
MV-DeepSDF: Implicit Modeling with Multi-Sweep Point Clouds
for 3D Vehicle Reconstruction in Autonomous Driving

Yibo Liu1,2, Kelly Zhu1,3, Guile Wu1, Yuan Ren1, Bingbing Liu1, Yang Liu1, Jinjun Shan2

1Huawei Noah’s Ark Lab, 2York University, 3University of Toronto
{yorklyb,jjshan}@yorku.ca, kellyk.zhu@mail.utoronto.ca

{guile.wu, yuan.ren3, liu.bingbing, yang.liu9}@huawei.com

Abstract

Reconstructing 3D vehicles from noisy and sparse par-
tial point clouds is of great significance to autonomous
driving. Most existing 3D reconstruction methods can-
not be directly applied to this problem because they are
elaborately designed to deal with dense inputs with triv-
ial noise. In this work, we propose a novel framework,
dubbed MV-DeepSDF, which estimates the optimal Signed
Distance Function (SDF) shape representation from multi-
sweep point clouds to reconstruct vehicles in the wild. Al-
though there have been some SDF-based implicit model-
ing methods, they only focus on single-view-based recon-
struction, resulting in low fidelity. In contrast, we first an-
alyze multi-sweep consistency and complementarity in the
latent feature space and propose to transform the implicit
space shape estimation problem into an element-to-set fea-
ture extraction problem. Then, we devise a new architecture
to extract individual element-level representations and ag-
gregate them to generate a set-level predicted latent code.
This set-level latent code is an expression of the optimal 3D
shape in the implicit space, and can be subsequently de-
coded to a continuous SDF of the vehicle. In this way, our
approach learns consistent and complementary information
among multi-sweeps for 3D vehicle reconstruction. We con-
duct thorough experiments on two real-world autonomous
driving datasets (Waymo and KITTI) to demonstrate the su-
periority of our approach over state-of-the-art alternative
methods both qualitatively and quantitatively.

1. Introduction

3D vehicle reconstruction from sparse and partial point
clouds is a fundamental need in the autonomous driving
industry [12, 18]. It aims to infer the 3D structure of
vehicles at arbitrary resolutions in the wild, which is of
great significance to many downstream tasks in autonomous
driving. Despite the many 3D reconstruction methods

Figure 1. An illustration of the motivation of the proposed ap-
proach. Our approach takes multi-sweep point clouds as input
and simplifies 3D vehicle reconstruction from multi-sweeps into
an element-to-set feature extraction problem. In this way, we infer
an optimal estimation of the 3D shape described in the abstract im-
plicit space for 3D vehicle reconstruction in autonomous driving.

[29, 36, 27, 40, 42, 1, 20, 4], most of them focus on image-
based inputs [29, 36, 27, 40, 42], dense point cloud inputs
[20, 32, 11], or their combination [1, 4, 9] and thus, cannot
be directly applied to this problem.

Recently, [12] has shown promising performance in ap-
plying implicit modeling to tackle this problem. Contrary to
explicit modeling methods [33, 34, 48, 50, 44, 43, 10, 2, 39]
that directly represent 3D object shape structure with points,
voxels, or meshes, implicit modeling maps the 3D shape
to a low-dimensional latent space and learns the projection
from the latent space to a continuous function that describes
the 3D shape. This presents two significant advantages: 1)
the 3D shape can be stored as a low-dimensional memory-
saving latent code [32, 11, 12, 6]; 2) the trained network
outputs a continuous function in the 3D space which sup-
ports mesh extraction at any resolution [32]. To this end, we
also choose to employ implicit modeling in our approach.

However, previous point cloud-based implicit model-
ing methods [32, 11, 12] mainly focus on recovering 3D
shapes from a single-view partial point cloud and fail to
leverage the multi-sweep information of vehicles. As a re-
sult, when noise or annotation errors exist in an individual
sweep, single-view methods usually produce low fidelity re-
sults. In real-world datasets (e.g., [37, 16]), multi-sweep

Figure 2. The framework of the proposed MV-DeepSDF. Farthest Point Sampling (FPS) [34] is applied to the raw point clouds for pre-
processing and DeepSDF [32] is employed to generate a latent code for each observation. We then extract global features from the
standardized point clouds (refer to yellow block) and concatenate the global features with the latent codes as element-level representations.
Next, the element-level representations are transformed into a set-level predicted latent code (refer to red block). Finally, we employ a
pre-trained DeepSDF decoder [32] to project the predicted latent code to the SDF of the vehicle in 3D space and recover the 3D mesh.
Note that the decoder used in the final step (refer to white trapezoid) is identical to that of DeepSDF (refer to green block).

point clouds are usually available and contain richer shape
information because of the various viewing angles offered
by multiple observations [18]. Although there are some
existing 3D reconstruction methods from multi-view point
clouds [18, 20, 3, 35], implicit modeling with multi-sweep
point clouds remains an unsolved problem.

In this work, we propose a novel framework, dubbed
MV-DeepSDF, to exploit multi-sweep point clouds and im-
plicitly generate high-fidelity 3D reconstructions of vehi-
cles for autonomous driving. An illustration of the moti-
vation for our proposed approach is depicted in Figure 1.
Specifically, to shed light on the importance of exploring
multi-sweep point clouds for 3D vehicle reconstruction, we
first analyze multi-sweep consistency and complementarity
in the latent feature space. We then propose to consider
the problem of shape estimation in the implicit space as an
element-to-set feature extraction problem, where a set rep-
resents a collection of multi-sweeps and an element repre-
sents a sparse and partial point cloud. Next, we devise a
new architecture to simultaneously extract a global feature
and latent code for each element in the multi-sweep and
concatenate them as element-level representations. These
element-level representations are then transformed into a
set-level predicted latent code with the aid of average pool-
ing and mapping. This set-level latent code is an optimal
estimation of the 3D shape described in the abstract implicit
space, which we subsequently decode to a continuous SDF
of the vehicle with a pre-trained DeepSDF decoder [32] and
recover the 3D mesh from the SDF. The contributions of
this work are threefold:

• We analyze multi-sweep consistency and complemen-

tarity in the latent feature space and transform the
problem of shape estimation in the implicit space into
an element-to-set feature extraction problem. This
simplifies 3D vehicle reconstruction from multi-sweep
point clouds into an optimal estimation of the 3D shape
described in the abstract implicit space.

• We propose a novel MV-DeepSDF framework (see
Figure 2) for implicit modeling with multi-sweep point
clouds. A new architecture is constructed to extract
the element-level representations and generate the set-
level predicted latent code.

• We qualitatively and quantitatively demonstrate the su-
perior performance of our approach over the state-of-
the-art alternative methods through extensive experi-
ments on real-world datasets [37, 16].

2. Related Work

2.1. Explicit Modeling-Based 3D Reconstruction

Conventional 3D explicit modeling can be classified into
three categories, namely point-based [33, 34, 48, 50, 44],
voxel-based [43, 10], and mesh-based [2, 39]. Point-based
methods, such as Point Completion Network (PCN) [50],
GRNet [44], and PoinTr [48], output a point cloud with
limited resolution since the number of points is fixed and
not suitable for generating watertight surfaces due to lack
of topology description. Voxel-based methods [43, 10] de-
scribe volumes by subdividing the space into a 3D grid, but
they are memory and compute intensive, leading to slow

training and low resolution representations [32]. Mesh-
based methods only generate meshes with simple topolo-
gies [41] given by a fixed reference template from the
same object class and cannot guarantee watertight surfaces
[23, 17]. In contrast, we propose implicit modeling with
multi-sweep point clouds in a novel MV-DeepSDF frame-
work, which estimates the optimal SDF shape represen-
tation for reconstructing 3D structures of vehicles in au-
tonomous driving.

2.2. Implicit Modeling-Based 3D Reconstruction

Implicit modeling [28, 32, 11, 12] uses function-based
decision boundaries to implicitly define surfaces for 3D
representations. DeepSDF [32] is a classical approach to
implicit modeling. It estimates the Signed Distance Func-
tion (SDF) of an object from a partial point cloud, where
the SDF specifies whether a querying position is inside or
outside the surface of the object and the distance of the
querying position from the surface. There have been some
improved versions [11, 12, 6, 46] of DeepSDF, but these
methods only focus on 3D reconstruction from a single-
view point cloud and thus, generally produce low fidelity
results when noise or annotation errors exist in an indi-
vidual sweep. In contrast, we propose a novel framework
for implicit modeling with multi-sweep point clouds. We
analyze multi-sweep consistency and complementarity in
the latent feature space and propose to resolve this prob-
lem by an optimal estimation of the 3D shape described
in the abstract implicit space. Moreover, other implicit
modeling-based methods, such as Neural Radiance Fields
(NeRF) [29], Point-NeRF [45], Direct Voxel Grid Opti-
mization [36], NeuS [42], NEAT [27], and [1, 4, 9] exist,
but they all require image input and cannot deal with only
LiDAR data.

2.3. Multi-View 3D Reconstruction

3D reconstruction from multi-view point clouds can be
categorized into conventional approaches [3, 35, 30] and
deep learning-based approaches [18, 20, 5]. Conventional
geometric approaches, such as Iterative Closest Point (ICP),
TSDF [30], and [3, 35], only leverage multi-view observa-
tions geometrically, so the resulting completion is merely
an aligned stack of partial point clouds and cannot pro-
duce watertight shapes unless the sensor fully loops around
the object. In deep learning-based approaches, [18] pro-
poses a weakly-supervised framework to directly learn 3D
shape completion from multi-view LiDAR sweeps, but its
reconstruction result is not watertight. [20] presents a shape
completion framework using a multi-view depth map-based
shape representation approach, while [5] designs a network
to use multiple partial point clouds encoded into the latent
space to estimate the optimal shape of the object. However,
the output of these networks [20, 5] are point-based repre-

sentations and in contrast with continuous field functions
such as SDFs [32], lack continuity in 3D space. Moreover,
some methods, such as [13, 15, 47], exist for reconstruct-
ing vehicle shapes from multiple observations, but [13] re-
lies on stereo images and motion priors to regularize the
shape estimation of vehicles, [15] requires multi-view cam-
era images to build semantic maps which contain 3D ve-
hicle shapes, and [47] requires inputs to follow a time se-
quence to track and reconstruct 3D objects. In contrast, our
approach simplifies 3D vehicle reconstruction from multi-
sweep point clouds into an optimal estimation of the 3D
shape described in the abstract implicit space, which sup-
ports mesh extraction at any resolution and can deal with
noise and annotation errors that exist in an individual sweep.

3. Methodology
3.1. Preliminaries

In this section, we introduce preliminaries regarding
DeepSDF [32] since our approach utilizes its framework
for extracting the latent code and decoding the continuous
SDF for 3D mesh generation. Formally, when adopting the
DeepSDF decoder into the shape completion task, points of
partial point clouds are taken as given surface points and
the SDF value is defined as the distance from the query-
ing point to the surface of the object. Interior and exterior
querying points are sampled along the normals of the sur-
face points and the SDF value is computed for each query-
ing point. Suppose the set of newly sampled interior and
exterior points is denoted as PM, where M is the number
of points. Define the mth point in PM as xm and its corre-
sponding SDF value as sm. In the domain of DeepSDF [32],
a 3D shape can be represented by a latent code z ∈ R256

in the latent space. The complete shape is obtained by opti-
mizing z via Maximum a Posterior estimation:

ẑ =
1

σ2
∥z∥22 + argmin

z

M∑
m=1

L1 (fθ (z,xm) , sm) , (1)

where L1 represents the clamped L1 distance and σ is
a regularization hyperparameter. Once the optimal latent
code ẑ is determined, the complete 3D shape can be recov-
ered by finding the zero-SDF-value isosurface through the
DeepSDF decoder f(·), which is defined as:

ŝ = fθ (ẑ,x) , (2)

where θ represents the parameters of the decoder, x ∈ R3

denotes the 3D coordinates of the querying point, and ŝ de-
notes the estimated SDF value given by f(·). Here, the sign
of ŝ, either positive or negative, indicates whether the point
lies on the exterior or interior of the surface, respectively.
Thus, the surface of the object can be implicitly represented
by the isosurface composed of points with zero SDF values.

Despite its simplicity and efficiency, DeepSDF only
takes the given surface points into consideration when gen-
erating 3D shapes (i.e., Eq. (1)). This can lead to subopti-
mal reconstruction results in areas not captured by the par-
tial point clouds since DeepSDF will reconstruct arbitrarily
based on prior knowledge learned during training. For in-
stance, referencing the ground truth of Case 1 in Figure 3,
the reconstruction results of DeepSDF for Cases 2, 3, and
4 only demonstrate high fidelity in areas with well-captured
surface points. The missing areas are reconstructed arbitrar-
ily. To resolve this problem, we analyze multi-sweep con-
sistency and complementarity in the latent feature space and
propose implicit modeling with multi-sweep point clouds in
MV-DeepSDF.

3.2. Approach Overview

As shown in Figure 2, there are three main steps in MV-
DeepSDF, namely preprocessing, optimal latent code pre-
diction, and 3D mesh extraction.

1) Preprocessing. First, we carry out Farthest Point
Sampling (FPS) [34] to sample a fixed number of points
on each raw partial point cloud since our global feature ex-
tractor requires standardized point clouds as input. For FPS,
the number of centroids is set as 256.

2) Optimal Latent Code Prediction. The post-FPS
point clouds are used as input into the global feature ex-
tractor (yellow block in Figure 2) to extract global features
for each individual point cloud. Meanwhile, the original
point clouds are used to extract latent codes for each partial
point cloud through the pre-trained DeepSDF (green block
in Figure 2). Then, as shown in the red block of Figure
2, the global features and latent codes are concatenated as
element-level representations, followed by an average pool-
ing operation to aggregate the information into a single in-
stance tensor. Finally, this instance tensor is transformed
into the predicted latent code by a fully-connected layer as
the set-level representation.

3) 3D Mesh Extraction. The predicted latent code is
converted to an SDF using a pre-trained DeepSDF decoder
[32]. The isosurface composed of querying points with
zero SDF values represents the surface of the instance and
the implicit surface can be rasterized to a 3D mesh using
Marching Cubes [25]. Since the SDF is a continuous func-
tion, it supports 3D mesh extraction at any resolution.

3.3. Consistency and Complementarity Analysis

Background. In literature [38, 51], multi-view consis-
tency refers to the consistency of describing the same in-
stance from different viewpoint observations and multi-
view complementarity refers to the complementary infor-
mation of the same instance provided by different observa-
tions. Existing methods mainly explore multi-view consis-
tency and complementarity for 3D reconstruction with par-

Figure 3. The 3D reconstruction results of DeepSDF [32] (row 2)
using different point clouds (row 1). All point clouds are sampled
from the same CAD model of ShapeNetV2 [7]. Case 1 shows the
complete dense point cloud used to train the DeepSDF decoder,
while Cases 2, 3, and 4 show the partial point clouds.

tial point clouds in explicit modeling [35, 3].
However, existing methods are not applicable for explor-

ing multi-sweep/-view consistency and complementarity in
implicit modeling because the abstract feature space oper-
ates differently than the explicit space. In implicit model-
ing, point clouds are expressed as low-dimensional feature
vectors (a.k.a. latent vectors) in the latent feature space and
the latent vectors are generated through a non-linear learn-
ing process that projects the 3D space to the feature space
through a deep neural network [32, 33, 34, 50].

Theoretical Analysis. Despite these differences, we can
still explore multi-sweep consistency and complementarity
in the latent feature space for implicit modeling. Inspired
by [26], consider a total of B observations. The latent code
for the ith observation, denoted by zi, can be represented
as:

zi = zi,c + zi,s + ei, (3)

where i = {1, · · · , B}, zi,c is the consistent component,
zi,s is the specific component, and ei is the error compo-
nent. In this work, zi,c and zi,s can be defined as follows:

zi,c = zi ∩ zgt and (zi,s + ei) = zgt − zi, (4)

where zgt is the latent code corresponding to the ground
truth shape and ‘∩’ and ‘−’ represent the similarity and dif-
ference in information captured by the two feature vectors,
respectively. Now, consider any two consistent components
zi,c and zj,c. In the first case where zi,c∩zj,c = ∅, the two
components contain completely different consistent infor-
mation, which is complementary. In the second case where
zi,c ∩ zj,c ̸= ∅, but zi,c ̸⊆ zj,c and zj,c ̸⊆ zi,c, the two
components contain some different information, which can
be aggregated as complementary information to approach
the ground truth. In the final case where zi,c ∩ zj,c ̸= ∅,
but zi,c ⊆ zj,c or zj,c ⊆ zi,c, either zi,c or zj,c contains
redundant information from the other component. While re-
dundant, this will not adversely impact complementary ag-
gregation. Thus, to make the optimal ẑ approach the ground

truth zgt, it is desired to aggregate all consistent and com-
plementary information among all individual features:

ẑ = z1,c ∪ z2,c · · · ∪ zB,c + p, (5)

where ‘∪’ refers to the complementary aggregation of infor-
mation among features and p denotes the predicted infor-
mation for regions not captured in the multi-sweeps (e.g.,
the side of the vehicle not captured by the multi-sweeps as
shown in the Cases 3 and 4 of Figure 3). In summary, with
implicit modeling, we can learn the optimal latent code ẑ
by aggregating consistent (Eqs. (3)-(4)) and complementary
(Eq. (5)) information among multi-sweeps.

3.4. Architecture Design of MV-DeepSDF

To take advantage of multi-sweep consistency and com-
plementarity in the latent feature space, we design a new ar-
chitecture for implicit modeling. Our proposed architecture
uses multi-sweep point clouds as model input and generates
an optimal estimation of the 3D shape in the implicit space
(a.k.a. the optimal latent code) as the output. The function-
ality of the network can be formulated as:

gα (Z,P) = ẑ → zgt, (6)

where g(·) denotes the desired network with associated
parameters α, Z={z1, · · · , zB} denotes the set of latent
codes, B represents the number of observations or latent
codes, P={P1, · · · ,PB} denotes the set of multi-view
point clouds, and ẑ ∈ R256 and zgt ∈ R256 represent
the estimated optimal and ground truth latent codes, respec-
tively. Hence, the goal is converted into learning a network
to make ẑ approach zgt for subsequent reconstructions. To
this end, we devise a new architecture to realize the func-
tionality required by simultaneously learning global fea-
tures and latent codes for generating predicted latent codes.

Specifically, inspired by PointNet [33], a pioneering
work for 3D classification and segmentation, we transform
the problem of shape estimation in the implicit space into
an element-to-set feature extraction problem. Given a point
cloud containing a set of 3D points, where all 3D points
consistently describe a single object since they all belong
to the same instance, we can learn a global feature for each
point cloud that aggregates complementary features from
each individual 3D point. However, only learning a global
feature cannot be used for 3D reconstruction, so we propose
to abstract the pipeline of PointNet (see Figure 4(a)) into a
generalized process (see Figure 4(b)). As shown in Fig-
ure 4(a), PointNet first computes 3D point features using
a shared MLP on each 3D point and then transforms these
point features into a single global feature through max pool-
ing. Now, suppose there exists a set composed of multiple
elements. The goal of the generalized pipeline is to extract a
feature for the entire set by aggregating all elements. To this

Figure 4. Comparison of three pipelines. (a) The pipeline of Point-
Net [33]. (b) The pipeline of an abstract generalized process to ex-
tract the set feature from the elements. (c) The proposed pipeline
to extract the instance feature from multi-sweep point clouds.

end, we propose two generalized operations. As shown in
Figure 4(b), we define operation 1 as the computation of the
element features (e.g., the shared MLP in PointNet) and op-
eration 2 as the transformation of the element features into
a set feature (e.g., the max pooling operation in PointNet).

Using this generalized process, we can now devise our
architecture to simultaneously learn global features and la-
tent codes for generating predicted latent codes. First, we
construct a global feature extractor (see yellow block in Fig-
ure 2) for learning a global feature for each point cloud
that aggregates complementary features from each individ-
ual 3D point. The architecture of this feature extractor is in-
spired by the PCN encoder [50], a variant of PointNet [33].
This block is a stack of four PointNet [33] encoders with
128, 256, 512, and 1024 units, respectively. Since this ar-
chitecture is inspired by the PCN encoder [50] and its global
feature extraction operation is applied to every individual
point cloud, we name it shared PCN. Meanwhile, to ex-
ploit the implicit information of each element, we employ a
pre-trained DeepSDF [32] model (as denoted by Eq. (1)) to
generate a latent code for each partial point cloud. Next, we
concatenate the global features and latent codes to gener-
ate the element-level representations. Then, we employ av-
erage pooling and mapping to aggregate the element-level
representations into a set-level predicted latent code. As
shown in Figure 4(c), operation 1 of our pipeline consists
of a global feature extractor and a pre-trained DeepSDF
model, while operation 2 consists of concatenation, average
pooling, and mapping. This pipeline realizes a symmetric
operation on unordered multi-sweep point clouds.

3.5. Model Training of MV-DeepSDF

We adopt a curriculum learning strategy for model train-
ing, which consists of two stages.

Stage One. In stage one, we pre-train the DeepSDF de-
coder using watertight CAD models belonging to the car
taxonomy of the ShapeNetV2 dataset [7]. The latent code z

and parameters of the decoder θ are jointly optimized as:

argmin
θ,{zj}J

j=1

J∑
j=1

(
1

σ2
∥zj∥22 +

K∑
k=1

L1 (fθ (zj ,xk) , sk)

)
,

(7)
where J represents the number of 3D shapes used for train-
ing and K represents the number of points for each shape.
During this stage, the decoder gains prior knowledge of ve-
hicle shapes and once trained, the decoder remains fixed for
the latent code generation step of our pipeline. Please refer
to [32] for the details of the training at this step.

Training Dataset Preparation for Stage Two. As shown
in Eq. (6), ground truth latent codes, partial point clouds,
and their corresponding latent codes are required for train-
ing the reconstruction network. However, real-world
datasets, such as Waymo [37] and KITTI [16], do not con-
tain ground truth shapes, so it is necessary to use a synthetic
dataset [7] for generating the training data. To resolve this
problem, we utilize the latent codes of the training shapes
(e.g., the complete dense point cloud shown in Case 1 of
Figure 3) as ground truth latent codes in the second stage of
model training. As for the partial point clouds, the domain
gap between training instances and in-the-wild instances di-
rectly determines the ability of our network to generalize to
real-world datasets. To reduce the domain gap, we adopt
PCGen [24] as our partial point cloud generation method.
PCGen places a virtual LiDAR with real-world parameters
(resolution and sampling pattern) around the vehicle and
simulates the point cloud captured by the virtual LiDAR.
This differs from the method used by DeepSDF [32], where
a simulated depth camera is used as the virtual sensor in-
stead of a LiDAR. A visual comparison of the real-world
point cloud and simulated partial point clouds obtained us-
ing various methods is given in Figure 5. As shown in Fig-
ure 5, the partial point clouds of PCGen [24] are visually
closer to the in-the-wild LiDAR sweeps of Waymo [37] and
KITTI [16] than those of the virtual depth camera approach
[32], which only raycasts evenly in the inclination and az-
imuth directions. Apart from this visual superiority, the ad-
vantages of generating partial point clouds with PCGen can
also be observed through the improved generalization abil-
ity of our network. See experiments for further details.

When generating training data from ShapeNetV2 [7], we
randomly sample one side of the vehicle to accurately re-
flect the real-world scan of a LiDAR on an ego-vehicle. In
this way, we produce six partial point clouds for each ve-
hicle. The virtual LiDAR pose for each partial point cloud
is generated using a set of restrictions. These restrictions
are set by considering the possible relative poses of an ego
vehicle’s LiDAR in the coordinate system of the other vehi-
cle. In particular, θ∈[0◦, 180◦] or θ∈[−180◦, 0◦], r∈[3, 15],
and h∈[0.8, 1.2] are used, where θ represents the azimuth,

Figure 5. Visual comparison of in-the-wild partial point clouds and
raycasted point clouds. (a) A partial point cloud from the Waymo
tracking dataset [37]. (b) The raycasted point cloud generated by
PCGen [24] using the LiDAR parameters of Waymo. (c) A par-
tial point cloud from the KITTI tracking dataset [16]. (d) The
raycasted point cloud generated by PCGen [24] using the LiDAR
parameters of KITTI. (e) The raycasted point cloud obtained from
the virtual depth camera approach used by DeepSDF [32].

r represents the distance between the LiDAR and the vehi-
cle, and h represents the height of the LiDAR to the ground.
θ, r, and h describes the pose of the virtual LiDAR with re-
spect to the frame of the other vehicle. Both r and h are
expressed in the normalized space, where the size of the ve-
hicle is normalized into the range [−1, 1]. Finally, we gen-
erate a latent code for each partial point cloud using Eq. (1).

Stage Two. In stage two, the network is trained to re-
construct 3D vehicles from multi-view partial point clouds
and their corresponding latent codes. Consider the cth ve-
hicle instance. Let PB,c represent the set of partial point
clouds, ZB,c represent the set of latent codes correspond-
ing to the multi-view point clouds, and zgt,c represent the
ground truth latent code acquired from stage one. Further-
more, let g(·) represent the function of the implicit shape
prediction network (refer to yellow and red blocks in Fig-
ure 2) and α represent the parameters of the model. The
training objective of stage two can be defined as:

argmin
α

C∑
c=1

L2 (gα(ZB,c,PB,c), zgt,c) , (8)

where C represents the number of instances employed for
training and L2 is the Mean Squared Error loss. The train-
ing details are presented in Sec. 4.1.

4. Experiments
In this section, we present qualitative and quantitative

results on two real-world autonomous driving datasets,
namely Waymo [37] and KITTI [16]. The multi-sweep
point clouds for Waymo are collected from 136 unique vehi-
cle instances of Waymo Open Dataset’s tracking data [37],
while those for KITTI are extracted from 233 vehicle in-

Figure 6. Visual comparison with the state-of-the-art methods (DeepSDF [32], C-DeepSDF [11], MendNet [12], and AdaPoinTr [49]) on
the Waymo [37] dataset. DeepSDF+MS and MendNet+MS indicate the models with multi-sweep input.

stances of KITTI’s tracking dataset [16]. Due to page limi-
tations, experiment details and some results (e.g., the results
on the synthetic dataset ShapeNetV2 [7]) are discussed in
the supplementary material.

4.1. Implementation Details

Architecture Details. Our global feature extractor,
named shared PCN, is a variant of the PCN encoder [50].
The embedded shared MLP layers are identical to those of
PointNet [33], which are implemented using 1D convolu-
tion layers. Moreover, since DeepSDF [32] normalizes the
latent codes into the range [−1, 1], we add a tanh layer after
the last shared MLP to normalize the global features into
the same range as the latent codes. The decoder is identi-
cal to that of DeepSDF [32]. We report results based on an
implementation with Python and PyTorch, but our approach
also supports implementation with MindSpore [21].

Training Details. In the first stage of training, we follow
the same method as presented in DeepSDF [32] to train the
decoder using watertight CAD models from the car taxon-
omy of ShapeNetV2 [7]. Once trained, the decoder is fixed
and projects a 256-dimensional latent code to an SDF in 3D
space. In the second stage, we train the model for 20 epochs
using the Adam optimizer [22] with a learning rate of 1e-5.
The batch size is set to 1, allowing the model to simulta-
neously see all 6 frames of the given instance at each itera-
tion. Since both the output of the model and the supervision
are 1D vectors, the loss computation is very fast. It only
takes 10 minutes to train our network on a single NVIDIA
GeForce RTX 2080 GPU during stage two. However, the
DeepSDF decoder [32] used to prepare the training dataset
for stage two through latent code generation is a more time-
consuming process.

4.2. Evaluation Protocol

Metrics. Since an in-the-wild instance does not have a
ground truth 3D shape, we follow [12] to evaluate the recon-

struction results. In particular, the multiple LiDAR sweeps
are stacked to construct the ground truth points set X .
Moreover, we sample 30,000 points on the surface of each
reconstructed mesh to generate the reconstruction points set
Y . We employ Asymmetric Chamfer Distance (ACD) [12],
which is the sum of the squared distance of each ground
truth point to the nearest point in the reconstructed point set,
to evaluate reconstruction results on real-world datasets:

ACD(X,Y) =
∑
x∈X

min
y∈Y

∥x− y∥22. (9)

For ACD, a smaller value is preferred. In addition, we
compute the recall of the ground truth points from the re-
constructed shape, which is defined as:

Recall(X,Y) =
1

|X|
∑
x∈X

[
min
y∈Y

∥x− y∥22 <= t

]
, (10)

where the threshold t is set as 0.1, following [12].

Competitors. We compare our approach with four state-
of-the-art methods, including three implicit modeling-based
methods (DeepSDF [32], C-DeepSDF [11], and MendNet
[12]) and AdaPoinTr [49], which is built upon PoinTr++
[48], the winner of Multi-View Partial Point Cloud Chal-
lenge 2021 on Completion and Registration [31]. Training
data for DeepSDF and C-DeepSDF are generated follow-
ing the original papers, while MendNet uses PCGen [24] to
generate training data. The pipeline of AdaPoinTr [49] re-
quires online generation of partial point clouds using the
virtual depth camera approach and since it is not trivial
to replace this process with PCGen, AdaPoinTr is trained
using the default setup without PCGen. Note that with
multi-sweep point clouds, competitors generate multiple re-
construction results (one for each partial point cloud), so
we compare with the best single-shot reconstruction result,
which is the mesh with the minimum ACD among the mul-
tiple single-shot reconstructed meshes. Furthermore, we re-
port the results of DeepSDF and MendNet with multi-sweep

Method \ Metric ACDmean ↓ ACDmedian ↓ Recall ↑
DeepSDF [32] 6.26 5.81 93.51
DeepSDF+MS 5.12 5.09 95.57

C-DeepSDF [11] 6.21 5.64 93.98
MendNet [12] 4.92 4.79 95.39
MendNet+MS 4.85 4.77 95.76

AdaPoinTr∗[49] 4.79 4.74 95.95
Ours-VDC 4.76 4.55 96.05

Ours 3.36 2.26 96.84
Table 1. Comparison with the state-of-the-art methods on Waymo.
ACD ↓ is multiplied by 103. Recall ↑ is presented as a percentage.
∗AdaPoinTr is trained with the default setup without PCGen on
the large-scale ShapeNet-55 [48] following the original paper [49],
and then fine-tuned on the car taxonomy of ShapeNetV2 in our ex-
periments. Other methods are only trained with the car taxonomy
of ShapeNetV2.

inputs (denoted as DeepSDF+MS and MendNet+MS), in
which we stack the partial point clouds of multi-sweeps into
a single point cloud and perform single-shot-based recon-
struction on this stacked point cloud. For our approach, in
addition to the default setup which generates the training
dataset using PCGen (denoted as Ours), we also adapt our
approach to use training data generated by the virtual depth
camera approach [32] (denoted as Ours-VDC).

4.3. Results on Waymo

The qualitative and quantitative comparisons of our ap-
proach with the state-of-the-art methods are presented in
Figure 6 and Table 1, respectively. Overall, our approach
achieves the best reconstruction results both qualitatively
and quantitatively. Specifically, from Figure 6 and Table
1, we can see that DeepSDF [32] and C-DeepSDF [11]
are sensitive to noise, resulting in low fidelity. MendNet
[12] generates more stable results than DeepSDF and C-
DeepSDF, but its reconstruction meshes contain some ir-
regular holes on the surface (see sixth column of Figure 6).
Although AdaPoinTr [49] outputs point clouds with good
fidelity, it expresses the shape with a limited resolution and
thus fails to describe continuous local details (see seventh
column of Figure 6).

Compared with vanilla DeepSDF and MendNet,
DeepSDF+MS and MendNet+MS yield messier sur-
faces/structures (see fourth and eighth columns of Figure
6), despite their better metric scores. This shows that even
though transforming all partial point clouds into a single
frame does benefit information aggregation, it also accu-
mulates noise and annotation errors in the process. Hence,
due to noise in real-world data, it is not practical to geo-
metrically stack multi-sweep point clouds and directly per-
form single-shot-based reconstruction. In comparison, our
approach generates smooth watertight shapes (see last two
columns of Figure 6) with high fidelity (see Table 1). Fur-
thermore, Ours outperforms Ours-VDC, which indicates

Method \ Metric ACDmean ↓ ACDmedian ↓ Recall ↑
DeepSDF [32] 6.81 6.17 80.65
DeepSDF+MS 6.11 5.83 82.73

C-DeepSDF [11] 6.73 5.99 80.77
MendNet [12] 5.94 5.64 83.84
MendNet+MS 5.83 5.61 84.26

AdaPoinTr [49] 5.89 5.67 84.20
Ours-VDC 5.75 5.24 84.39

Ours 4.27 3.01 85.88
Table 2. Comparison with the state-of-the-art methods on KITTI.
ACD ↓ is multiplied by 103. Recall ↑ is presented as a percentage.

that using PCGen to prepare training partial point clouds
(refer to Figure 5) reduces the domain gap between training
and in-the-wild instances.

4.4. Results on KITTI

The qualitative and quantitative comparisons of our ap-
proach against the state-of-the-art methods are presented
in Figure 7 and Table 2, respectively. From these results,
we can also observe the superior performance of our ap-
proach over the state-of-the-art competitors. Specifically,
qualitatively, as shown in Figure 7, our approaches (Ours
and Ours-VDC) are more robust to noise when compared to
DeepSDF [32], DeepSDF+MS, and C-DeepSDF [11] and
generate smoother, watertight surfaces compared to Mend-
Net [12], AdaPoinTr [49], and MendNet+MS. Quantita-
tively, as shown in Table 2, Ours yields the best ACD and
Recall results, while Ours-VDC performs the second best.

4.5. Ablation Study

To verify the effectiveness of the main components of
our approach, we carry out a series of experiments on
Waymo [37] as shown in Table 3. The first row of Table
3 refers to the baseline model of our approach, which is
a shared PCN encoder (Enc.) (yellow block in Figure 2)
followed by an average pooling layer (Avg.). This archi-
tecture is similar to that of MendNet [12], which adds two
stacked PointNet encoders [33] to the DeepSDF decoder.
In the second row, we directly use bitwise multiplication
to merge the global features (B×256, instead of B×1024)
and the latent codes (B×256). However, this results in ob-
vious performance degradation, which shows that directly
merging the global features and latent codes obtained from
multi-sweep information does not bring improvement to our
baseline model. In comparison, in the third row, we add
our proposed components, namely the input of latent codes
(Dep.), concatenation (Con.), and mapping (Map.), to the
baseline model, but with max pooling. This brings signif-
icant performance improvement compared to the first and
second rows. Then, in the last row, we further replace max
pooling with average pooling, which includes all proposed
components of this work. This yields the best results.

Figure 7. Visual comparison with the state-of-the-art methods (DeepSDF [32], C-DeepSDF [11], MendNet [12], and AdaPoinTr [49]) on
the KITTI [16] dataset. DeepSDF+MS and MendNet+MS indicate the models with multi-sweep input.

Operation 1 Operation 2 Metric
Enc. Dep. Mer. Pool Map. ACD ↓ Recall ↑
✓ Avg. 4.89 95.50
✓ ✓ Mul. Avg. 7.33 84.93
✓ ✓ Con. Max. ✓ 4.35 96.61
✓ ✓ Con. Avg. ✓ 3.36 96.84

Table 3. The ablation study of the proposed framework. Refer
to Figure 4(b) to see the definitions of operations 1 and 2. Enc.:
the shared PCN encoder; Dep.: latent code generation through
DeepSDF as input; Mer.: the operation to merge global features
and latent codes; Map.: the mapping conducted by the fully-
connected layer; Con.: the concatenation; Mul.: the bitwise mul-
tiplication; Avg.: average pooling; Max.: max pooling. ACD ↓ is
multiplied by 103. Recall ↑ is presented as a percentage.

4.6. Extension to Other Taxonomies

It is straightforward to extend the proposed shape com-
pletion framework to other taxonomies. Suppose that we
want to extend MV-DeepSDF to perform shape comple-
tion on sofas. First, a new DeepSDF decoder [32] needs to
be pre-trained using watertight CAD models from the sofa
taxonomy of ShapeNetV2 [7] or another synthetic dataset.
Then, PCGen [24] or another sampling technique (e.g., the
approaches proposed in [32, 48]) can be used to generate
partial point clouds for each sofa instance. These partial
point clouds are then passed into the pre-trained DeepSDF
decoder [32] to produce their corresponding latent codes.
Finally, the partial point clouds and latent codes can be
used together to train MV-DeepSDF. Following the pipeline
above, we evaluate on indoor sofas of ShapeNetV2 and out-
door cyclists of Waymo and show that our method is versa-
tile and extendible to other taxonomies (see Figure 8).

While existing datasets, such as ScanNet [8] and Se-
mantic3D [19], provide real-world point cloud data for
many taxonomies, the availability of tracking data for multi-
sweep scans is still fairly limited to the autonomous driving
industry. Hence, it is necessary to first obtain the corre-
sponding multi-sweep tracking labels for the desired class

Figure 8. Visual comparison of DeepSDF and MV-DeepSDF on
the indoor sofa of ShapeNetV2 and the outdoor cyclist of Waymo.

when choosing to adopt MV-DeepSDF on a new taxonomy.

5. Conclusion
In this work, we propose a new MV-DeepSDF frame-

work to facilitate implicit modeling with multi-sweep point
clouds for autonomous driving. The main idea is to ab-
stract 3D vehicle reconstruction from multi-sweeps into an
element-to-set feature extraction problem. Namely, we con-
sider the multi-sweeps of a vehicle as elements composing a
set and infer the set feature, which is an optimal estimation
of the 3D shape described in the abstract implicit space. In
particular, we present a theoretical analysis of multi-sweep
consistency and complementarity in the latent feature space.
Guided by this analysis, we design a new architecture to
optimally estimate the Signed Distance Function shape of
a vehicle from its in-the-wild multi-sweep point clouds.
Qualitative and quantitative evaluations on both real-world
and synthetic datasets show the superiority of our approach
over the state-of-the-art methods.
Limitation. Despite promising results, our approach still
relies on a synthetic 3D dataset to gain prior knowledge of
3D shapes for reconstruction. Exploring reconstruction by
learning directly from real data is worthy of further study.

Acknowledgments
The authors gratefully acknowledge the support of

MindSpore, CANN, and Ascend AI Processor. The authors
would also like to thank Andrew Yang and Hunter Schofield
for their assistance.

Supplementary Material

A. Overview

This material provides quantitative and qualitative exper-
imental results, dataset and implementation details, and dis-
cussions that are supplementary to the main paper.

B. Dataset Details

The multi-sweep LiDAR point clouds for Waymo are
collected from 136 unique vehicle instances of Waymo
Open Dataset’s tracking data [37], while those for KITTI
are extracted from 233 unique vehicle instances of KITTI’s
tracking dataset [16]. In total, we extracted 3943 partial
point clouds from the 136 vehicle instances of Waymo and
4235 partial point clouds from the 233 vehicle instances
of KITTI. These raw multi-sweep point clouds are directly
used as model input to obtain experimental results on our
model and the state-of-the-art methods [32, 11, 12, 49].
When performing inference, all partial point cloud frames
from the given instance are simultaneously passed into our
model as input.

To construct the ground truth stacked point cloud, we
first aggregate all partial point clouds within a multi-sweep
to generate a dense stacked point cloud. Since this stacked
point cloud contains unwanted noise, such as ground plane
points and points lying on the exterior or interior of the ve-
hicle surface, we perform statistical outlier removal on the
stacked point cloud, which computes the average distance
of a point from its neighbours and removes all points lying
farther away from their neighbours than average. Denois-
ing is essential for dataset processing since the presence
of noise in the ground truth shape can result in false pos-
itives and false negatives in model performance, whereby a
messy shape generated by a model that fits to the noise of
the ground truth is deemed high fidelity and a smooth shape
generated by a noise-robust model is deemed low fidelity.

C. Visualization Results

Due to the page limitation of the main paper, we present
more visualization results of our model in Figure 9. Ad-
ditionally, to evidently present the significant improvement
of our method over the baseline vanilla DeepSDF [32], a
visual comparison on Waymo [37] is given in Figure 10.

D. Results on ShapeNetV2

We randomly preserve 300 vehicles from the car taxon-
omy of ShapeNetV2 [7] as the test dataset. The remain-
der is used to train our network in stage one. Each ve-
hicle instance is comprised of 6 partial point clouds gen-
erated by PCGen [24] under Waymo’s LiDAR parame-
ters. Note that the following results are generated solely
using PCGen [24] to sample partial point clouds and the

use of other sampling techniques (e.g., the approaches pro-
posed in [32, 48]) would yield different results on the same
ShapeNetV2 dataset [7].

Metrics. Since ground truth shapes are readily available
in synthetic datasets such as ShapeNetV2 [7], we use Cham-
fer Distance (CD) [14] to evaluate the 3D reconstruction re-
sults. Following DeepSDF [32], we sample 30,000 points
on the surface of both the ground truth and reconstructed
mesh. Given two point sets, the CD is the sum of the
squared distance of each point to the nearest point in the
other point set:

CD (X,Y) =
∑
x∈X

min
y∈Y

∥x− y∥22 +
∑
y∈Y

min
x∈X

∥x− y∥22.

(11)
As outlined in the main paper, we only compare the re-

sults of our model with the best single-shot reconstruction
result, which is the mesh with the minimum CD among the
multiple single-shot reconstructed meshes.

Qualitative and Quantitative Comparison. The qualita-
tive and quantitative comparison of our approach against the
state-of-the-art methods (DeepSDF [32], C-DeepSDF [11],
MendNet [12], and AdaPoinTr [49]) are presented in Fig-
ure 11 and Table 4, respectively. Note that when testing on
ShapeNetV2 [7], since PCGen [24] is used to generate both
the training and test dataset, we only present Ours, in con-
trast with the comparison of Ours with Ours-VDC in the
main paper. The meshes generated by DeepSDF [32], C-
DeepSDF [11], and MendNet [12] show high fidelity com-
pared to their performance on real-world datasets, but still
show inferior performance to Ours. AdaPoinTr [49] also
produces shapes with decent fidelity, but the reconstructed
result is not watertight and expresses the shape with a lim-
ited resolution which fails to describe the continuous sur-
face of the vehicle.

Method \ Metric CDmean ↓ CDmedian ↓
DeepSDF [32] 5.47 5.15

C-DeepSDF [11] 5.31 5.03
MendNet [12] 4.22 3.65

AdaPoinTr [49] 4.10 3.36
Ours 3.17 2.54

Table 4. Comparison of the proposed network with the state-of-
the-art approaches on ShapeNetV2 [7]. CD is multiplied by 103.

E. Comparison to a Non-Learning Approach

We now present an alternative non-learning approach,
computing the mean latent code, for the task of multi-sweep

Figure 9. Additional visualization results of MV-DeepSDF on the Waymo [37] and KITTI [16] datasets.

Figure 10. Visual comparison of MV-DeepSDF and DeepSDF [32] on Waymo [37]. Individual point clouds are given in the first row and
their corresponding reconstruction results from vanilla DeepSDF in the second row.

Figure 11. Visual comparison with the state-of-the-art methods (DeepSDF [32], C-DeepSDF [11], MendNet [12], and AdaPoinTr [49]) on
the ShapeNetV2 [7] dataset.

3D vehicle reconstruction. As introduced in [32], linear in-
terpolation between two latent codes in the latent space can
also generate meaningful shape representations. Moreover,
averaging is a common method of linear interpolation used
for reducing error among multi-observation data. To this
end, we investigate the effect of computing the mean la-
tent code from the single-shot-based latent codes of a given
multi-sweep and using this mean latent code for mesh re-

construction. We present the case shown in Figure 12,
where two single-shot partial point clouds, PC 1 and PC
2, are used to generate two latent codes, z1 and z2, and
meshes, Mesh 1 and Mesh 2, respectively. We define the
mean latent code as zmean = 0.5(z1+z2) and generate the
corresponding mesh, denoted by Mean. As shown, Mean
is simply a uniform fusion of Mesh 1 and Mesh 2. More-
over, Mean is inferior to Mesh 2, the best single-shot in this

Figure 12. Comparison of the result of our approach to that of the
mean latent code on ShapeNetV2 [7]. The proposed network is
not fine-tuned.

example, which is also inferior to Ours, the result of our
proposed model.

Num of PCs ACDmean↓ ACDmedian↓
3 3.47 2.44
6 3.36 2.26
9 3.32 2.21

Table 5. Ablation study on Waymo [37] using different numbers
of point clouds per instance. ACD is multiplied by 103.

F. Effect of Number of Point Clouds

The number of frames corresponding to an individual ve-
hicle instance in Waymo [37] and KITTI [16] ranges up to
240 partial point clouds per instance. However, the vast
majority of instances only contain between 3 to 9 partial
point clouds. In this section, we investigate the relation-
ship between the number of partial point clouds provided
for each instance during stage two of training and overall
model performance. Table 5 presents the experimental re-
sults of providing different numbers of partial point clouds
to our model on Waymo [37]. As shown, our model perfor-
mance improves as the number of point clouds increases.
However, since generating the latent code for each partial
point cloud with DeepSDF [32] is a timely process (around
10 seconds), we choose 6 observations per instance as a
trade-off between performance and efficiency.

G. Effect of Number of Points Per Point Cloud

The number of points captured in a single frame of
Waymo [37] and KITTI [16] mostly falls into a range of 300
to 1000 points. Thus, we set the number of points per point
cloud as 256 in our framework for performing FPS. In this
section, we investigate the relationship between the number
of points per point cloud during inference and model perfor-
mance. Table 6 presents the experimental results of varying
the number of points per point cloud on both DeepSDF and
our model with Waymo [37]. As shown, when the num-
ber of points decreases, the performance of DeepSDF drops
dramatically whereas our method holds steady.

Num of Points 256 128
Metric ACDmean ↓ ACDmedian ↓ ACDmean ↓ ACDmedian ↓

DeepSDF 6.26 5.81 12.52 8.51
Ours 3.36 2.26 3.47 2.64

Table 6. Ablation study on Waymo [37] using different numbers
of points per point cloud. ACD is multiplied by 103.

References
[1] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,

Matthias Nießner, and Justus Thies. Neural rgb-d surface re-
construction. In Proc. of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6290–6301,
2022.

[2] Heli Ben-Hamu, Haggai Maron, Itay Kezurer, Gal Avineri,
and Yaron Lipman. Multi-chart generative surface modeling.
ACM Transactions on Graphics, 37(6):1–15, 2018.

[3] Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor fusion IV: control paradigms and data
structures, volume 1611, pages 586–606. Spie, 1992.

[4] Hongrui Cai, Wanquan Feng, Xuetao Feng, Yan Wang, and
Juyong Zhang. Neural surface reconstruction of dynamic
scenes with monocular rgb-d camera. In Proc. of Conference
on Neural Information Processing Systems, 2022.

[5] Yingjie Cai, Kwan-Yee Lin, Chao Zhang, Qiang Wang, Xi-
aogang Wang, and Hongsheng Li. Learning a structured la-
tent space for unsupervised point cloud completion. In Proc.
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5543–5553, 2022.

[6] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt,
Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction. In Proc. of European Conference on Com-
puter Vision, pages 608–625. Springer, 2020.

[7] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[8] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. of the IEEE conference on computer vision and pat-
tern recognition, pages 5828–5839, 2017.

[9] Angela Dai, Christian Diller, and Matthias Nießner. Sg-nn:
Sparse generative neural networks for self-supervised scene
completion of rgb-d scans. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 849–858, 2020.

[10] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and
shape synthesis. In Proc. of the IEEE conference on com-
puter vision and pattern recognition, pages 5868–5877,
2017.

[11] Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Neva-
tia, and Leonidas J Guibas. Curriculum deepsdf. In Proc.
of European Conference on Computer Vision, pages 51–67.
Springer, 2020.

[12] Shivam Duggal, Zihao Wang, Wei-Chiu Ma, Sivabalan
Manivasagam, Justin Liang, Shenlong Wang, and Raquel Ur-
tasun. Mending neural implicit modeling for 3d vehicle re-
construction in the wild. In Proc. of IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 1900–
1909, 2022.

[13] Francis Engelmann, Jörg Stückler, and Bastian Leibe. Samp:
shape and motion priors for 4d vehicle reconstruction. In
Proc. of IEEE Winter Conference on Applications of Com-
puter Vision, pages 400–408. IEEE, 2017.

[14] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proc. of the IEEE conference on computer vision
and pattern recognition, pages 605–613, 2017.

[15] Qiaojun Feng, Yue Meng, Mo Shan, and Nikolay Atanasov.
Localization and mapping using instance-specific mesh
models. In Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4985–4991. IEEE,
2019.

[16] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013.

[17] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3d surface generation. In Proc. of the
IEEE conference on computer vision and pattern recogni-
tion, pages 216–224, 2018.

[18] Jiayuan Gu, Wei-Chiu Ma, Sivabalan Manivasagam,
Wenyuan Zeng, Zihao Wang, Yuwen Xiong, Hao Su, and
Raquel Urtasun. Weakly-supervised 3d shape completion in
the wild. In Proc. of European Conference on Computer Vi-
sion, pages 283–299. Springer, 2020.

[19] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan D Weg-
ner, Konrad Schindler, and Marc Pollefeys. Semantic3d.
net: A new large-scale point cloud classification benchmark.
arXiv preprint arXiv:1704.03847, 2017.

[20] Tao Hu, Zhizhong Han, Abhinav Shrivastava, and Matthias
Zwicker. Render4completion: Synthesizing multi-view
depth maps for 3d shape completion. In Proc. of the
IEEE/CVF International Conference on Computer Vision
Workshops, pages 0–0, 2019.

[21] Huawei. Mindspore. https://www.mindspore.cn/,
2020.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proc. of the International Con-
ference on Learning Representations (Poster), 2015.

[23] Chen Kong, Chen-Hsuan Lin, and Simon Lucey. Using
locally corresponding cad models for dense 3d reconstruc-
tions from a single image. In Proc. the IEEE conference on
computer vision and pattern recognition, pages 4857–4865,
2017.

[24] Chenqi Li, Yuan Ren, and Bingbing Liu. Pcgen: Point cloud
generator for lidar simulation. In Proc. of International Con-
ference on Robotics and Automation, 2023.

[25] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987.

[26] Shirui Luo, Changqing Zhang, Wei Zhang, and Xiaochun
Cao. Consistent and specific multi-view subspace cluster-
ing. In Proc. of the AAAI conference on artificial intelligence,
volume 32, 2018.

[27] Xiaoxu Meng, Weikai Chen, and Bo Yang. Neat: Learn-
ing neural implicit surfaces with arbitrary topologies from
multi-view images. Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, June 2023.

[28] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proc. of
IEEE Conf. on Computer Vision and Pattern Recognition,
2019.

[29] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.

[30] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and track-
ing. In Proc. IEEE international symposium on mixed and
augmented reality, pages 127–136. Ieee, 2011.

[31] Liang Pan, Tong Wu, Zhongang Cai, Ziwei Liu, Xumin Yu,
Yongming Rao, Jiwen Lu, Jie Zhou, Mingye Xu, Xiaoyuan
Luo, et al. Multi-view partial (mvp) point cloud challenge
2021 on completion and registration: Methods and results.
arXiv preprint arXiv:2112.12053, 2021.

[32] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proc. of the IEEE/CVF conference on computer vision and
pattern recognition, pages 165–174, 2019.

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proc. of the IEEE conference on com-
puter vision and pattern recognition, pages 652–660, 2017.

[34] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017.

[35] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (fpfh) for 3d registration. In Proc. of
IEEE international conference on robotics and automation,
pages 3212–3217. IEEE, 2009.

[36] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct
voxel grid optimization: Super-fast convergence for radiance
fields reconstruction. In Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5459–
5469, 2022.

[37] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proc. of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 2446–2454, 2020.

[38] Shubham Tulsiani, Alexei A Efros, and Jitendra Malik.
Multi-view consistency as supervisory signal for learning

https://www.mindspore.cn/

shape and pose prediction. In Proc. of the IEEE conference
on computer vision and pattern recognition, pages 2897–
2905, 2018.

[39] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet:
Feature-steered graph convolutions for 3d shape analysis. In
Proc. of the IEEE conference on computer vision and pattern
recognition, pages 2598–2606, 2018.

[40] Dan Wang, Xinrui Cui, Xun Chen, Zhengxia Zou, Tianyang
Shi, Septimiu Salcudean, Z Jane Wang, and Rabab Ward.
Multi-view 3d reconstruction with transformers. In Proc.
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5722–5731, 2021.

[41] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In Proc. of the European
conference on computer vision, pages 52–67, 2018.

[42] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021.

[43] Xiaogang Wang, Marcelo H Ang, and Gim Hee Lee. Voxel-
based network for shape completion by leveraging edge gen-
eration. In Proc. of the IEEE/CVF international conference
on computer vision, pages 13189–13198, 2021.

[44] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao,
Shengping Zhang, and Wenxiu Sun. Grnet: Gridding resid-
ual network for dense point cloud completion. In Proc. of the
European conference on computer vision, pages 365–381.
Springer, 2020.

[45] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,
Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-
based neural radiance fields. In Proc. of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5438–5448, 2022.

[46] Jianglong Ye, Yuntao Chen, Naiyan Wang, and Xiaolong
Wang. Gifs: Neural implicit function for general shape rep-
resentation. In Proc. of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12829–12839,
2022.

[47] Jianglong Ye, Yuntao Chen, Naiyan Wang, and Xiaolong
Wang. Online adaptation for implicit object tracking and
shape reconstruction in the wild. IEEE Robotics and Au-
tomation Letters, 7(4):8909–8916, 2022.

[48] Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu,
and Jie Zhou. Pointr: Diverse point cloud completion with
geometry-aware transformers. In Proc. of the IEEE/CVF
international conference on computer vision, pages 12498–
12507, 2021.

[49] Xumin Yu, Yongming Rao, Ziyi Wang, Jiwen Lu, and
Jie Zhou. Adapointr: Diverse point cloud completion
with adaptive geometry-aware transformers. arXiv preprint
arXiv:2301.04545, 2023.

[50] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. Pcn: Point completion network. In Proc.
of International Conference on 3D Vision, pages 728–737,
2018.

[51] Changqing Zhang, Zongbo Han, Huazhu Fu, Joey Tianyi
Zhou, Qinghua Hu, et al. Cpm-nets: Cross partial multi-
view networks. Advances in Neural Information Processing
Systems, 32, 2019.

