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Abstract

Autonomous vehicles (AV) require that neural networks
used for perception be robust to different viewpoints if they
are to be deployed across many types of vehicles without the
repeated cost of data collection and labeling for each. AV
companies typically focus on collecting data from diverse
scenarios and locations, but not camera rig configurations,
due to cost. As a result, only a small number of rig varia-
tions exist across most fleets. In this paper, we study how
AV perception models are affected by changes in camera
viewpoint and propose a way to scale them across vehicle
types without repeated data collection and labeling. Using
bird’s eye view (BEV) segmentation as a motivating task,
we find through extensive experiments that existing percep-
tion models are surprisingly sensitive to changes in camera
viewpoint. When trained with data from one camera rig,
small changes to pitch, yaw, depth, or height of the camera
at inference time lead to large drops in performance. We
introduce a technique for novel view synthesis and use it
to transform collected data to the viewpoint of target rigs,
allowing us to train BEV segmentation models for diverse
target rigs without any additional data collection or label-
ing cost. To analyze the impact of viewpoint changes, we
leverage synthetic data to mitigate other gaps (content, ISP,
etc). Our approach is then trained on real data and evalu-
ated on synthetic data, enabling evaluation on diverse tar-
get rigs. We release all data for use in future work. Our
method is able to recover an average of 14.7% of the IoU
that is otherwise lost when deploying to new rigs.

1. Introduction
Neural networks (NNs) are becoming ubiquitous across

domains. Safety critical applications, such as autonomous
vehicles (AVs), rely on these NN to be robust to out of dis-
tribution (OOD) data. Yet, recent work has drawn atten-
tion to the susceptibility of NNs to failure when exposed
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†Corresponding author: Jose M. Alvarez (josea@nvidia.com).

Figure 1. Impact of Changed Camera Viewpoint: We find that
the performance of state-of-the-art methods for bird’s eye view
(BEV) segmentation quickly drop with small changes to viewpoint
at inference. Above we see predictions from Cross View Trans-
formers [29] trained on data from a source rig (top). The target rig
pitch is reduced by 10◦ (bottom), leading a 17% drop in IoU.

to OOD data, such as adversarial corruptions [10], unseen
weather conditions [15], and new geographic regions [6].
While each of these pose a significant challenge for safety
critical applications, we focus on another distribution shift,
which, thus far, has been understudied in the research liter-
ature – changes in camera viewpoint between train data and
test data. Because camera viewpoint changes are realistic in
AVs, we study their impact on AV perception tasks.

AVs use cameras around the ego-vehicle to perceive their
surroundings. Using images from each camera, NNs detect
and segment objects in the scene, such as vehicles, pedestri-
ans, roads, and more. This information is used by trajectory
planners to decide how the ego-vehicle navigates. Camera
viewpoint for AVs may differ between train and test in sev-
eral real-world scenarios. First, the camera viewpoint may
change over time due to wear and tear or damage. Second,
camera viewpoint may change due to installation variation.
Third, and most relevant for our work, if a single NN is
to be deployed across different types of vehicles, it must
be able to generalize to the camera viewpoints of each car.
Collecting and labeling train data for each target rig is not
scalable and quickly becomes intractable for AV companies
wishing to scale across many types of vehicles due to cost,
thus motivating our work to transform collected data into
the viewpoint of diverse target rigs to use for training.

The goal of this paper is to bring understanding and a
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first approach to a real-world problem in the AV space that
has yet to receive attention in the research literature – gen-
eralization from a source to target camera rig. We focus on
bird’s eye view (BEV) segmentation from RGB data to mo-
tivate how changing camera viewpoint can affect AV per-
ception models. We study this problem by conducting an
in-depth analysis on the impact changing the camera view-
point at inference time has on recent BEV segmentation
models. Our findings indicate that even small changes in
camera placement at inference time degrade BEV segmen-
tation accuracy, as illustrated in Fig. 1. We then propose
a method to improve generalization to a target rig by sim-
ulating views in the target perspective. We show that in-
corporating data generated from novel view synthesis into
training can significantly reduce the viewpoint domain gap,
bringing the BEV segmentation model to the same level of
accuracy as when there is no change in camera viewpoint,
without having to collect or label any additional data. We
compare our approach with other strategies, such as aug-
menting the camera extrinsics and labels during training,
and find that our approach leads to better accuracy. Lit-
tle work has focused on the impact of viewpoint changes
for AV perception, and, to the best of our knowledge, we
are the first to study the impact of diverse camera viewpoint
changes on 3D AV perception tasks, such as BEV segmenta-
tion. We hope that this paper will encourage more research
on the important problem of viewpoint robustness in AV.

Our paper makes the following contributions:

• We highlight the understudied problem of viewpoint
robustness in bird’s eye view segmentation for au-
tonomous vehicles (AV) through an in-depth analysis
revealing that recent models fail to generalize to differ-
ent camera viewpoints at inference time.

• We propose a viewpoint augmentation framework for
AV; we develop a novel view synthesis method that can
be used to transform training data to target viewpoints
and show that it improves the robustness of bird’s eye
view segmentation models to viewpoint changes.

• We provide datasets that can be used to benchmark fu-
ture work on viewpoint robustness in AV.

Because real-world AV datasets from a diverse set of cam-
era rigs are not publicly available, we use simulated data
both for (1) training and evaluation in our analysis and
(2) evaluation of our proposed technique. Our synthetic
datasets can be used for future efforts to benchmark the gen-
eralization abilities of different AV perception methods to
viewpoint changes. Datasets are publicly available on our
project page. The first dataset, rendered from CARLA, con-
sists of both training and testing data, allowing for isolated
analysis of the impact of viewpoint changes on BEV seg-
mentation models (example images in Fig. 2). The second

dataset, rendered with NVIDIA DRIVE Sim [20], is signif-
icantly more photorealistic and consists of test sets from a
diverse set of camera viewpoints. Thus, it can be used to
evaluate models trained on real data, as we show in Section
5. Both datasets include 3D bounding box labels.

2. Related Work
2.1. Viewpoint Robustness

Recent work has drawn attention to the susceptibility of
NNs to misclassify when presented with distributions not
seen during training. Madan et al. [14] show that both
convolutional- and transformer-based classifiers are fooled
by small viewpoint changes, and they introduce a search
strategy for finding adversarial viewpoints, which leads to
misclassifications over 71% of the time. Similarly, [13]
shows that small viewpoint changes degrade classification
performance, especially when paired with out of distribu-
tion (OOD) categories, and demonstrates that increasing the
diversity of training data is an effective strategy to mitigate
this issue. Do et al. [4] use homography to move images
closer to the distribution of training data at inference time.
Coors et al. [3] study the impact of viewpoint changes for
2D semantic segmentation for AV, but do not explore 3D
tasks. In contrast, we focus on providing a thorough analy-
sis and a solution to the problem of viewpoint robustness for
3D AV perception tasks, focusing on BEV segmentation.

2.2. Novel View Synthesis

Novel view synthesis (NVS) provides a way to render
images from unseen viewpoints of a scene, and thus could
be used to improve the robustness of perception models to
viewpoint changes. Many methods have been proposed for
NVS in recent years [18, 16, 19], many of which are based
on Neural Radiance Fields (NeRF) [17]. However, NeRF
still faces two challenges that limit its applicability for our
use case: (1) getting NeRF to generalize to dynamic scenes,
which are common in AV, is an open research problem, and
while there is promising work in this direction [28, 22], the
setup is often too constrained and simplified to fit the AV
problem setting, and (2) NeRF is challenging to scale due to
lack of generalizability, so multiple NeRFs must be trained
to perform NVS across scenes. While there is work aimed
at generalizing NeRF [12], it remains an open problem and
current methods are often constrained. Other methods for
NVS rely on monocular depth estimation and can generalize
across scenes when the depth estimation network is trained
on diverse data. We leverage Worldsheet in our work [11],
which is described in more detail in Sec. 4.1.

2.3. Bird’s Eye View Segmentation

Bird’s eye view (BEV) segmentation — the task of seg-
menting a scene in the top-down view (BEV) from 2D im-
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Figure 2. Datasets rendered in CARLA across viewpoints: For the analysis part of our work, we use CARLA to simulate different
viewpoints. We rendered datasets from a total of 36 viewpoints, a few of which are highlighted above, including the source rig (extrinsics
from nuScenes [2] dataset), +12◦ yaw, +12◦ pitch, +21 inch height, and -12◦ pitch and +18 inch height together.

Figure 3. Analysis of impact of viewpoint changes in CARLA: We train a source BEV model using Lift Splat Shoot (LSS) [21] and
Cross View Transformers (CVT) [29], denoted at point 0 on the x axis of each graph. We then test the model across different target rigs
where the camera pitch, yaw, height, or pitch and height are changed, as denoted by the different points along the x axes. We also trained
each model on the target rig directly and refer to this model as the ”oracle”, as it reflects the expected upper bound IoU for each viewpoint.

ages — is a useful task for benchmarking AV perception
[21, 24, 1]. BEV segmentation requires a 2D to 3D un-
projection to predict the position of objects surrounding
the ego-vehicle from the BEV perspective. BEV segmen-
tation models usually consist of an image encoder, which
extracts the features from images from the camera rig, and
a decoder, which uses the image features to predict the ob-
jects of interest in the BEV coordinate frame. Existing
methods condition on the extrinsics and intrinsics of each
camera in different ways. Lift-Splat-Shoot (LSS) [21] and
Orthographic Feature Transform (OFT) [25] unproject fea-
tures into a point cloud according to each camera’s intrinsic
and extrinsic parameters. LSS performs sum pooling along
each pillar in the map-view, while OFT performs average
pooling. Other methods, such as Cross View Transform-
ers (CVT) [29], treat camera intrinsics and extrinsics as a
feature, rather than explicitly unprojecting. We use LSS
and CVT to conduct benchmarks, since these two methods
encompass both convolutional and transformer-based archi-
tectures and explicit and implicit geometric representations.

3. Measuring the Impact of Camera Viewpoint
Variations on BEV Segmentation

Method: In this section, we introduce our approach and
results for measuring the impact of changing the camera

viewpoint at inference time for BEV segmentation mod-
els trained on a single, source rig. We use simulated data
from CARLA [5] for this analysis for two reasons: (1) us-
ing simulated data allows us to isolate the domain gaps be-
tween training and testing such that only camera viewpoint
changes, and (2) real AV datasets with large differences in
camera position are not publicly available. Examples of dif-
ferent camera viewpoints rendered in CARLA are shown in
Fig. 2. For simplicity and ease of interpretation of our re-
sults, we conduct all experiments on a single camera rig,
containing a front facing camera, which we refer to as the
source rig. We first train a BEV segmentation model on data
rendered from the source rig. For this rig, we use the cam-
era parameters of sessions from the nuScenes dataset [2].
Then, we render train and test datasets from different target
rigs, which contain variations to the yaw, pitch, height, or
pitch and height of the camera. The train datasets are used
to train an oracle for each target rig, while the test datasets
are used to evaluate the model trained on the source rig in
comparison to the oracle. For completeness, we sweep over
a large range of each extrinsic and render a train and test
dataset on regular intervals. For pitch and yaw, we sweep
from -20◦ to 20◦, rendering a dataset every 4◦. For height,
we sweep from 0 in to 30 in, rendering a dataset every 3 in.
For height and pitch together, we sweep from 0◦ and 0 in to
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-20◦ and 30 in, rendering a dataset at every -4◦ and 6 in.
To understand the domain gap introduced by changes in

camera position, we test the “source model”, which is the
model trained on data from the source rig, across each test
dataset, where each test dataset contains changes to either
yaw, pitch, height, or pitch and height together. We then
compare the test accuracy of the source model to the test
accuracy of the oracle model, which was only trained on
data from the target rig. The oracle model serves as an upper
bound on model performance since there is no domain gap
between the train and test datasets.
Model Details: We conduct our analysis using two BEV
segmentation models, Lift Splat Shoot (LSS) and Cross
View Transformers (CVT). LSS uses an explicit geometric
operation to map objects in the camera coordinate system
to the bird’s eye coordinate system. It does this by using
each camera’s intrinsic and extrinsic parameters to construct
a frustum shaped point cloud per camera where predicted
objects are placed inside. A convolutional encoder maps
images to features and depths, which are unprojected into
the frustum, and a cumulative summing operation is done
over the features in the vertical pillars of the frustum be-
fore the decoder then predicts the final segmentation. In
contrast, CVT uses a transformer to learn features over im-
ages, extrinsics, and intrinsics. The extrinsic and intrinsic
parameters are used to condition the segmentation network,
such that it implicitly learns correlations between the pa-
rameters and positions of objects relative to the ego-vehicle.
We use these two architectures because they cover both ex-
plicit and implicit geometric representations and convolu-
tional and transformer backbones, allowing us to test the
impact of each on generalization to viewpoint changes.
Results: Results of our analysis are shown in Fig. 3. We see
that the performance of both LSS and CVT suffers drasti-
cally with even small changes to camera viewpoint, whether
it be pitch, yaw, height, or pitch and height together. Be-
cause of the architecture of LSS, which includes cumula-
tive summing in the vertical pillars within each frustum,
changes to camera height have a relatively small impact on
downstream BEV segmentation performance in comparison
to other viewpoint changes. CVT lacks this generalization
to changes in camera height because it does not sum fea-
tures in the height dimension, but rather conditions on the
camera extrinsics. We also note that because the training
dataset is acquired in simulation, the extrinsics of the source
rig have no noise or calibration error, and, thus, are always
the same during training. As a result, we found that CVT
learns to ignore the extrinsic embedding during training, in-
dicating that the degradations we see to test performance in
Fig. 3 are the result of the images being out of distribution.
In contrast, our experiments in Sec. 5 involve training CVT
on real world data, which has calibration error, and, as a re-
sult, CVT learns to use the extrinsic embedding to inform

predictions, but still lacks generalization to target rigs.
During our analysis, we also found that while changes to

yaw have a negative impact on performance on LSS, the
resulting segmentation predictions are transformed based
on the difference in yaw between training and testing. To
mitigate this, a post-processing step can be applied where
the predictions are rotated to the viewpoint of the target
rig. Post-processing can be used to mitigate the effect of
changes in yaw, but does not generalize to other extrinsic
parameters, such as pitch and height.

Lastly, we note two biases in the oracle models. First,
we observe that the LSS oracle model trained on nega-
tive pitches performs poorly. Second, both LSS and CVT
achieve higher test IoU when trained and tested with rigs
with a larger camera height. While higher IoU could be ex-
plained by fewer occlusions due to a higher viewpoint, and
thus more ground truth pixels, the number of ground truth
objects is consistent across each of the test datasets (7 ob-
jects per frame on average), and so this bias is not explained
by differences in the number of ground truth pixels. We note
these biases, but they are not the main focus of our work.

Training Details: We train each BEV segmentation model
three times and show the mean and standard deviation in
test IoU in Fig. 3. Each model is trained on 25,000 im-
ages rendered from the front center camera (same camera
parameters as in nuScenes) with the CARLA Simulator [5].
Train datasets are created for all camera viewpoints tested
so that an oracle model can be constructed. For evaluation,
we use 5,000 test images from each target rig, where the
target rigs include changes to camera pitch, yaw, height, or
pitch and height together, and are rendered from a different
CARLA map than the training sets. Each model is trained
for 30 epochs. We will release all 36 train and test datasets
with this paper. The 36 datasets include train and test data
for the source rig, 10 pitch rigs, 10 yaw rigs, 10 height rigs,
and 5 height and pitch rigs.

4. Viewpoint Robustness via NVS

We present a new method that improves generalization
of BEV segmentation models to different camera positions
using novel view synthesis (NVS). As described in Sec. 3,
BEV segmentation models fail to generalize to even small
changes in camera viewpoint. However, collecting new data
from each target rig, especially when AV companies may
wish to deploy models across many types of cars, is im-
practical due to the cost of collection and annotation. Thus,
we focus on NVS as it provides an opportunity to reuse la-
beled data from the source rig by transforming it into the
viewpoint of each target rig. We can then train a new model
on the transformed data for each target rig. We first define
our NVS method. The key difference between our NVS
method and past work is how we generalize to complex, dy-
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Figure 4. Proposed Pipeline. Current methods for bird’s eye view (BEV) segmentation are trained on data captured from one set of camera
rigs (the source rig). At inference time, these models perform well on that camera rig, but, according to our analysis, even small changes
in camera viewpoint lead to large drops in BEV segmentation accuracy. Our solution is to use novel view synthesis to augment the training
dataset. We find this simple solution drastically improves the robustness of BEV segmentation models to data from a target camera rig,
even when no real data from the target rig is available during training.

namic AV scenes. Then, we show how the transformed data
can be used to train BEV segmentation models for diverse
target rigs without access to real data from the target rig.
We use real data to train our NVS and BEV segmentation
models. To evaluate over diverse target rigs, we use syn-
thetic data rendered with NVIDIA DRIVE Sim since real
data only provides one rig setting. We compare test perfor-
mance achieved with models trained with data transformed
to the target viewpoint vs. only data from a source rig. Our
approach is summarized in Fig. 4.

4.1. Preliminaries

We build off of Worldsheet [11], a recent method for
single image NVS of static scenes, extending it to work
on complex AV scenes that have dynamic objects and oc-
clusions. While NeRF-type approaches generate impres-
sive NVS results, generalizing to dynamic scenes and across
many scenes is still an active area of research. Worldsheet,
on the other hand, is able to generalize across scenes, which
is why we choose to use it in our work. The goal of World-
sheet is to build a 3D scene mesh, M , by warping a W ×H
lattice grid onto the scene based on predicted depths and
vertex offsets. Given an input image, I , a ResNet-50 [9] is
trained to predict depth, z, and grid offset of each vertex,
V(x,y) at each (x, y) in I . z and V(x,y) are used to build
M = ({V(x,y)}, {F}), where F are the mesh faces. A dif-
ferentiable texture sampler is then used to splat the RGB
pixel intensities from the original image onto the mesh’s UV
texture map. The pipeline is trained end-to-end on a multi-
view consistency loss. Given two views of the scene, an in-
put and a target, the mesh is predicted from the input view
and then projected to the target view based on the target

Figure 5. NVS Qualitative Comparison: We compare the unrec-
tified NVS results (top) and depth results (bottom) from World-
sheet [11] (right) to our method (middle and left). SSIM is SSIM
loss, ML is min loss, AM is automasking, LS is lidar supervision.

camera pose, θt. The target view is rendered and compared
to the GT with L1 and perceptual losses. A pix2pixHD gen-
erator inpaints parts of the scene in the generated target view
that were not visible in the input. In contrast, we omit the
pix2pixHD generator and use lidar depth supervision (LS),
SSIM loss [27], automasking (AM) & minimum loss (ML)
over neighboring frames [7] to build an NVS model that
generalizes to complex, dynamic, AV scenes.

4.2. Novel View Synthesis for AV Data

Overview: Because AV sessions, S, are composed of tem-
porally sequential images, {I0, I1, ..., In} ∈ S, tempo-
ral consistency, rather than multi-view consistency, can be
enforced between neighboring images to train our NVS
model, assuming a sufficiently high frame rate so parts of
the scene are visible in the input and target images. For ev-
ery input image, In, we enforce consistency between In−1

and In+1 by transforming In−1 and In+1 into the viewpoint
of In and comparing each predicted novel view În to GT In:
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Figure 6. Novel View Synthesis Qualitative Results: Shown above are the novel view synthesis results (rectified) obtained with our
method. We transform images from the source rig to each of the target viewpoints and then use them for BEV segmentation training.

{În+1
n , D̂n+1

n } = render({V n+1
(x,y)}, {F

n+1}, Tn+1)

{În−1
n , D̂n−1

n } = render({V n−1
(x,y)}, {F

n−1}, Tn−1)

Lim =
1

P

P∑
i=1

min(|In,i − În+1
n,i |, |In,i − În−1

n,i |)

(1)

where V are vertices, F are mesh faces, and T is the
texture map. We render the meshes built from In−1 and
In+1 in In’s viewpoint, forming novel view renderings
În ∈ (̂In+1

n , În−1
n ) and their corresponding depth maps

D̂n+1
n , D̂n−1

n . We then compute the per-pixel image loss
Lim, where P is the valid pixel number and In,i is the i-
th pixel of In. Different from NeRF, worldsheet applies
a single-layer mesh to synthesize novel views. In the dis-
continuous depth regions(e.g., boundaries), distortion might
happen. To make the training more robust, we apply L1 and
SSIM loss between the GT image In and the re-rendered
image În, where we follow the same setting in [7].
Occlusion Handling: Inspired by unsupervised ego-video
depth estimation work [7], we compute two losses between
(In, Î

n−1
n ) and (In, Î

n+1
n ), and pick up the minimal loss

(ML) between them in a pixel-wise way. Intuitively, as the
car is moving, some parts of the scene might be occluded in
the last or next frame. However, they are less likely to be
occluded in both two frames. Therefore, applying minimal
losses help prevent occlusions from affecting the training
loss. We also use auto-masking [7] to ignore pixels that vi-
olate camera motion assumptions, e.g., ego-car shadows.
Depth Supervision: Unlike other applications where only
an RGB sensor is available, AVs are often equipped with
lidar during data collection. We assume that lidar observa-
tions are available when training our NVS model. Thus, we
can leverage lidar supervision (LS), rendering lidar into a
ground truth sparse depth map [23], Dn for every image,

Approach Im. L1 ↓ PSNR ↑ (dB) SSIM ↑ Depth L1 ↓
WS (original) 0.145 22.602 0.595 0.00763
WS + SSIM, ML, AM 0.141 22.819 0.606 0.00707
WS + SSIM, ML, AM + LS (Ours) 0.138 22.936 0.608 0.00657

Table 1. NVS Ablation: We ablate our changes, which improve
NVS and depth over Worldsheet (WS). We test with 1K images.

In. To further improve the quality of the lidar depth maps,
we use two types of automasking (AM). First, we use a pre-
trained sky segmentation network [26] to mask out the sky
and set the depth for this part of each training image to in-
finity. Second, we use MaskRCNN [8] to predict masks of
the “close-by” cars so that they are ignored in the depth loss,
due to the fact that the lidar detector is mounted higher than
the camera and it typically cannot see the close cars.

We then apply two depth losses, an L1 loss between the
predicted depth and GT lidar depth (direct depth loss) and
the L1 loss between the predicted depth and ground truth
depth after the prediction is projected into the viewpoint of
the cameras at frame n+1 and n− 1 (rendered depth loss).
As above, we also use minimal loss for depth supervision:

Ldirect
D =

1

P

P∑
i=1

|Dn−1,i − Fdepth(In−1,i)|+

|Dn+1,i − Fdepth(In+1,i)|

Lrendered
D =

1

P

P∑
i=1

min(|Dn,i − D̂n+1
n,i |, |Dn,i − D̂n−1

n,i |)

(2)
Fig. 5 shows how our method (SSIM, ML, AM, LS) im-

proves depth estimation and NVS compared to Worldsheet.
These improvements are quantitatively validated in Table 1.

Inpainting: We train and test our NVS model using images
from a 120◦ f-theta camera. The images are then rectified
to 50◦ after NVS, such that missing parts of the scene not
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Figure 7. Evaluation Data: We use images from NVIDIA DRIVE
Sim [20] to evaluate our method on a diverse set of target rigs.
Shown here are example test images with different viewpoints.

in the field of view of the final image. As a result, no image
inpainting is needed. Our NVS results are shown in Fig. 6.

4.3. Augmenting BEV Segmentation Training

The focus of our paper is not on NVS quality, but on
the impact using NVS generated data can have on the prob-
lem of viewpoint robustness in AV. Given a labeled BEV
segmentation training dataset, Dsource, of size N , we use
our NVS method to transform n images from Dsource to
the viewpoint of the target rig, obtaining Dpred

target of size
n. This transformation is done by (1) estimating the depth
each image, (2) creating meshes, (3) changing the viewpoint
of the cameras, and 4) rendering each image in the view-
point of the target rig. Finally, we construct a new BEV
dataset, Dfinal of size N , containing the n transformed im-
ages from Dpred

target and N − n images from Dsource. The
number of transformed images, n, is a hyperparameter and
in our experiments we transform 25%, 50%, or 100% of
Dsource to the viewpoint of the target. The reason we do
not always transform all N images is the NVS model may
introduce other domain gaps; an ablation on this is done in
Sec. 6. We train both the NVS model and BEV segmenta-
tion model on a real-world dataset, described in Sec. 5.1.
An overview of the training pipeline is shown in Fig. 4.

5. Experiments and Results
We show the effectiveness of our method by using it to

train BEV segmentation models for diverse target rigs, with-
out any access to real data from the target rig during train-
ing. We first train our NVS model to transform data from
the source rig to the target viewpoint. Next, we transform
some or all of the source rig training data to the target rig.
Finally, we train the BEV segmentation model for the tar-
get rig using a combination of transformed data and source

Extrinsic ∆ View Source Source* Extr Aug Ours
- 0 0.170 0.170 0.155 -
Pitch -10◦ 0.014 0.078 0.126 0.165
Pitch -5◦ 0.037 0.141 0.128 0.161
Pitch +5◦ 0.016 0.076 0.028 0.173
Depth 1.5 m 0.017 0.156 0.150 0.174
Height 0.2 m 0.094 0.175 0.145 0.177
Height 0.8 m 0.003 0.170 0.132 0.214

Table 2. Results: We report the IoU of the CVT model trained on
a source rig and tested across target rigs where pitch, depth, and
height are changed (source). We then compare against two base-
lines, described in text. Last, we compare with our method, which
is trained with some data transformed to the target rig view. The
first row shows IoU of the source evaluated on sim data from the
same viewpoint, and is our best estimate of oracle performance.

data. All training is done on real world data, but evalua-
tion is done with NVIDIA DRIVE Sim, allowing us to test
across target rigs that are not available in public datasets.

5.1. Datasets

Training: We train both the NVS and the BEV segmen-
tation model on an internal dataset of 43 real AV sessions.
We subsample the images from each video at a higher frame
rate for our NVS training dataset than our BEV segmenta-
tion training dataset, yielding 250,000 and 30,000 training
images respectively. All images are captured from a 120◦

f-theta lens camera. Prior to BEV segmentation training,
we rectify the images to 50◦. Examples of rectified images
from the source rig are shown in the first column of Fig. 6.

Evaluation: We use simulated data from challenging
scenes for the evaluation since real datasets with large view-
point changes are not available and collecting them across
many views is impractical. Simulated data could be used for
train and test, but generating sufficiently large and diverse
simulated train datasets is difficult. To mitigate the domain
gap of training on real data and testing on simulated data,
we use NVIDIA DRIVE Sim. Example images are shown
in Fig. 7. To measure the domain gap, we trained a model
on real data and evaluated it on both a real test dataset and
a simulated test dataset from the source rig. The gap was
7.5% IoU, which is acceptable for our work, since we are
concerned with relative changes in IoU, not absolute IoU.

5.2. Experiment Details

We demonstrate our method by transforming the dataset
from the source rig, Dsource, to the viewpoint of six target
rigs, training a BEV segmentation model for each, and eval-
uating the model on simulated data from the target rig. We
conduct experiments with a single camera rig. The target
rigs include pitch -10◦, -5◦, and 5◦, depth 1.5 m, and height
0.2 m and 0.8 m. Examples of source rig data transformed
to each of the target rigs with the NVS model are shown in
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Figure 8. Ablation: Varying percent transformed training
data: We observe that transforming 25-50% of the training dataset
to the viewpoint of the target rig results in the best test IoU.

Fig. 6. We note that, quantitatively, the NVS quality is best
for changes in pitch and lowest for large changes in height.
Despite lower quality for some transformed viewpoints, we
show that the transformed data still leads to significant im-
provements in BEV segmentation accuracy for each target
rig. For each target rig, we train a Cross View Transform-
ers (CVT) model three times, with 25%, 50%, and 100%
of Dsource transformed to the target rig viewpoint. We also
train CVT on source rig data for comparison.

5.3. Baselines

We compare against two baseline approaches:

– Using Train Extrinsics at Inference Time (Source*):
By passing in the train extrinsics to the BEV segmentation
model at inference time, we find that, despite the image it-
self being from a different rig, performance improves.
– Extrinsic Augmentations (Extr. Aug.): Rather than aug-
menting the training images to be from the viewpoint of the
target rig, we instead apply random rotations to both the ex-
trinsic matrix and 3D bounding box labels together within
the bounds of extrinsics of the target rigs.

5.4. Results

We find that our approach of training BEV segmentation
models with 25%, 50%, or 100% data transformed into the
view of the target rig significantly improves BEV segmenta-
tion accuracy compared to training with only data from the
source rig, leading to the same level of accuracy as when
there is no viewpoint change. Results are shown in Table
2. We report the best IoU from the models trained with
25%, 50%, or 100% transformed data, but note that all top
performing models use only 25% or 50% transformed data,
and the rest of the training data remains from the source rig.
We observe that both baselines also significantly improve

the IoU compared to the model trained only on source data,
but not as much as our NVS approach. We also compute the
IoU of the model trained only on the source rig and tested
on synthetic data from the same viewpoint to serve as a ref-
erence upper bound for expected performance when there
is no viewpoint gap, shown in the first row of Table 2. This
upper bound is more reliable than training and testing on
simulated data, which results in an average of 35.4% IoU
across views due to the lack of domain gap and limited di-
versity, resulting in visually similar train and test data.

Lastly, we conducted an experiment in which we trained
a model on 1

2 source rig and 1
6 +5◦ pitch, 1

6 +1.5 m depth,
and 1

6 +0.2 m height data, resulting in 0.19 mean test IoU
across views in Tab. 2 (0.206 for train views and 0.178 for
other views). This result suggests training on multiple views
can improve IoU over training only on the target view. Alto-
gether, our results support our hypothesis that using NVS to
transform labeled train data from the viewpoint of a source
rig to that of a target rig and then training a BEV segmen-
tation model with that data can enable the creation of BEV
segmentation models for target rigs without the associated
cost of collecting and annotating data from each target rig.

6. Discussion

We observe that, despite some NVS transformations
leading to artifacts, e.g. the +0.8 m height transformation,
the images still significantly help downstream BEV seg-
mentation models to generalize to the desired target rig. In
addition to our main results, we also conduct two ablation
studies on our method, which are described below.

Amount of Transformed Data: An open question is how
much data from the source rig dataset should be transformed
to the viewpoint of the target rig. While transforming all
of the data may lead to a content gap due to NVS being
imperfect, transforming too little may not expose the BEV
segmentation model to enough examples of data from the
target rig viewpoint. In our experiments, we train BEV seg-
mentation models with 25%, 50%, and 100% transformed
data. Shown in Fig. 8 is the IoU as a function of the amount
of transformed training data. We see that IoU consistently
increases as more transformed data is added to training un-
til 50%. The model trained with 100% underperforms, most
likely due to other domain gaps introduced by NVS.

Interpolation and Extrapolation: In our work, we focus
on generating target rig specific BEV segmentation models
without the cost of data collection. However, one may wish
to create a single BEV segmentation model that generalizes
to multiple camera rigs. We investigate whether our ap-
proach can enable that by testing how models trained with
two viewpoints interpolate between those viewpoints and
extrapolate beyond those viewpoints. We test all combina-
tions of the pitch models trained with 50% transformed data
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and 50% source rig data, averaging test performance for in-
terpolatation and extrapolation. An example of interpola-
tion is testing a model trained on 0◦ and -10◦ pitch on -5◦

pitch, while an example of extrapolation is testing a model
trained on 0◦ and -5◦ pitch on -10◦ pitch. On average, we
find interpolation performance is 14.9% IoU and extrapo-
lation performance is 14.8% IoU, suggesting the proposed
method can improve generalization beyond the target rig.

7. Conclusion
We find that changing camera viewpoint, even by small

amounts, has a significant impact on BEV segmentation
models that have not been trained on that viewpoint. As
AVs become more ubiquitous and companies scale across
different vehicle types, this problem, which we dub view-
point robustness, will become critical to address. Our work
makes a first attempt at improving viewpoint robustness us-
ing data generated from our method for NVS. We find that
augmenting the BEV segmentation train dataset with data
generated from the viewpoint of the target camera rig im-
proves generalization to the target rig. As part of our work,
we propose a method for NVS and show that it can be used
to effectively mitigate the viewpoint domain gap.

Acknowledgements: We thank Alperen Degirmenci for his
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