-1.9% on S3DIS,
in terms of mIoU). Our algorithm also demonstrates utility in
3D detection, showing 2.0-3.4% mAP gains on KITTI.

1. Introduction

During the last few years, point cloud analysis, such as
3D segmentation, has attracted increasing research effort,
due to the wide applications in autonomous driving, intel-
ligent robotics, airborne laser scanning, and virtual reality.
In particular, the advances in deep learning significantly
pushed forward the state-of-the-art in this field. Applying
standard neural networks which are specialized for grid-like

1Corresponding author: Yi Yang.

data, such as natural images, to point clouds is nontrivial,
as point data are unorganized and irregular. To adapt neural
networks to the geometries of point data, considerable effort
has been made and representative achievements include: i)
projection-/voxel-based networks [1–11] that project irreg-
ular point clouds to regular representations, so that mature
2D/3D convolution can be applied for segmentation; and ii)
point-based networks [12–16] that ingest raw point clouds
directly, by using permutation-invariant operator [17–21],
graph convolution [22], customized convolution [23–25], or
self-attention (Transformer) based architecture [26–28].

Nevertheless, the challenges in point cloud analysis stem
not only from the intrinsic non-Euclidean nature of point data,
but also from the large intra-class variations caused by depth,
occlusion, viewpoint, shape, etc. Despite various fancy point
structure-aware network designs and their encouraging re-
sults, a fundamental issue was long ignored: how to learn
a good point embedding space that is discriminative for
semantic categorization yet robust for point data variations?

Mitigating this issue demands a powerful learning regime
that is aware of latent variation modes (or representative fine-
grained patterns) – comprehensively describing the potential
structure of point data. However, in practice, it is infeasible to
precisely annotate, or even roughly identify, the underlying
data patterns in point clouds. This may be the reason behind
the common choice that point cloud segmentation is learned
as point-wise classification; any fine-grained patterns that the
point data may possess are left to be ‘mysteriously’ learned
through the supervision from high-level semantic tags.

These novel insights motivate us to devise a clustering
analysis based training scheme for point cloud segmentation.
It complements the standard supervised learning of point-
wise classification with unsupervised clustering and regular-
ization of the feature space. Specifically, clustering is con-
ducted inside each labeled semantic class to automatically
discover informative yet hidden subclass patterns without
explicit annotation. The discovered subclass patterns es-
sentially capture the underlying fine-grained distribution of
the whole training dataset. They are then used to reshape
the point embedding space, achieved by explicitly inspiring
inter-subclass/-cluster discriminativeness, and reducing intra-
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subclass/-cluster variation. Such regularized representation
space in turn facilitates the discovery of typical within-class
variation modes, and benefits point recognition eventually.

Our learning algorithm enjoys several appealing advan-
tanges: First, it raises a dataset-level context-aware training
strategy. Unlike the current de-facto, scene-wise training pa-
radigm, our algorithm groups point features across training
scenes, and conducts clustering based representation learn-
ing. By probing the global data distribution, our algorithm
encourages the highly flexible feature space to be discretized
into a few distinct subcluster centers, easing the difficulty of
the final semantic classification. Second, it is efficient for
large-scale point cloud training. To avoid time-consuming
clustering of massive point data, we opt the Sinkhorn-Knopp
algorithm [29, 30] that solves cluster assignment using fast
matrix-vector algebra [31]. Moreover, to follow closely the
drifting representation during network training, a momentum
update strategy is adopted for online approximation of the
subcluster centers. Third, it is principled enough to be seam-
lessly incorporated into the training process of any modern
point cloud segmentation networks, without bringing extra
computation burden or model parameters during inference.

For thorough evaluation, we approach our training algori-
thm on four remarkable point cloud segmentation models,
i.e., Cylinder3D [16] (voxel-based), KPConv [25] (point-
based), PTV1 [26] (Transformer-based), SPVNAS [32]
(neural architecture search (NAS) based), and conduct experi-
ments on 3D point cloud segmentation for urban scenes (i.e.,
SemanticKITTI [33] single-scan) and indoor environments
(i.e., S3DIS [34]) as well as 4D segmentation of point cloud
sequences (i.e., SemanticKITTI [33] multi-scan). Results
show that our algorithm owns 2.2-2.6%, 1.9-2.2%, 1.8%,
and 2.0% mIoU gains over Cylinder3D, KPConv, PTV1, and
SPVNAS, respectively. Our algorithm even promotes 3D de-
tectors Second [35] and PointPillar [36] by 2.7-3.4% and
2.0-2.2% mAP on KITTI [37], verifying its high generality.

2. Related Work
Deep Learning for Static Point Cloud Segmentation. In
general, existing algorithms for single-scan point cloud seg-
mentation can be categorized into two schools, depending on
the underlying data representation: i) Projection-based meth-
ods first transform unstructured point sets to regular 2D grid
[2, 5, 7, 8, 10, 38–40], or 3D voxel [3, 4, 9, 16, 41–46],
to enable the usage of vanilla 2D/3D convolution opera-
tion. However, 2D projection based methods are likely
to discard critical geometric cues and require expensive
2D-3D back-projection after 2D segmentation, yet voxel-
based architectures typically suffer from significant compu-
tation and memory usage. ii) Point-based methods, pioneered
by PointNet [17, 18], directly learn point-wise features
from raw point clouds, usually through 1) local feature
pooling [14, 15, 21, 47–54], 2) graph convolution [22, 51, 55–

62], 3) kernel-based convolution [13, 19, 25, 63–67], and 4)
attention-based aggregation [20, 26–28, 68]. Compared with
projection-based approaches, point-based methods tend to
be computationally efficient and are capable of preserving
point-wise semantics as well as local geometries. Unfortu-
nately, their performance in large-scale, urban scenarios is
still not desirable [69].
Deep Learning for Dynamic Point Cloud Segmentation.
4D semantic segmentation is rather difficult as point cloud
sequences are spatially irregular yet temporally ordered. Ex-
isting approaches for dynamic point cloud segmentation
can be broadly classified into two groups, in terms of the
spatial-temporal information fusion strategy: i) Early fusion
based methods [6, 70] directly process point cloud sequences
via adapting the standard convolution to the heterogeneous
characteristics of point clouds in spatial and temporal do-
mains. In this way, they allow spatial-temporal information
fusion throughout the networks. ii) Late fusion based meth-
ods [28, 71–74] are typically built upon existing single-scan
point cloud processing models for spatial information ex-
traction, and devoted to leveraging temporal information to
enrich static features and hence to boost segmentation.

Despite their dazzling network designs, existing static/dy-
namic point cloud segmentation models generally follow a
scene-wise training protocol, which treats each point data as
an individual training sample and accumulates all the point
classification errors within each scene for network parame-
ter optimization. As a result, they ignore the rich relations
between points across different scenes, and fail to regularize
the feature embedding space from a holistic view. In contrast,
through automatic, class-wise data clustering, our training
algorithm grasps the latent structure of the whole training
dataset, which draws on a key insight that meaningful, la-
tent data structure, like subclass semantics, fine-grained pat-
terns, and intra-class variation modes, are common and sta-
ble across scenes. As we will show, representation learned in
such a way is desirable for detailed analysis of point clouds.
Self-supervised Representation Learning and Clustering.
Our algorithm relies on automated discovery of unknown
subclasses, achieved by clustering point data with only coarse-
grained class labels. Thus it bears some resemblance to self-
supervised learning techniques which learn meaningful rep-
resentations from massive unlabeled data. A spectrum of
recent unsupervised representation learning methods [75–78]
build upon the instance discrimination task that considers
each data instance of the dataset as its own class [79, 80].
They conduct noise contrastive estimation [81], a special form
of contrastive learning [82, 83], to compare instances, and
also show promise in dense 2D/3D representation learning
[58, 84–92]. Another line of methods [31, 80, 93–101] dis-
criminates between groups of images with similar features
instead of individual images, by jointly performing unsuper-
vised representation learning and clustering.
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Figure 1: Overview of our clustering based supervised learning algorithm for point cloud segmentation.

In this work, we resort to clustering to probe the under-
lying structure of large-scale point sets and discover fine-
grained patterns within manually-labeled, high-level seman-
tic classes. We reinforce the standard supervised training
paradigm of point recognition with clustering analysis based
point representation learning, which regularizes the feature
space by respecting the inherent structure of point data. This
represents the first effort, as far as we know, that explores
automatic, fine-grained pattern mining in the context of fully
supervised learning of point cloud segmentation.

3. Proposed Algorithm
3.1. Problem Statement and Algorithm Overview

In the context of fully supervised learning of point cloud
segmentation, current common practice is to learn a point re-
cognition network from a training dataset {Pk,Lk}k. Here
Pk = {pkn ∈ R3+x}Nn=1 is the k-th point cloud containing
N points with 3D position and other auxiliary information
(e.g., color, intensity); Lk= {lkn ∈ C}Nn=1 contains semantic
labels for the points inPk, where C is the label list, e.g., C=
{car, road, · · · }. The segmentation network is achieved as
h◦φ:P 7→L, where φ : RN×(3+x) 7→RN×d is a feature extrac-
tor ( in Fig.1) that embeds points inP into a d-dimensional
feature space, and h :RN×d 7→RN×|C| is a segmentation head
( ) usually consisting of a small MLP, mapping point fea-
tures into the discriminative semantic space for point-wise,
|C|-way classification. Thus the whole network is typically
learned by minimizing the point-wise cross-entropy loss1:

JCE(pn)=− logP (ln|pn)=− log
exp(yn,ln)∑
c∈Cexp(yn,c)

, (1)

where yn=[yn,c]c∈R|C| is the vector of categorical scores
(logits) for point pn, i.e., yn = h(pn), and pn∈ Rd is the
feature of pn obtained from φ. For the feature extractor φ,
there already have many candidates (e.g., voxel-/point-based
3D networks) elaborately designed to capture the specific geo-

1In practice, some other losses (e.g., lovász loss [102]) can be used as
complementary, but this does not affect our conclusion.

metries of point data. However, point clouds yield rich and
diverse patterns, e.g., fine-grained semantics, intra-class varia-
tions, etc. These patterns reflect underlying data structures;
they are informative yet challenging for semantic understand-
ing, and even hard to be identified. Thus it is usually the case
that simply learning the segmentation network h◦φ from the
supervision of easily-acquired high-level semantic tags (i.e.,
Eq. 1), without considering the underlying data structures.

We instead devise a clustering analysis based supervised
learning framework (Fig. 1). Our algorithm not only learns
point recognition with pre-given semantic tags, but more es-
sentially, it automatically discovers and encodes latent struc-
tures of point data into the feature space φ. Features learned
in such strategy are expected to be more discriminative for
(fine-grained) semantics and robust for intra-class variations,
hence facilitating final dense recognition of point clouds.

At each training iteration, our algorithm has two phases.
In phase 1, we perform online clustering over massive points
inside of each labeled classes. The purpose is to search for
subclass patterns which are hard to be labeled yet signifi-
cant across scenes. In phase 2, in addition to optimizing
the whole segmentation network h◦φ with the point-wise
classification loss LCE as usual, we leverage deterministic
cluster assignments as an auxiliary constraint to shape the
feature space φ. The improved features, in turn, enable more
reliable within-class clustering, and eventually boost point
recognition. Independent of a certain point segmentation
network, our training scheme is powerful and general.

3.2. Online Clustering based Subclass Pattern Mining

Our algorithm is built upon an intuitive insight: capturing
underlying data structures can facilitate point representation
learning and semantic recognition. Thus the first major ques-
tion arises: how to automatically and efficiently discover un-
derlying data structures, which cannot be explicitly labeled,
from massive training points? This motivates us to conduct
unsupervised clustering inside each labeled class c∈C so as to
automatically mine representative yet latent subclass patterns.
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To scale our algorithm to millions of point data, we formu-
late such within-class clustering as optimal transport, which
can be efficiently solved using Sinkhorn Iteration [30]. In ad-
dition, to overcome the computational expensive process of
cluster center computation, which requires a full epoch over
the entire dataset after every update of the representation,
we adopt a momentum update strategy for proceeding online
clustering simultaneously with network batch training.

For each class c∈ C, we assume it contains M latent, fine-
grained patterns. Hence there are a total of M×|C| unobserv-
able patterns are desired to be discovered from the training
dataset {Pk,Lk}k. To do so, we perform within-class cluster-
ing on the point embedding space φ. As a result, the training
points belonging to class c, i.e., Pc={pn|ln=c}, are parti-
tioned intoM subclasses, and theM patterns of class c can be
intuitively represented as the corresponding cluster centers.
LetQc=[qc

1,· · ·,qc
M ]∈Rd×Mdenote theM cluster centers of

class c (e.g., in Fig. 1), and P c=[pc
1, · · ·,pc

Nc ]∈Rd×Nc

all the features2 of points belonging to class c (e.g., ),
where pc∈Pc andN c= |Pc|. The cluster assignment can be
represented as a binary matrix, Ac∈{0, 1}M×Nc

, where the
(m, i)-th element of Ac indicates whether assigning the i-th
point of Pc to the m-th cluster center, i.e., the m-th subclass,
of c. The clustering inside class c can be achieved as the
optimization of the assignment matrix Ac, i.e., maximizing
the similarity between the point features and cluster centers:

min
Ac∈Ac

⟨Ac⊤,− logSc⟩,

Ac={Ac∈{0, 1}M×Nc

|Ac⊤1M =1Nc ,Ac1Nc =
Nc

M
1M}

(2)

where Sc=softmax(Qc⊤P c) refers to the similarity matrix
between cluster centers and points, ⟨·⟩ is the Frobenius dot-
product, log is applied element-wise, and 1M denotes the
vector of ones in dimension M . For the solution space Ac,
the former constraint enforces that each point is assigned to
exactly one subclass, and the later imposes an equipartition
constraint [31, 80] to inspire the N c points to be grouped
into M subclasses of equal size. The equipartition constraint
helps avoid the degenerate solution where all the point sam-
ples are partitioned to a single cluster [87, 95]. By relaxing
Ac to be an element of transportation polytope [30], i.e.,
A′c = {Ac∈ RM×Nc

+ |Ac⊤1M = 1
Nc1Nc ,Ac1Nc = 1

M 1M},
the label assignment task can be viewed as an instance of the
optimal transport problem, which can be efficiently solved
by a fast version of the Sinkhorn-Knopp algorithm [30]:

min
Ac∈A′c

⟨Ac⊤,− logSc⟩+ 1

λ
KL(Ac|| 1

MNc
1M1⊤

Nc), (3)

where KL is the Kullback-Leibler divergence, and λ is the
strength of the regularization. The solution of Prob. (3) over

2Point feature has been projected to the unit sphere: p=p/||p||2; p is
reused without causing ambiguity.

the set A′c can be written as:

Ac∗ = diag(u)(Sc)λdiag(v), (4)

where exponentiation is meant element-wise. u∈RM and
v ∈ RNc

are two vectors of scaling coefficients, obtained
using a small number of matrix-vector multiplications via
iterative Sinkhorn-Knopp algorithm [30]. Due to the drift of
the point representation caused by iterative network train-
ing, after each training batch of point clouds, re-computing
the cluster assignment would cost a pass over the full data.
To circumvent such computationally expensive procedure
of offline cluster assignment, we restrict the transportation
polytope to the minibatch, through approximating the cluster
centers Qc with momentum. As in [87], at each training
iteration, each cluster center qc

m of class c is updated as:

qc
m ← µqc

m + (1− µ)p̄c
m, (5)

where µ ∈ [0, 1] is the momentum coefficient, and p̄c
m in-

dicates mean feature vector of the points that are assigned
to cluster center qc

m in the current batch. The cluster cen-
ters are initialized randomly and gradually updated every
batch, following smoothly the changing of the representation
φ. These designs lead to scalable and online clustering, al-
lowing to automatically mine latent subclass patterns from
massive point data. The clustering is very efficient on GPU;
in practice, assigning 50K points into 40 clusters takes only
60 ms. We visualize clustering results (M=2) of five classes
in Fig.2, where subclasses under the same class are associ-
ated with similar colors. As seen, points with similar patterns
are grouped together, thus the underlying data distribution
of each class can be comprehensively captured.

3.3. Clustering Analysis based Point Cloud Repre-
sentation Learning

Through within-class clustering, we search for latent struc-
tures in point clouds, and detect locally discriminative pat-
terns, i.e., the cluster centers {qc

m}m,c. The next question is:
how to leverage these fine-grained patterns to aid point cloud
representation learning? To answer this, we complement the
supervised point-wise classification loss JCE (Eq. (1)) with a
clustering analysis based contrastive learning strategy, which
poses structured and direct supervision for point representa-
tion. In particular, with the deterministic cluster assignments
in §3.2, we conduct contrastive representation learning over
both point-point and point-center pairs. This allows us to
fully exploit relations between any two points and local data
structures, and directly optimize the point feature space φ.
Point-Point Contrastive Learning. Our point-point contras-
tive learning is achieved by comparing pairs of points to push
away point representations from different subclasses while
pulling together those from the same subclass. The corres-

4



(a)(a) car

sidewalk road

building

vegetation

car

sidewalk road

building

vegetation

with

with(b)

(c) with

with(b)

(c)

JCE

J

Figure 2: (a) Our clustering results for five classes, i.e., sidewalk, vegetation, road, car, and building. (b-c) t-SNE visualization
of point features {P c}c learned with JCE (Eq. (5)) and J (Eq. (8)). We set M=2 here, see supplementary for analysis.

ponding training objective for each point pn is defined as:

JPPC(pn)=
1

|Opn|
∑

p+∈Opn

−log
exp(pn·p+/τ)

exp(pn·p+/τ)+
∑

p−∈Npn

exp(pn·p−/τ)
, (6)

where τ > 0 is a scalar temperature parameter, Opn
and Npn

denote collections of positive and negative samples, respec-
tively, for pn. Training points belonging to the same cluster
of pn are positive samples, while being assigned to other
clusters are negative. Note that the positive (negative) sam-
ples are not limited to a same training point cloud. To fur-
ther boost our point-point contrastive learning, we follow
the common practice in unsupervised representation learn-
ing [75, 77, 103] to build a memory bank per cluster, lead-
ing to M×|C| memory banks totally. The memory banks
gather point features of corresponding clusters from pre-
vious training batches, hence increasing the quantity and
diversity of positive and negative samples. These designs
deliver a cross-scene training scheme, rather than the current
de facto scene-wise training paradigm that ignores the rich
correspondences among points across different scenes. Mini-
mizing Eq. (6) leads to a well-structured embedding space φ,
where points with similar patterns are grouped close to each
other while points with dissimilar patterns are separated.
Point-Center Contrastive Learning. With a similar spirit
of point-point contrastive learning, i.e., inspiring intra-cluster
compactness and inter-cluster separation, our point-center
contrastive learning strategy contrasts the similarities be-
tween points and cluster centers on the embedding space φ:

JPCC(pn)=−log
exp(pn ·q+/τ)∑

c,mexp(pn ·qc
m/τ)

, (7)

where q+ refers to the cluster center of point pn. Eq. (7)
lets pn find out the assigned cluster center q+ from all the
centers {qc

m}c,m, so as to decrease the distance between pn

and q+, while increasing the distance between pn and other
cluster centers. Since cluster centers are representative of the
dataset, Eq. (7) provides a cheaper and more direct way to
impose dataset-level context, or underlying data structures,
on feature space optimization, compared with the point-point

contrastive learning (Eq. (6)). In practice, we find combining
the two cluster-analysis based contrastive learning strategies
yields the best performance (see detailed experiments in
§4.5). One may also view point-center contrastive learn-
ing from an information bottleneck perspective [96, 104],
wherein the deterministic clustering imposes a natural bottle-
neck and discretizes the embedding space φ as a finite set of
cluster centers, i.e., {qc

m}c,m, through minimizing Eq. (7),
as opposed to learning φ as a continuous vector space.
Overall Training Objective. The standard cross-entropy
loss JCE in Eq. (1) is essentially a unary training objective
that is only aware of point-wise semantic discrimination,
without accounting for any underlying data structure and
pairwise relations between training points. The clustering
analysis based contrastive losses, i.e., JPPC in Eq. (6) and
JPCC in Eq. (7), are pairwise training objectives that exploit
locally representative patterns for structure-aware, distance
based point representation learning. Thus we assemble these
two complementary training targets as our overall learning
objective:

J = JCE + α(JPPC + JPCC). (8)

Our training algorithm alternately performs within-class clus-
tering over the point embedding space φ, and optimizes the
whole segmentation network h◦φ with the semantic labels
{Lk}k and cluster assignments {Ac}c. As such, meaningful
clusters capture fine-grained data structures and become in-
formative supervisory signals for point representation learn-
ing; in turn, discriminative representations help obtain mean-
ingful clusters and eventually ease point recognition. In
Fig. 2 (b-c), we provide visualization of point embeddings
learned by JCE and J . As seen, after additionally consid-
ering clustering analysis based training targets, the point
embedding space becomes more structured.

3.4. Algorithm Details
Online Clustering (§3.2). We group point samples of each
class intoM subclasses for exploiting latent structures of the
entire dataset. We empirically set M =40 and the momen-
tum coefficient in Eq.(5) µ=0.9999 (related experiments can
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be found in §4.5). Following [31], we set λ=25 in Eq.(3).
Clustering Analysis based Training (§3.3). Our clustering
analysis based training strategy enforces the point feature
space to better respect the discovered data structures. Fol-
lowing the common practice in contrastive learning [76, 98],
we set the scalar temperature τ in Eqs. (6-7) as 0.1. For the
cluster-wise memory bank, we sample 10 point features per-
cluster from each scene and store all the sampled features of
all the training point clouds {Pk}k. For the training loss J
(Eq. (8)), the coefficient is set as α=1 (we empirically find
our algorithm is insensitive to α when α∈ [0, 1]).
Point Cloud Segmentation Network h◦φ. Our algorithm
is a general supervised learning scheme for point cloud seg-
mentation. In principle, it can be applied to any segmentation
networks that can learn point-wise features. In our experi-
ments, we approach our algorithm on four typical segmenta-
tion networks, including voxel-based [16], point-based [25],
Transformer-based [26], and NAS-based [32].
Inference. Our training algorithm does not cause extra
inference cost or network architectural modification during
model deployment. The M×|C| cluster centers and M×|C|
memory banks are directly discarded after network training.

4. Experiment
We first report our 3D segmentation results on static point

clouds of urban scenes and indoor environments in §4.1 and
§4.2, respectively. Then we assess our performance on 4D
segmentation of outdoor point cloud sequences in §4.3. For
thorough evaluation, in §4.4, we extend our algorithm to
3D object detection setting and conduct experiments. The
hyperparameters mentioned in §3.4 are used for all the above
experiments. Finally, in §4.5, we provide ablative analyses
on the core components of our training algorithm.
Base Segmentation Networks. For thorough examination, we
applyour trainingalgorithmtoCylinder3D[16] (voxel-based),
KPConv [25] (point-based), PTV1 [26] (Transformer-based),
and SPVNAS [32] (NAS-based), which are representative for
current mainstream network architectures in point cloud seg-
mentation and with publicly accessible implementations. For
fair comparison, we adopt their default implementation set-
tings, including hyper-parameters and augmentation recipes.

4.1. 3D Segmentation on Static Urban Point Clouds
Dataset. SemanticKITTI [33] is a large-scale driving-scene
dataset for point cloud segmentation. It has 43,000 scans with
point-wise annotation, collected from 22 sequences. Accor-
ding to the official setting, we use sequences 00 to 10 for
train (but 08 is left for val), and 11 to 21 for test. In
single-scan challenge for static segmentation, 19 classes are
used and mean intersection-over-union (mIoU) is reported.
Quantitative Result. Table 1 reports comparison results
on SemanticKITTI single-scan challenge test. As seen,
our algorithm improves the performance of the base seg-

Table 1: Quantitative 3D segmentation results on Se-
manticKITTI [33] single-scan challenge test (§4.1). For
clarity, IoUs on 6 of 19 classes are given (c1: sidewalk, c2:
parking, c3: building, c4: truck, c5: bicycle, c6: motorcyclist).

Method mIoU(%) c1(%) c2(%) c3(%) c4(%) c5(%) c6(%)

PointASNL [CVPR20] [52] 46.8 74.3 24.3 83.1 39.0 0.0 0.0
PolarNet [CVPR20] [9] 54.3 74.4 61.7 90.0 22.9 40.3 5.6

RandLA-Net [CVPR20] [21] 55.9 74.0 61.8 89.7 43.9 29.8 9.4
SqueezeSegV3 [ECCV20] [8] 55.9 74.8 63.4 89.0 29.6 38.7 20.1

SalsaNext [ISVC20] [10] 59.5 75.8 63.7 90.2 38.9 48.3 19.4
FusionNet [ECCV20] [46] 61.3 77.1 68.8 92.5 41.8 47.5 11.9
JS3C-Net [AAAI21] [105] 66.0 72.1 61.9 92.5 54.3 59.3 39.9

AF2S3Net [CVPR21] [106] 69.7 72.5 68.8 87.9 39.2 65.4 74.3
RPVNet [ICCV21] [107] 70.3 80.7 70.3 93.5 44.2 68.4 43.4

PVKD [CVPR22] [108] 71.4 77.5 70.9 92.4 53.5 67.9 50.5
KPConv [ICCV19] [25] 58.8 72.7 61.3 90.5 33.4 30.2 11.8
KPConv + Ours 61.0 ↑2.2 75.0 63.4 91.4 49.0 45.0 36.4

SPVNAS10.8M [ECCV20] [32] 62.3 73.8 63.2 90.9 50.9 40.6 21.8
SPVNAS10.8M + Ours 64.3 ↑2.0 73.9 64.0 91.4 48.0 48.9 23.2
Cylinder3D [CVPR21] [16] 67.8 75.5 65.1 91.0 50.8 67.6 36.0

Cylinder3D + Ours 70.4 ↑2.6 77.2 66.1 92.3 51.9 68.4 54.6

Table 2: Quantitative 3D segmentation results on S3DIS
[34] Area-5 (§4.2). For clarity, IoUs on 5 of 13 classes are
given (c1: wall, c2: column, c3: window, c4: door, c5: board).

Method mIoU(%) mAcc(%) c1(%) c2(%) c3(%) c4(%) c5(%)

HPEIN [ICCV19] [51] 61.9 68.3 81.4 23.3 65.3 40.0 65.6
PAT [CVPR19] [20] 60.1 70.8 72.3 41.5 85.1 38.2 61.3

PointWeb [CVPR19] [14] 60.3 66.6 79.4 21.1 59.7 34.8 64.9
MinkowskiNet [CVPR19] [6] 65.4 71.7 86.2 34.1 48.9 62.4 74.4

SCF-Net [CVPR21] [53] 63.8 - - - - - -
BAAF-Net [CVPR21] [109] 65.4 73.1 - - - - -

CGA-Net [CVPR21] [110] 68.6 - 83.0 25.3 59.6 71.0 69.5
PTV1+CBL [CVPR22] [111] 71.6 77.9 - - - - -

Stratified Trans. [CVPR22] [112] 72.0 78.1 - - - - -
PTV2 [NeurIPS22] [113] 72.6 78.0 - - - - -
KPConv [ICCV19] [25] 67.1 72.8 82.4 23.9 58.0 69.0 66.7

KPConv+ Ours 69.0 ↑1.9 76.2 ↑3.4 84.0 30.7 66.7 77.6 63.0
PTV1 [ICCV21] [26] 70.4 76.5 86.3 38.0 63.4 74.3 76.0

PTV1+ Ours 72.2 ↑1.8 79.6 ↑3.1 88.1 49.3 65.3 79.4 81.0

mentation networks by solid margins. Concretely, it yields
2.2%, 2.6%, and 2.0% mIoU gains over point-based KP-
Conv[25], voxel-based Cylinder3D[16], and SPVNAS [32],
respectively. Our algorithm also obtains consistent perfor-
mance improvements across most classes. These results
illusrate the wide potential benefit of our algorithm. More-
over, “Cylinder3D +Ours” reaches comparable results with
published competitors. This is particularly impressive con-
sidering the fact that the improvement is solely achieved
by our training scheme, without any network architectural
modification and inference speed delay.
Qualitative Result. As shown in the top row of Fig. 3,
our method can reduce errors over both small nature objects
(such as trunk) and widely distributed classes (like sidewalk).

4.2. 3D Segmentation on Static Indoor Point Clouds

Dataset. S3DIS [34] is a famous 3D indoor parsing dataset.
It contains 273M points collected from six areas and labeled
with 13 classes. Following [1, 25], we use Area-5 as test
scene to better test the generalization ability. We report two
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Figure 3: Error maps on SemanticKITTI [33] single-scan challenge val (top), and S3DIS [34] Area-5 (bottom). The
differences are illustrated by arrows.

Table 3: Quantitative 4D segmentation results on Se-
manticKITTI [33] multi-scan challenge test (§4.3). IoUs
on 6 of 25 classes are reported (c1: sidewalk, c2: moving car, c3:
moving truck, c4: bicycle, c5: motorcyclist, c6: traffic-sign).

Method mIoU(%) c1(%) c2(%) c3(%) c4(%) c5(%) c6(%)

TangentConv [CVPR18] [38] 34.1 64.0 40.3 1.1 2.0 0.0 31.2
DarkNet53 [ICCV19] [33] 41.6 75.3 61.5 14.1 30.4 0.0 31.2

TemporalLidarSeg [3DV20] [71] 47.0 75.8 68.2 2.1 47.7 0.0 60.4
SpSeqnet [CVPR20] [72] 43.1 73.9 53.2 41.2 24.0 0.0 48.7
KPConv [ICCV19] [25] 51.2 70.5 69.4 5.8 44.9 0.0 53.9

KPConv+ Ours 53.2 ↑2.0 75.2 75.2 4.1 67.2 9.9 64.6
Cylinder3D [CVPR21] [16] 52.5 74.5 74.9 0.0 67.6 0.2 61.4

Cylinder3D+ Ours 54.7 ↑2.2 76.9 81.7 11.9 55.9 3.0 68.0

metrics: mIoU and mean of class-wise accuracy (mAcc).
Quantitative Result. Table 2 summarizes the comparison
results on S3DIS, showing our training algorithm also works
well on large-scale challenging indoor point clouds. In par-
ticular, our algorithm brings impressive gains over KPConv,
i.e., 67.1%→69.0% and 72.8%→76.2%, in terms of mIoU
and mAcc. Notably, with PTV1 as the backbone, our ap-
proach attains mIoU/mAcc of 72.2%/79.6%, outperforming
PTV1+CBL (71.6%/77.9%).
Qualitative Result. As shown in the bottom row of Fig.3,
our method significantly reduces the errors of PTV1 [26] in
an indoor environment of S3DIS [34] Area-5.

4.3. 4D Segmentation on Urban Point Sequences
Dataset. SemanticKITTI [33] multi-scan challenge is devoted
to 4D point cloud segmentation. It involves six more classes
to distinguish between moving objects and stationary ones
for car, trunk, bicyclist, other-vehicle, person, and motor-
cyclist categories. mIoU is adopted as the evaluation metric.
Quantitative Result. Table 3 reports our comparison results
on SemanticKITTI [33] multi-scan challenge test. Our
algorithm, again, leads to improvements over backbones, i.e.,
2.0% and 2.2% mIoU gain compared with KPConv [25] and
Cylinder3D [16], respectively. This confirms our algorithm

Table 4: Quantitative 3D detection results on KITTI [37]
challenge val (§4.4).

Difficulty Method mAP(%) Car(%) Pedestrian(%) Cyclist(%)

Easy

Second [SENSORS18] [35] 75.25 88.61 56.55 80.59
Second + Ours 78.60 ↑3.35 89.13 58.50 88.16

PointPillar [CVPR19] [114] 74.76 86.46 57.75 80.06
PointPillar + Ours 76.82 ↑2.06 88.34 58.19 83.92

Moderate

Second [SENSORS18] [35] 66.25 78.62 52.98 67.16
Second + Ours 69.67 ↑3.42 82.97 55.64 70.39

PointPillar [CVPR19] [114] 64.08 77.28 52.29 62.68
PointPillar + Ours 66.07 ↑1.99 78.43 53.31 66.47

Hard

Second [SENSORS18] [35] 62.69 77.22 47.73 63.11
Second + Ours 65.36 ↑2.67 78.55 50.91 66.61

PointPillar [CVPR19] [114] 60.76 74.65 47.91 59.71
PointPillar + Ours 62.96 ↑2.20 77.14 49.15 62.61

is also applicable in point cloud sequences. Our algorithm
also obtains superior performance for vehicle categories
with moving patterns, such as moving car, moving truck,
moving other-vehicle, etc. We attribute this to our capacity of
capturing complex patterns and variations, which improves
the robustness in dynamic scenes.

4.4. 3D Detection on Static Urban Point Clouds

To fully reveal the power of our idea, we conduct addi-
tional experiments on 3D object detection.
Algorithmic Modification. To apply our algorithm to the 3D
object detection task and minimize the modification effort,
we view the bounding box annotations as a form of coarse
segmentation labels. For each labeled bounding box with
semantic class c∈ C, we simply treat all the points within
the bounding box as data examples of class c, which are
used in our clustering analysis based representation learning
(cf. Eqs.6-7). Note that there is no change to the base 3D
detection network, including the detection head.
Dataset. KITTI [37] is a standard benchmark for 3D object
detection. We split 3712 scans for train and 3769 scans
for val, with 3D bounding box annotations of vehicles,
pedestrians and cyclists. Detection outcomes are evaluated
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Table 5: Study of proposed training strategy on S3DIS [34] Area-5 and SemanticKITTI [33] multi-scanval set(§4.5).
JPPC (Eq.(6)) JPCC (Eq.(7)) S3DIS mIoU(%) S-KITTI mIoU(%) Training Speed (sec/epoch)

Baseline (w/o clustering analysis) 67.1 53.3 281.46
Point-Point Contrast ✓ 68.0 54.4 310.20

Point-Center Contrast ✓ 68.4 54.7 310.28
Point-Point + Point-Center Contrast ✓ ✓ 69.0 55.7 311.71

Table 6: Curve of CE Loss on Semantic-
KITTI [33] single-scan challengetrain
(left) andval (right).
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Table 7: Parameter studies on S3DIS [34] Area-5 and SemanticKITTI [33]
(S-KITTI) multi-scanval set (§4.5). (mIoU(%) is reported.)
# Cluster S3DIS S-KITTI
M = 1 67.5 53.7
M = 10 68.0 54.5
M = 20 68.5 55.2
M = 40 69.0 55.7
M = 60 68.9 55.2
M = 80 68.7 55.5

Memory Capacity S3DIS S-KITTI
Mini-Batch

(w/o memory) 68.0 54.4

5 × #scene 68.6 55.0
10 × #scene 69.0 55.7
15 × #scene 68.8 55.7
20 × #scene 68.7 55.6

Coefficient µ S3DIS S-KITTI
µ = 0 67.7 53.6
µ = 0.9 68.0 54.0
µ = 0.99 68.5 54.7
µ = 0.999 68.6 55.3
µ = 0.9999 69.0 55.7
µ = 0.99999 68.8 55.5

(a) Per-class cluster Num (b) Per-cluster memory (c) Momentum coefficient

under three regimes: easy, moderate, hard, defined accord-
ing to occlusion and truncation levels of objects. Average
precisions are reported with IoU thresholds of 0.7, 0.5, and
0.5, respectively for car, pedestrian, and cyclist classes.
Base Detection Networks. We apply our algorithm to two
famous 3D detectors, i.e., Second [35] and PointPillar [36].
Quantitative Result. Table 4 reports the experimental re-
sults on KITTI val. We can observe that, for both Second
and PointPillar, our training algorithm brings notable per-
formance gains, across different classes and under different
regimes. This proves the high versatility of our algorithm.

4.5. Diagnostic Experiment
To test the efficacy of our core algorithm designs, we con-

duct a series of ablative studies on S3DIS[34] Area-5 and
SemanticKITTI [33] multi-scan challenge val. We adopt
KPConv[25]asourbase segmentationnetwork.The results are
reported without post-processing or test-time augmentation.
Clustering Analysis based Network Training. We first test
the efficacy of our core idea of clustering analysis based
point representation learning. As shown in Table5, the base-
line model, trained in the standard strategy, gains 67.1% and
53.3% mIoU, on S3DIS and SemanticKITTI, respectively.
Additionally considering point-point contrast JPPC (Eq.(6))
or point-center contrast JPCC (Eq.(7)) can lead to better per-
formance. However, combining these two training objectives
yields the best results, i.e., 69.0% and 55.7%. These results
verify that mining latent data structures can benefit detailed
analysis of point cloud. Table 5 also gives comparisons for
training speed. Our algorithm only brings negligible delay
(∼30 s for each epoch), confirming its high efficiency.
Per-Class Cluster Number M . We next investigate the im-
pact of the cluster number M of each class. The results are
summarized in Table7a. M=1 means that directly treating
each class as a single cluster. This baseline obtains 67.5%
and 53.7% mIoU, on S3DIS and SemanticKITTI, respec-
tively. After clustering based fine-grained pattern mining,

we observe consistent improvements, e.g., 67.5%→69.0%
on S3DIS when M =40. This verifies that i) there indeed
exist some latent patterns in point clouds, and ii) these latent
patterns are valuable for point cloud parsing. When M>40,
further increasing M gives marginal performance gains even
worse results. We speculate this is because the model is
distracted by some trivial patterns due to over-clustering.
Memory Bank. Then we study the influence of our memory
bank in Table 7b. “Mini-Batch (w/o memory)” means that
only computing contrast within each mini-batch, without the
memory; it earns 68.0% and 54.4% mIoU, on S3DIS and
SemanticKITTI, respectively. We then provision this base-
line with class-wise memory bank with different capacities.
When storing 10 point features per scene for each cluster,
the best performance is achieved, i.e., 69.0% and 55.7%.
Momentum Coefficient µ. Table 7c gives the performance
with regard to the momentum coefficientµ (cf. Eq. 5), which
controls the evolution speed of cluster centers. The model
performs better with a relatively large coefficient (i.e., µ=
0.9999), showing that slow update is more favored. More-
over, at the extreme case of µ=0, the performance drops con-
siderably, evidencing that simply approximating the cluster
centers with per-batch cluster means is not a sound solution.

5. Conclusion and Discussion
We devise a clustering based supervised training scheme

for point cloud analysis, which discovers and respects la-
tent data structures during point representation learning.
Rather than simply minimizing the point recognition error,
we iterativelyperform1)unsupervised,within-classclustering
based subclass pattern mining, and 2) clustering assignment
based point embedding space optimization. Our algorithm is
general and shows outstanding performance over various
tasks and datasets. It also brings some new challenges, inc-
luding the extension in instance-aware segmentation setting,
and automatic estimation of the cluster number.
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In this supplementary material, we provide the following
sections for a better understanding of the main paper. The
pseudo-code of clustering based point cloud segmentation
learning is elaborated in §A. §B presents the distribution
of point data over cluster centers. More qualitative and
quantitative results are further presented and analyzed in §C.
Finally, limitation and societal impact are discussed in §D.

A. Pseudo-Code
Algorithm S1 provides a pseudo-code of ‘assigning sub-

class labels’ function and ‘update operation’ function. Cor-
respondingly, Algorithm S2 provides a pseudo-code of JPCC
(see Eq. (7)). The implementation of JPPC is similar to
it, so we do not show pseudo-code for JPPC. Moreover,
to guarantee the reproducibility, our code is released at:
github.com/FengZicai/Cluster3Dseg.

B. Distribution of Subclass Clusters
Fig. S1 shows point assignment distribution for ‘truck’

and ‘traffic-sign’ classes, with different numbers M =
{10, 20, 40, 60, 80} of clusters. We can find that 1) the num-
ber of point samples assigned to each cluster is different; 2)
with the increase of M , some sub-class centers only con-
tain a limited number of samples, especially when M = 80.
In this case, the value of M has exceeded the number of
underlying subclass centers in the dataset, resulting in over-
clustering. And therefore, some trivial patterns may distract
the model and cause performance degradation.

C. More Qualitative and Quantitative Results
Complete Quantitative Result on SemanticKITTI Single-
Scan Challenge test. Table S1 and S2 report the complete
results on SemanticKITTI [33] single-scan challengetest.
Our method reaches 70.4% mIoU, which yields 2.6% mIoU
gains over Cylinder3D[16]. Moreover, it also outperforms
many famous segmentation models, such as AF2S3Net[106]
and RPVNet [107]. One more thing to point out, spvnas3

did not provide the source code of 3D-NAS pipeline and
the control file for SPVNAS12.5M. But the control file and
pretrained models for SPVNAS10.8M are shared4. And the
difference between SPVNAS12.5M and SPVNAS10.8M is that
SPVNAS10.8M is trained except sequence 08. As for our
implementation, SPVNAS10.8M and SPVNAS10.8M + Ours
are trained on sequences 00-10 and evaluated on 11-21.
Complete Quantitative Result on S3DIS Area-5. Table S3
and S4 present the complete per-class IoU on S3DIS [34]
Area-5. Both CBL[111] and our method use contrastive
loss on the premise of fully supervised learning. But [111]

3https://github.com/mit-han-lab/spvnas/
4SPVNAS has cancelled the download link for the Control file and

SPVNAS10.8M model. Instead, we will release the two previously down-
loaded files.

only samples negative points locally around the boundaries,
while we contrast global subclass centers against the points
sampled from the ENTIRE training dataset. Our idea is much
more powerful and insightful. The fair comparison based on
PTV1[26] shows that our approach attains mIoU/mAcc of
72.2%/79.6%, outperforming PTV1+CBL (71.6%/77.9%).
Complete Quantitative Result on SemanticKITTI multi-
scan challenge test. Table S5 and S6 report the com-
plete results on SemanticKITTI [33] multi-scan challenge
test. With Cylinder3D, our algorithm also attains con-
sistent performance improvements of 2.2% mIoU, just like
that in single-scan test. Moreover, Cylinder3D+ Ours
surpasses Cylinder3D in 17 classes out of 25 classes.
Qualitative Results for Segmetation. We show more
qualitative results on SemanticKITTI [33] single-scan
challenge val (Fig. S2), S3DIS [34] Area-5 (Fig. S3) and
SemanticKITTI [33] multi-scan challengeval (Fig.S4). As
observed, our approach generally gives more accurate predic-
tions compared with vanilla PTV1[26] and Cylinder3D[16].
In Fig. S3, vanilla PTV1 fails to recognize region bound-
aries and tends to misclassify board-like objects, while our
method can significantly reduce these errors. Fig. S4 de-
picts qualitative comparisons of Cylinder3D and Cylinder3D
+ Ours over lidar sequences on SemanticKITTI multi-scan
challenge val. Note that, the predicted labels of five consec-
utive frames are displayed in one frame. It can be observed
that Cylinder3D + Ours has smaller errors over the seman-
tic boundaries as well as classes belonging to ground and
nature.

D. Limitation and Societal Impact
License of Assets. Cylinder3D5 is released with Apache
license. KPConv6 is implemented based on its released code
with MIT license. We have also implemented our method
on Point Transformer7. SPVNAS8 is implemented based on
its released code with MIT license. For 3D object detection,
our implementation is based on OpenPCDet9, and it is re-
leased under the Apache 2.0 license. Our code is released at:
github.com/FengZicai/Cluster3Dseg.
Limitation. For some very rare classes, such as beam in
S3DIS [34], bicyclist in SemanticKITTI [33] multi-scan chal-
lenge, our algorithm did not show better-improved results.
However, many previous state-of-the-arts [16, 25, 26] also
perform poorly on these classes. In the future, we plan to
explore smarter data sampling strategies and hard example
synthesis techniques to address this issue.

5https://github.com/xinge008/Cylinder3D/
6https://github.com/HuguesTHOMAS/

KPConv-PyTorch/
7https://github.com/POSTECH-CVLab/

point-transformer
8https://github.com/mit-han-lab/spvnas/
9https://github.com/HuguesTHOMAS/

KPConv-PyTorch/
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Societal Impact. For the potential negative societal impacts,
in real-world robot navigation tasks or autonomous driving
tasks, inaccurate prediction of point cloud labels may lead
agents to the wrong category and raise human safety con-
cerns. To avoid this potential problem, we suggest proposing
a security protocol in case of dysfunction of our algorithm
in real-world applications.
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Algorithm S1 Pseudo-code of clustering based point cloud segmentation learning - Part I.
# M: number of subclusters.
# nc: number of classes.
# dim: number of dimensions.
# x: features (N, dim).
# ŷ: labels (N).
# y: predicted labels (N).
# cc: cluster centers (num_classes, M, dim).
# L: clustering results.
# µ: momentum coefficient.

def assigning subclass labels(x, ŷ, y):
# selected features, subclass labels.
# selected cluster center embbedings, cluster center labels.
Xo,yo,X̃o,ỹo = [],[],[],[]
# Record of new cluster centers for this iteration, see Eq.(5).
ncc = zeros(nc, M, dim)
this class = unique(this_y)
for idx in this class:

indices = (ŷ == idx).nonzero()
# select cluster centers with idx.
pc = select(cc, idx)
# select features with indices.
xc = select(x, indices)
yc = select(ŷ, indices)
PS = mm(xc, pc.T)
PS = softmax(PS, 1)
# Sinkhorn-Knopp algorithm.
online clustering()
yc = yc * M
yc = yc + L
# Averageing xc tensor according to L.
ncc[idx] = scatter mean(xc, L, dim=0, dim_size=M)
# append to output variables.
Xo = append(Xo, xc)
yo = append(yo, yc)
X̃o = append(X̃o, pc)
ỹo = append(ỹo, idx.repeat(M) * M+ tensor(list(range(M))))

return Xo,yo,X̃o,ỹo

def update operation():
cc = cc * µ + ncc * (1 - µ)
cc = normalize((cc, p=2, dim=2))
return cc
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Algorithm S2 Pseudo-code of clustering based point cloud segmentation learning - Part II.
# temperature: scalar temperature parameter
# Xi: selected features
# yi: selected subclass labels
# X̃i: cluster center embbedings
# ỹi: cluster center labels

def pcc contrastive(Xi,yi,X̃i,ỹi):
anchor label = yi.view(-1, 1)
contrast label = ỹi.view(-1, 1)
anchor feature = Xi

contrast feature = X̃i

mask = eq(anchor_label, contrast_label.T)
anchor_dot_contrast = div( matmul(anchor_feature,

contrast_feature.T), temperature)
logits_max, _ = max(anchor_dot_contrast, dim=1, keepdim=True)
# To avoid the numerical overflow
logits = anchor_dot_contrast - logits_max.detach()

# neg_logits mean the sum of logits of all negative pairs
neg_mask = 1 - mask
neg_logits = exp(logits) * neg_mask
neg_logits = neg_logits.sum(1, keepdim=True)

# exp_logits mean the logit of each sample pair
exp_logits = exp(logits)
log_prob = logits - log(exp_logits + neg_logits)
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)

loss = - (temperature / base_temperature) * mean_log_prob_pos
loss = loss.mean()
return loss
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Figure S1: Distribution plot with different numbers M = {10, 20, 40, 60, 80} of clusters for ‘truck’ and ‘traffic-sign’ classes.
(Best viewed with zoom-in.)
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Table S1: Quantitative results on SemanticKITTI [33] single-scan challengetest (§4.1) - Part I. mIoU (%) and IoUs (%)
are reported.
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TangentConv [CVPR18] [38] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1
SqueezeSegV2 [ICRA19] [7] 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0

DarkNet53 [ICCV19] [33] 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6
Rangenet++ [IROS19] [5] 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0

3D-MiniNet [IROS20] [115] 55.8 91.6 74.5 64.2 25.4 89.4 90.5 28.5 42.3 42.1 29.4
PointASNL [CVPR20] [52] 46.8 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2

PolarNet [CVPR20] [9] 54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5
RandLA-Net [CVPR20] [21] 55.9 90.5 74.0 61.8 24.5 89.7 94.2 43.9 29.8 32.2 39.1

SqueezeSegV3 [ECCV20] [8] 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0
SalsaNext [ISVC20] [10] 59.5 91.7 75.8 63.7 29.1 90.2 91.9 38.9 48.3 38.6 31.9

FusionNet [ECCV20] [46] 61.3 91.8 77.1 68.8 30.8 92.5 95.3 41.8 47.5 37.7 34.5
JS3C-Net [AAAI21] [105] 66.0 88.9 72.1 61.9 31.9 92.5 95.8 54.3 59.3 52.9 46.0

AF2S3Net [CVPR21] [106] 69.7 91.3 72.5 68.8 53.5 87.9 94.5 39.2 65.4 86.8 41.1
RPVNet [ICCV21] [107] 70.3 93.4 80.7 70.3 33.3 93.5 97.6 44.2 68.4 68.7 61.1

PVKD [CVPR22] [108] 71.4 91.8 77.5 70.9 41.0 92.4 97.0 53.5 67.9 69.3 60.2
KPConv [ICCV19] [25] 58.8 88.8 72.7 61.3 31.6 90.5 96.0 33.4 30.2 42.5 44.3
KPConv + Ours 61.0 89.9 75.0 63.4 34.3 91.4 88.8 49.0 45.0 46.6 45.5

SPVNAS10.8M [ECCV20] [32] 62.3 89.6 73.8 63.2 29.1 90.9 96.7 50.9 40.6 42.1 51.3
SPVNAS10.8M + Ours 64.3 89.6 73.9 64.0 28.8 91.4 96.7 48.0 48.9 50.5 51.0
Cylinder3D [CVPR21] [16] 67.8 91.4 75.5 65.1 32.3 91.0 97.1 50.8 67.6 64.0 58.6

Cylinder3D + Ours 70.4 91.7 77.2 66.1 34.1 92.3 97.0 51.9 68.4 65.8 58.8

Table S2: Quantitative results on SemanticKITTI [33] single-scan challengetest (§4.1) - Part II. mIoU (%) and IoUs (%)
are reported.
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TangentConv [CVPR18] [38] 40.9 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5
SqueezeSegV2 [ICRA19] [7] 39.7 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 26.3

DarkNet53 [ICCV19] [33] 49.9 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2
Rangenet++ [IROS19] [5] 52.2 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9

3D-MiniNet [IROS20] [115] 55.8 82.8 60.8 66.7 47.8 44.1 14.5 60.8 48.0 56.6
PointASNL [CVPR20] [52] 46.8 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9

PolarNet [CVPR20] [9] 54.3 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5
RandLA-Net [CVPR20] [21] 55.9 83.8 63.6 68.6 48.4 47.4 9.4 60.4 51.0 50.7

SqueezeSegV3 [ECCV20] [8] 55.9 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9
SalsaNext [ISVC20] [10] 59.5 81.8 63.6 66.5 60.2 59.0 19.4 64.2 54.3 62.1

FusionNet [ECCV20] [46] 61.3 84.5 69.8 68.5 59.5 56.8 11.9 69.4 60.4 66.5
JS3C-Net [AAAI21] [105] 66.0 84.5 69.8 67.9 69.5 65.4 39.9 70.8 60.7 68.7

AF2S3Net [CVPR21] [106] 69.7 70.2 68.5 53.7 80.7 80.4 74.3 63.2 61.5 71.0
RPVNet [ICCV21] [107] 70.3 86.5 75.1 71.7 75.9 74.4 43.4 72.1 64.8 61.4

PVKD [CVPR22] [108] 71.4 86.5 73.8 71.9 75.1 73.5 50.5 69.4 64.9 61.4
KPConv [ICCV19] [25] 58.8 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4
KPConv + Ours 61.0 72.0 56.5 68.8 59.4 60.1 36.4 66.1 49.5 60.4

SPVNAS10.8M [ECCV20] [32] 62.3 85.5 70.3 69.8 60.4 62.8 21.8 65.3 57.6 62.0
SPVNAS10.8M + Ours 64.3 85.3 72.1 69.1 67.1 70.5 23.2 67.0 60.7 64.5
Cylinder3D [CVPR21] [16] 67.8 85.4 71.8 68.5 73.9 67.9 36.0 66.5 62.6 65.6

Cylinder3D + Ours 70.4 86.7 73.5 71.7 69.6 70.1 54.6 70.8 65.1 71.6
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Table S3: Quantitative results on S3DIS [34] Area-5 (§4.2) - Part I. mIoU (%) and IoUs (%) are reported.
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PointNet [CVPR17] [17] 41.1 49.0 - 88.8 97.3 69.8 0.1 3.9 46.3 10.8
SegCloud [3DV17] [1] 48.9 57.4 - 90.1 96.1 69.9 0.0 18.4 38.4 23.1

TangentConv [CVPR18] [38] 52.6 62.2 - 90.5 97.7 74.0 0.0 20.7 39.0 31.3
PointCNN [NeurIPS18] [47] 57.3 63.9 85.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1

SPGraph [CVPR18] [22] 58.0 66.5 86.4 89.4 96.9 78.1 0.0 42.8 48.9 61.6
PCCN [CVPR18] [23] 58.3 - 67.0 92.3 96.2 75.9 0.3 6.0 69.5 63.5
HPEIN [ICCV19] [51] 61.9 68.3 87.2 91.5 98.2 81.4 0.0 23.3 65.3 40.0

PAT [CVPR19] [20] 60.1 70.8 - 93.0 98.5 72.3 1.0 41.5 85.1 38.2
PointWeb [CVPR19] [14] 60.3 66.6 87.0 92.0 98.5 79.4 0.0 21.1 59.7 34.8

MinkowskiNet [CVPR19] [6] 65.4 71.7 - 91.8 98.7 86.2 0.0 34.1 48.9 62.4
SCF-Net [CVPR21] [53] 63.8 - - - - - - - - -

BAAF-Net [CVPR21] [109] 65.4 73.1 88.9 - - - - - - -
CGA-Net [CVPR21] [110] 68.6 - - 94.5 98.3 83.0 0.0 25.3 59.6 71.0

Stratified Trans. [CVPR22] [112] 72.0 78.1 91.5 - - - - - - -
PTV2 [NeurIPS22] [113] 72.6 78.0 91.6 - - - - - - -
KPConv [ICCV19] [25] 67.1 72.8 - 92.8 97.3 82.4 0.0 23.9 58.0 69.0

KPConv+ Ours 69.0 76.2 90.5 95.7 98.3 84.0 0.0 30.7 66.7 77.6
PTV1 [ICCV21] [26] 70.4 76.5 90.8 94.0 98.5 86.3 0.0 38.0 63.4 74.3

PTV1+CBL [CVPR22] [111] 71.6 77.9 91.2 - - - - - - -
PTV1+ Ours 72.2 79.6 91.2 94.2 98.4 88.1 0.0 49.3 65.3 79.4

Table S4: Quantitative results on S3DIS [34] Area-5 (§4.2) - Part II. mIoU (%) and IoUs (%) are reported.
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PointNet [CVPR17] [17] 41.1 49.0 - 52.6 58.9 40.3 5.9 26.4 33.3
SegCloud [3DV17] [1] 48.9 57.4 - 70.4 75.9 40.9 58.4 13.0 41.6

TangentConv [CVPR18] [38] 52.6 62.2 - 77.5 69.4 57.3 38.5 48.8 39.8
PointCNN [NeurIPS18] [47] 57.3 63.9 85.9 74.4 80.6 31.7 66.7 62.1 56.7

SPGraph [CVPR18] [22] 58.0 66.5 86.4 84.7 75.4 69.8 52.6 2.1 52.2
PCCN [CVPR18] [23] 58.3 - 67.0 66.9 65.6 47.3 68.9 59.1 46.2
HPEIN [ICCV19] [51] 61.9 68.3 87.2 75.5 87.7 58.5 67.8 65.6 49.4

PAT [CVPR19] [20] 60.1 70.8 - 57.7 83.6 48.1 67.0 61.3 33.6
PointWeb [CVPR19] [14] 60.3 66.6 87.0 76.3 88.3 46.9 69.3 64.9 52.5

MinkowskiNet [CVPR19] [6] 65.4 71.7 - 81.6 89.8 47.2 74.9 74.4 58.6
SCF-Net [CVPR21] [53] 63.8 - - - - - - - -

BAAF-Net [CVPR21] [109] 65.4 73.1 88.9 - - - - - -
CGA-Net [CVPR21] [110] 68.6 - - 82.6 92.2 77.7 76.4 69.5 61.5

Stratified Trans. [CVPR22] [112] 72.0 78.1 91.5 - - - - - -
PTV2 [NeurIPS22] [113] 72.6 78.0 91.6 - - - - - -
KPConv [ICCV19] [25] 67.1 72.8 - 81.5 91.0 75.4 75.3 66.7 58.9

KPConv+ Ours 69.0 76.2 90.8 79.9 91.0 70.3 76.7 63.0 63.6
PTV1 [ICCV21] [26] 70.4 76.5 90.8 89.1 82.4 74.3 80.2 76.0 59.3

PTV1+CBL [CVPR22] [111] 71.6 77.9 91.2 - - - - - -
PTV1+ Ours 72.2 79.6 91.2 89.4 82.2 74.8 77.6 81.0 58.7
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Table S5: Quantitative results on SemanticKITTI [33] multi-scan challengetest (§4.3) - Part I. mIoU (%) and IoUs (%)
are reported.
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TangentConv [CVPR18] [38] 34.1 83.9 64.0 38.3 15.3 85.8 84.9 40.3 21.1 1.1 2.0 18.2 18.5 6.4
DarkNet53 [ICCV19] [33] 41.6 91.6 75.3 64.9 27.5 85.2 84.1 61.5 20.0 14.1 30.4 32.9 20.7 15.2

TemporalLidarSeg [3DV20] [71] 47.0 91.8 75.8 59.6 23.2 89.8 92.1 68.2 39.2 2.1 47.7 40.9 35.0 12.4
SpSeqnet [CVPR20] [72] 43.1 90.1 73.9 57.6 27.1 91.2 88.5 53.2 29.2 41.2 24.0 26.2 22.7 26.2
KPConv [ICCV19] [25] 51.2 86.5 70.5 58.4 26.7 90.8 93.7 69.4 42.5 5.8 44.9 47.2 38.6 4.7

KPConv+ Ours 53.2 90.4 75.2 62.1 25.1 91.8 95.8 75.2 43.8 4.1 67.2 63.1 44.2 0.7
Cylinder3D [CVPR21] [16] 52.5 90.7 74.5 65.0 32.3 92.6 94.6 74.9 41.3 0.0 67.6 63.8 38.8 0.1

Cylinder3D+ Ours 54.7 91.4 76.9 66.1 27.8 91.4 95.3 81.7 42.7 11.9 55.9 52.9 38.7 11.2

Table S6: Quantitative results on SemanticKITTI [33] multi-scan challengetest (§4.3) - Part II. mIoU (%) and IoUs (%)
are reported.
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TangentConv [CVPR18] [38] 34.1 79.5 43.2 56.7 1.6 1.9 0.0 30.1 0.0 42.2 49.1 36.4 31.2
DarkNet53 [ICCV19] [33] 41.6 78.4 50.7 64.8 7.5 0.2 0.0 28.9 0.0 37.8 56.5 38.1 53.3

TemporalLidarSeg [3DV20] [71] 47.0 82.3 62.5 64.7 14.4 40.4 0.0 42.8 0.0 12.9 63.8 52.6 60.4
SpSeqnet [CVPR20] [72] 43.1 84.0 66.0 65.7 6.3 36.2 0.0 2.3 0.0 0.1 66.8 50.8 48.7
KPConv [ICCV19] [25] 51.2 84.6 70.3 66.0 21.6 67.5 0.0 67.4 0.0 47.2 64.5 57.0 53.9

KPConv+ Ours 53.2 85.4 71.1 69.3 10.7 72.1 0.0 68.5 9.9 9.9 67.5 62.6 64.6
Cylinder3D [CVPR21] [16] 52.5 85.8 72.0 68.9 12.5 65.7 1.7 68.3 0.2 11.9 66.0 63.1 61.4

Cylinder3D+ Ours 54.7 86.5 72.7 71.6 15.5 61.8 0.0 68.2 3.0 46.0 66.1 64.0 68.0
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Figure S2: Error maps of Cylinder3D [16] and Ours on SemanticKITTI [33] single-scan challenge val (§4.1). The
differences are as illustrated by arrows.
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Figure S3: Error maps of PTV1 [26] and Ours on S3DIS [34] Area-5 (§4.2). The differences are as illustrated by arrows.
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Figure S4: Error maps of Cylinder3D [16] and Ours on SemanticKITTI [33] multi-scan challenge val (§4.3). The differences
are as illustrated by arrows.
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