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Abstract

Reliable forecasting of the future behavior of road agents
is a critical component to safe planning in autonomous ve-
hicles. Here, we represent continuous trajectories as se-
quences of discrete motion tokens and cast multi-agent mo-
tion prediction as a language modeling task over this do-
main. Our model, MotionLM, provides several advantages:
First, it does not require anchors or explicit latent variable
optimization to learn multimodal distributions. Instead, we
leverage a single standard language modeling objective,
maximizing the average log probability over sequence to-
kens. Second, our approach bypasses post-hoc interaction
heuristics where individual agent trajectory generation is
conducted prior to interactive scoring. Instead, MotionLM
produces joint distributions over interactive agent futures in
a single autoregressive decoding process. In addition, the
model’s sequential factorization enables temporally causal
conditional rollouts. The proposed approach establishes
new state-of-the-art performance for multi-agent motion
prediction on the Waymo Open Motion Dataset, ranking 1st

on the interactive challenge leaderboard.

1. Introduction
Modern sequence models often employ a next-token pre-

diction objective that incorporates minimal domain-specific
assumptions. For example, autoregressive language mod-
els [3, 10] are pre-trained to maximize the probability of
the next observed subword conditioned on the previous text;
there is no predefined notion of parsing or syntax built in.
This approach has found success in continuous domains as
well, such as audio [2] and image generation [49]. Leverag-
ing the flexibility of arbitrary categorical distributions, the
above works represent continuous data with a set of discrete
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Figure 1. Our model autoregressively generates sequences of dis-
crete motion tokens for a set of agents to produce consistent inter-
active trajectory forecasts.

tokens, reminiscent of language model vocabularies.
In driving scenarios, road users may be likened to par-

ticipants in a constant dialogue, continuously exchanging a
dynamic series of actions and reactions mirroring the fluid-
ity of communication. Navigating this rich web of interac-
tions requires the ability to anticipate the likely maneuvers
and responses of the involved actors. Just as today’s lan-
guage models can capture sophisticated distributions over
conversations, can we leverage similar sequence models to
forecast the behavior of road agents?

A common simplification to modeling the full future
world state has been to decompose the joint distribution of
agent behavior into independent per-agent marginal distri-
butions. Although there has been much progress on this
task [8, 47, 12, 25, 31, 5, 6, 21], marginal predictions are
insufficient as inputs to a planning system; they do not rep-
resent the future dependencies between the actions of differ-
ent agents, leading to inconsistent scene-level forecasting.

Of the existing joint prediction approaches, some apply
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a separation between marginal trajectory generation and in-
teractive scoring [40, 42, 29]. For example, Luo et al. [29]
initially produce a small set of marginal trajectories for each
agent independently, before assigning a learned potential to
each inter-agent trajectory pair through a belief propaga-
tion algorithm. Sun et al. [42] use a manual heuristic to
tag agents as either influencers or reactors, and then pairs
marginal and conditional predictions to form joint predic-
tions.

We also note that because these approaches do not ex-
plicitly model temporal dependencies within trajectories,
their conditional forecasts may be more susceptible to spu-
rious correlations, leading to less realistic reaction predic-
tions. For example, these models can capture the cor-
relation between a lead agent decelerating and a trail-
ing agent decelerating, but may fail to infer which one is
likely causing the other to slow down. In contrast, previ-
ous joint models employing an autoregressive factorization,
e.g., [36, 43, 39], do respect future temporal dependencies.
These models have generally relied on explicit latent vari-
ables for diversity, optimized via either an evidence lower
bound or normalizing flow.

In this work, we combine trajectory generation and in-
teraction modeling in a single, temporally causal, decod-
ing process over discrete motion tokens (Fig. 1), leverag-
ing a simple training objective inspired by autoregressive
language models. Our model, MotionLM, is trained to
directly maximize the log probability of these token se-
quences among interacting agents. At inference time, joint
trajectories are produced step-by-step, where interacting
agents sample tokens simultaneously, attend to one another,
and repeat. In contrast to previous approaches which man-
ually enforce trajectory multimodality during training, our
model is entirely latent variable and anchor-free, with mul-
timodality emerging solely as a characteristic of sampling.
MotionLM may be applied to several downstream behavior
prediction tasks, including marginal, joint, and conditional
predictions.

This work makes the following contributions:

1. We cast multi-agent motion forecasting as a language
modeling task, introducing a temporally causal de-
coder over discrete motion tokens trained with a causal
language modeling loss.

2. We pair sampling from our model with a simple roll-
out aggregation scheme that facilitates weighted mode
identification for joint trajectories, establishing new
state-of-the-art performance on the Waymo Open Mo-
tion Dataset interaction prediction challenge (6% im-
provement in the ranking joint mAP metric).

3. We perform extensive ablations of our approach as
well as analysis of its temporally causal conditional

predictions, which are largely unsupported by current
joint forecasting models.

2. Related work
Marginal trajectory prediction. Behavior predictors are
often evaluated on their predictions for individual agents,
e.g., in recent motion forecasting benchmarks [14, 9, 4,
51, 37]. Previous methods process the rasterized scene
with CNNs [8, 5, 12, 17]; the more recent works repre-
sent scenes with points and polygraphs and process them
with GNNs [6, 25, 47, 22] or transformers [31, 40, 20]. To
handle the multimodality of future trajectories, some mod-
els manually enforce diversity via predefined anchors [8, 5]
or intention points [40, 52, 28]. Other works learn diverse
modes with latent variable modeling, e.g., [24].

While these works produce multimodal future trajecto-
ries of individual agents, they only capture the marginal dis-
tributions of the possible agent futures and do not model the
interactions among agents.

Interactive trajectory prediction. Interactive behavior
predictors model the joint distribution of agents’ futures.
This task has been far less studied than marginal motion
prediction. For example, the Waymo Open Motion Dataset
(WOMD) [14] challenge leaderboard currently has 71 pub-
lished entries for marginal prediction compared to only 14
for interaction prediction.

Ngiam et al. [32] models the distribution of future trajec-
tories with a transformer-based mixture model outputting
joint modes. To avoid the exponential blow-up from a full
joint model, Luo et al. [29] models pairwise joint distri-
butions. Tolstaya et al. [44], Song et al. [41], Sun et al.
[42] consider conditional predictions by exposing the future
trajectory of one agent when predicting for another agent.
Shi et al. [40] derives joint probabilities by simply mul-
tiplying marginal trajectory probabilities, essentially treat-
ing agents as independent, which may limit accuracy. Cui
et al. [11], Casas et al. [7], Girgis et al. [15] reduce the full-
fledged joint distribution using global latent variables. Un-
like our autoregressive factorization, the above models typi-
cally follow “one-shot” (parallel across time) factorizations
and do not explicitly model temporally causal interactions.

Autoregressive trajectory prediction. Autoregressive
behavior predictors generate trajectories at intervals to pro-
duce scene-consistent multi-agent trajectories. Rhinehart
et al. [36], Tang and Salakhutdinov [43], Amirloo et al.
[1], Salzmann et al. [39], Yuan et al. [50] predict multi-
agent future trajectories using latent variable models. Lu
et al. [27] explores autoregressively outputting keyframes
via mixtures of Gaussians prior to filling in the remaining
states. In [18], an adversarial objective is combined with
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Figure 2. MotionLM architecture. We first encode heterogeneous scene features relative to each modeled agent (left) as scene embeddings
of shape R,N, ·, H . Here, R refers to the number of rollouts, N refers to the number of (jointly modeled) agents, and H is the dimen-
sionality of each embedding. We repeat the embeddings R times in the batch dimension for parallel sampling during inference. Next, a
trajectory decoder autoregressively rolls out T discrete motion tokens for multiple agents in a temporally causal manner (center). Finally,
representative modes of the rollouts may be recovered via a simple aggregation utilizing k-means clustering initialized with non-maximum
suppression (right).

parallel beam search to learn multi-agent rollouts. Unlike
most autoregressive trajectory predictors, our method does
not rely on latent variables or beam search and generates
multimodal joint trajectories by directly sampling from a
learned distribution of discrete motion token sequences.

Discrete sequence modeling in continuous domains.
When generating sequences in continuous domains, one ef-
fective approach is to discretize the output space and predict
categorical distributions at each step.

For example, in image generation, van den Oord et al.
[45] sequentially predict the uniformly discretized pixel val-
ues for each channel and found this to perform better than
outputting continuous values directly. Multiple works on
generating images from text such as [35] and [49] use a
two-stage process with a learned tokenizer to map images
to discrete tokens and an autoregressive model to predict
the discrete tokens given the text prompt. For audio gen-
eration, WaveNet [46] applies a µ-law transformation be-
fore discretizing. Borsos et al. [2] learn a hierarchical to-
kenizer/detokenizer, with the main transformer sequence
model operating on the intermediate discrete tokens. When
generating polygonal meshes, Nash et al. [30] uniformly
quantize the coordinates of each vertex. In MotionLM, we
employ a simple uniform quantization of axis-aligned deltas
between consecutive waypoints of agent trajectories.

3. MotionLM
We aim to model a distribution over multi-agent inter-

actions in a general manner that can be applied to distinct
downstream tasks, including marginal, joint, and condi-
tional forecasting. This requires an expressive generative

framework capable of capturing the substantial multimodal-
ity in driving scenarios. In addition, we take consideration
here to preserve temporal dependencies; i.e., inference in
our model follows a directed acyclic graph with the parents
of every node residing earlier in time and children residing
later (Section 3.3, Fig. 4). This enables conditional fore-
casts that more closely resemble causal interventions [34]
by eliminating certain spurious correlations that can other-
wise result from disobeying temporal causality2. We ob-
serve that joint models that do not preserve temporal de-
pendencies may have a limited ability to predict realistic
agent reactions – a key use in planning (Section 4.6). To this
end, we leverage an autoregressive factorization of our fu-
ture decoder, where agents’ motion tokens are conditionally
dependent on all previously sampled tokens and trajectories
are rolled out sequentially (Fig. 2).

Let S represent the input data for a given scenario. This
may include context such as roadgraph elements, traffic
light states, as well as features describing road agents (e.g.,
vehicles, cyclists, and pedestrians) and their recent histo-
ries, all provided at the current timestep t = 0. Our
task is to generate predictions for joint agent states Yt

.
=

{y1t , y2t , ..., yNt } for N agents of interest at future timesteps
t = 1, ..., T . Rather than complete states, these future state
targets are typically two-dimensional waypoints (i.e., (x, y)
coordinates), with T waypoints forming the full ground
truth trajectory for an individual agent.

2We make no claims that our model is capable of directly modeling
causal relationships (due to the theoretical limits of purely observational
data and unobserved confounders). Here, we solely take care to avoid
breaking temporal causality.



3.1. Joint probabilistic rollouts

In our modeling framework, we sample a predicted ac-
tion for each target agent at each future timestep. These
actions are formulated as discrete motion tokens from a fi-
nite vocabulary, as described later in Section 3.2.2. Let
ant represent the target action (derived from the ground
truth waypoints) for the nth agent at time t, with At

.
=

{a1t , a2t , ..., aNt } representing the set of target actions for all
agents at time t.

Factorization. We factorize the distribution over joint fu-
ture action sequences as a product of conditionals:

pθ(A1, A2, ...AT | S) =
T∏

t=1

pθ(At | A<t, S), (1)

pθ(At | A<t, S) =

N∏
n=1

pθ(a
n
t | A<t, S). (2)

Similar to [36, 43], Eq. (2) represents the fact that we treat
agent actions as conditionally independent at time t, given
the previous actions and scene context. This aligns empiri-
cally with real-world driving over short time intervals; e.g.,
non-impaired human drivers generally require at least 500
ms to release the accelerator in response to a vehicle braking
ahead ([13]). In our experiments, we find 2 Hz reactions to
be sufficient to surpass state-of-the-art joint prediction mod-
els.

We note that our model’s factorization is entirely latent
variable free; multimodal predictions stem purely from cat-
egorical token sampling at each rollout timestep.

Training objective. MotionLM is formulated as a gener-
ative model trained to match the joint distribution of ob-
served agent behavior. Specifically, we follow a maximum
likelihoood objective over multi-agent action sequences:

argmax
θ

T∏
t=1

pθ(At | A<t, S) (3)

Similar to the typical training setup of modern language
models, we utilize “teacher-forcing” where previous ground
truth (not predicted) tokens are provided at each timestep,
which tends to increase stability and avoids sampling dur-
ing training. We note that this applies to all target agents; in
training, each target agent is exposed to ground truth action
sequence prefixes for all target agents prior to the current
timestep. This naturally allows for temporal parallelization
when using modern attention-based architectures such as
transformers [48].

Our model is subject to the same theoretical limitations
as general imitation learning frameworks (e.g., compound-
ing error [38] and self-delusions due to unobserved con-
founders [33]). However, we find that, in practice, these
do not prevent strong performance on forecasting tasks.

3.2. Model implementation

Our model consists of two main networks, an encoder
which processes initial scene elements followed by a tra-
jectory decoder which performs both cross-attention to the
scene encodings and self-attention along agent motion to-
kens, following a transformer architecture [48].

3.2.1 Scene encoder

The scene encoder (Fig. 2, left) is tasked with processing in-
formation from several input modalities, including the road-
graph, traffic light states, and history of surrounding agents’
trajectories. Here, we follow the design of the early fusion
network proposed by [31] as the scene encoding backbone
of our model. Early fusion is particularly chosen because of
its flexibility to process all modalities together with minimal
inductive bias.

The features above are extracted with respect to each
modeled agent’s frame of reference. Input tensors are then
fed to a stack of self-attention layers that exchange informa-
tion across all past timesteps and agents. In the first layer,
latent queries cross-attend to the original inputs in order to
reduce the set of vectors being processed to a manageable
number, similar to [23, 19]. For additional details, see [31].

3.2.2 Joint trajectory decoder

Our trajectory decoder (Fig. 2, center) is tasked with gener-
ating sequences of motion tokens for multiple agents.

Discrete motion tokens. We elect to transform trajecto-
ries comprised of continuous waypoints into sequences of
discrete tokens. This enables treating sampling purely as a
classification task at each timestep, implemented via a stan-
dard softmax layer. Discretizing continuous targets in this
manner has proven effective in other inherently continuous
domains, e.g., in audio generation [46] and mesh genera-
tion [30]. We suspect that discrete motion tokens also natu-
rally hide some precision from the model, possibly mitigat-
ing compounding error effects that could arise from imper-
fect continuous value prediction. Likewise, we did not find
it necessary to manually add any noise to the ground truth
teacher-forced trajectories (e.g., as is done in [26]).

Quantization. To extract target discrete tokens, we be-
gin by normalizing each agent’s ground truth trajectory
with respect to the position and heading of the agent at



Figure 3. Displayed are the top two predicted joint rollout modes for three WOMD scenes. Color gradients indicate time progression from
t = 0s to t = 8s, with the greatest probability joint mode transitioning from green to blue and the secondary joint mode transitioning from
orange to purple. Three types of interactions are observed: an agent in the adjacent lane yields to the lane-changing agent according to the
timing of the lane change (left), a pedestrian walks behind the passing vehicle according to the progress of the vehicle (center), the turning
vehicle either yields to the crossing cyclist (most probable mode) or turns before the cyclist approaches (secondary mode) (right).

time t = 0 of the scenario. We then parameterize a uni-
formly quantized (∆x,∆y) vocabulary according to a to-
tal number of per-coordinate bins as well as maximum and
minimum delta values. A continuous, single-coordinate
delta action can then be mapped to a corresponding index
∈ [0,num bins − 1], resulting in two indices for a com-
plete (∆x,∆y) action per step. In order to extract actions
that accurately reconstruct an entire trajectory, we employ a
greedy search, sequentially selecting the quantized actions
that reconstruct the next waypoint coordinates with mini-
mum error.

We wrap the delta actions with a “Verlet” step where
a zero action indicates that the same delta index should
be used as the previous step (as [36] does for continuous
states). As agent velocities tend to change smoothly be-
tween consecutive timesteps, this helps reduce the total vo-
cabulary size, simplifying the dynamics of training. Finally,
to maintain only T sequential predictions, we collapse the
per-coordinate actions to a single integer indexing into their
Cartesian product. In practice, for the models presented
here, we use 13 tokens per coordinate with 132 = 169 total
discrete tokens available in the vocabulary (see Appendix A
for further details).

We compute a learned value embedding and two learned
positional embeddings (representing the timestep and agent
identity) for each discrete motion token, which are com-
bined via an element-wise sum prior to being input to the
transformer decoder.

Flattened agent-time self-attention. We elect to include
a single self-attention mechanism in the decoder that oper-
ates along flattened sequences of all modeled agents’ mo-
tion tokens over time. So, given a target sequence of length

T for each of N agents, we perform self-attention over NT
elements. While this does mean that these self-attended
sequences grow linearly in the number of jointly modeled
agents, we note that the absolute sequence length here is
still quite small (length 32 for the WOMD interactive split
– 8 sec. prediction at 2 Hz for 2 agents). Separate passes
of factorized agent and time attention are also possible [32],
but we use a single pass here for simplicity.

Ego agent reference frames. To facilitate cross-attention
to the agent-centric feature encodings (Section 3.2.1), we
represent the flattened token sequence once for each mod-
eled agent. Each modeled agent is treated as the “ego” agent
once, and cross-attention is performed on that agent’s scene
features. Collapsing the ego agents into the batch dimension
allows parallelization during training and inference.

3.3. Enforcing temporal causality

Our autoregressive factorization naturally respects tem-
poral dependencies during joint rollouts; motion token sam-
pling for any particular agent is affected only by past to-
kens (from any agent) and unaffected by future ones. When
training, we require a mask to ensure that the self-attention
operation only updates representations at each step accord-
ingly. As shown in Fig. 8 (appendix), this attention mask
exhibits a blocked, staircase pattern, exposing all agents to
each other’s histories only up to the preceding step.

Temporally causal conditioning. As described earlier, a
particular benefit of this factorization is the ability to query
for temporally causal conditional rollouts (Fig. 4). In this
setting, we fix a query agent to take some sequence of ac-
tions and only roll out the other agents.
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Figure 4. A Causal Bayesian network representation for joint rollouts (left), post-intervention Causal Bayesian network (center), and
acausal conditioning (right). Solid lines indicate temporally causal dependencies while dashed lines indicate acausal information flow.
Models without temporal dependency constraints will support acausal conditioning but not temporally causal conditioning, which can be
problematic when attempting to predict agent reactions.

We may view this as an approximation of computing
causal interventions [34] in the absence of confounders; in-
terventions cannot be learned purely through observational
data in general (due to the possible presence of unobserved
confounders), but our model’s factorization at least elim-
inates certain spurious correlations arising from breaking
temporal causality.

In Fig. 4 (a), we show an example of a Causal Bayesian
network governing joint rollouts. Applying an intervention
to nodes x = 1, ...T , by deleting their incoming edges,
results in a post-intervention Bayesian network depicted
in Fig. 4 (b), which obeys temporal causality. On the other
hand, acausal conditioning (Fig. 4 (c)) results in non-causal
information flow, where node x = i affects our belief about
node y = j for i ≥ j.

3.4. Rollout aggregation

Joint motion forecasting benchmark tasks like
WOMD [14] require a compact representation of the
joint future distribution in the form of a small number of
joint “modes”. Each mode is assigned a probability and
might correspond to a specific homotopic outcome (e.g.,
pass/yield) or more subtle differences in speed/geometry.
Here, we aggregate rollouts to achieve two primary goals:
1) uncover the underlying modes of the distribution and
2) estimate the probability of each mode. Specifically, we
follow the non-maximum suppression (NMS) aggregation
scheme described in [47], but extend it to the joint setting
by ensuring that all agent predictions reside within a
given distance threshold to the corresponding cluster. In
addition, we leverage model ensembling to account for
epistemic uncertainty and further improve the quality of the
predictions, combining rollouts from independently trained
replicas prior to the aggregation step.

4. Experiments
We evaluate MotionLM on marginal and joint motion

forecasting benchmarks, examine its conditional predic-

tions and conduct ablations of our modeling choices.

4.1. Datasets

Waymo Open Motion Dataset (WOMD). WOMD [14]
is a collection of 103k 20-second scenarios collected from
real-world driving in urban and suburban environments.
Segments are divided into 1.1M examples consisting of 9-
second windows of interest, where the first second serves
as input context and the remaining 8-seconds are the pre-
diction target. Map features such as traffic signal states and
lane features are provided along with agent states such as
position, velocity, acceleration, and bounding boxes.

Marginal and interactive prediction challenges. For the
marginal prediction challenge, six trajectories must be out-
put by the model for each target agent, along with likeli-
hoods of each mode. For the interactive challenge, two in-
teracting agents are labeled in each test example. In this
case, the model must output six weighted joint trajectories.

4.2. Metrics

The primary evaluation metrics for the marginal and in-
teractive prediction challenges are soft mAP and mAP, re-
spectively, with miss rate as the secondary metric. Distance
metrics minADE and minFDE provide additional signal on
prediction quality. For the interactive prediction challenge,
these metrics refer to scene-level joint calculations. We also
use a custom prediction overlap metric (similar to [29]) to
assess scene-level consistency for joint models. See Ap-
pendix C for details on these metrics.

4.3. Model configuration

We experiment with up to 8 model replicas and 512 roll-
outs per replica, assessing performance at various configu-
rations. For complete action space and model hyperparam-
eter details, see Appendices A and B.



Model minADE (↓) minFDE (↓) Miss Rate (↓) Soft mAP (↑)

HDGT [20] 0.7676 1.1077 0.1325 0.3709
MPA [22] 0.5913 1.2507 0.1603 0.3930
MTR [40] 0.6050 1.2207 0.1351 0.4216
Wayformer factorized [31] 0.5447 1.1255 0.1229 0.4260
Wayformer multi-axis [31] 0.5454 1.1280 0.1228 0.4335
MTR-A [40] 0.5640 1.1344 0.1160 0.4594
MotionLM (Ours) 0.5509 1.1199 0.1058 0.4507

Table 1. Marginal prediction performance on WOMD test set. We display metrics averaged over time steps (3, 5, and 8 seconds) and agent
types (vehicles, pedestrians, and cyclists). Greyed columns indicate the official ranking metrics for the marginal prediction challenge.

Model minADE (↓) minFDE (↓) Miss Rate (↓) mAP (↑)

SceneTransformer (J) [32] 0.9774 2.1892 0.4942 0.1192
M2I [42] 1.3506 2.8325 0.5538 0.1239
DenseTNT [28] 1.1417 2.4904 0.5350 0.1647
MTR [40] 0.9181 2.0633 0.4411 0.2037
JFP [29] 0.8817 1.9905 0.4233 0.2050
MotionLM (Ours) 0.8911 2.0067 0.4115 0.2178

Table 2. Joint prediction performance on WOMD interactive test set. We display scene-level joint metrics averaged over time steps (3, 5,
and 8 seconds) and agent types (vehicles, pedestrians, and cyclists). Greyed columns indicate the official ranking metrics for the challenge.

4.4. Quantitative results

Marginal motion prediction. As shown in Table 1, our
model is competitive with the state-of-the-art on WOMD
marginal motion prediction (independent per agent). For
the main ranking metric of soft mAP, our model ranks sec-
ond, less than 2% behind the score achieved by MTRA [40].
In addition, our model attains a substantially improved miss
rate over all prior works, with a relative 9% reduction com-
pared to the previous state-of-the-art. The autoregressive
rollouts are able to adequately capture the diversity of mul-
timodal future behavior without reliance on trajectory an-
chors [8] or static intention points [40].

Interactive motion prediction. Our model achieves
state-of-the-art results for the interactive prediction chal-
lenge on WOMD, attaining a 6% relative improvement in
mAP and 3% relative improvement in miss rate (the two of-
ficial ranking metrics) over the previous top scoring entry,
JFP [29] (see Table 2). In contrast to JFP, our approach does
not score pairs of previously constructed marginal trajecto-
ries. but generates joint rollouts directly. Fig. 3 displays
example interactions predicted by our model.

Table 3 displays prediction overlap rates for various
models on the WOMD interactive test and validation sets
(see metric details in Appendix C.2). We obtain test set
predictions from the authors of [14, 32, 29]. MotionLM
obtains the lowest prediction overlap rate, an indication of
scene-consistent predictions. In addition, on the valida-
tion set we evaluate two versions of our model: marginal
and joint. The marginal version does not perform attention

Model Prediction Overlap (↓)

Test

LSTM Baseline [14] 0.07462
Scene Transformer [32] 0.04336
JFP [29] 0.02671
MotionLM (joint) 0.02607

Val
MotionLM (marginal) 0.0404
MotionLM (joint) 0.0292

Table 3. Prediction overlap rates. Displayed is the custom pre-
diction overlap metric for various model configurations on the
WOMD interactive test and validation sets.

across the modeled agents during both training and infer-
ence rollouts, while the joint version performs 2 Hz inter-
active attention. We see that the marginal version obtains a
relative 38% higher overlap rate than the joint version. The
interactive attention in the joint model allows the agents to
more appropriately react to one another.

4.5. Ablation studies

Interactive attention frequency. To assess the impor-
tance of inter-agent reactivity during the joint rollouts, we
vary the frequency of the interactive attention operation
while keeping other architecture details constant. For our
leaderboard results, we utilize the greatest frequency stud-
ied here, 2 Hz. At the low end of the spectrum, 0.125 Hz
corresponds to the agents only observing each other’s initial
states, and then proceeding with the entire 8-second rollout
without communicating again (i.e., marginal rollouts).

Performance metrics generally improve as agents are



No interactive attention 16 interaction iterations

0.125 Hz 2 Hz

Figure 5. Visualization of the top joint rollout mode at the two ex-
tremes of the interactive attention frequencies studied here. With
no interactive attention (left), the two modeled agents only attend
to each other once at the beginning of the 8-second rollout and
never again, in contrast to 16 total times for 2 Hz attention (right).
The independent rollouts resulting from zero interactive attention
can result in scene-inconsistent overlap; e.g., a turning vehicle fails
to accommodate a crossing pedestrian (top left) or yield appropri-
ately to a crossing vehicle (bottom left).

permitted to interact more frequently (Fig. 6 top, Table 5
in appendix). Greater interactive attention frequencies not
only lead to more accurate joint predictions, but also re-
duce implausible overlaps (i.e., collisions) between differ-
ent agents’ predictions. Fig. 5 displays examples where the
marginal predictions lead to implausible overlap between
agents while the joint predictions lead to appropriately sep-
arated trajectories. See supplementary for animated visual-
izations.

Number of rollouts. Our rollout aggregation requires that
we generate a sufficient number of samples from the model
in order to faithfully represent the multimodal future dis-
tribution. For this ablation, we vary the number of rollouts
generated, but always cluster down to k = 6 modes for eval-
uation. In general, we see performance metrics improve as
additional rollouts are utilized (Fig. 6, bottom and Table 6
in appendix). For our final leaderboard results, we use 512
rollouts per replica, although 32 rollouts is sufficient to sur-
pass the previous top entry on joint mAP.
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Figure 6. Joint prediction performance across varying interac-
tive attention frequencies (top) and numbers of rollouts per replica
(bottom) on the WOMD interactive validation set. Vertical axes
display joint (scene-level) metrics for an 8-replica ensemble. See
Tables 5 and 6 in the appendix for full parameter ranges and met-
rics.

4.6. Conditional rollouts

As described in Section 3.3, our model naturally sup-
ports “temporally causal” conditioning, similarly to previ-
ous autoregressive efforts such as [36, 43]. In this setting,
we fix one query agent to follow a specified trajectory and
stochastically roll out the target agent. However, we can
also modify the model to leak the query agent’s full trajec-
tory, acausally exposing its future to the target agent during
conditioning. This resembles the approach to conditional
prediction in, e.g., [44], where this acausal conditional dis-
tribution is modeled directly, or [29], where this distribution
is accessed via inference in an energy-based model.

Here, we assess predictions from our model across
three settings: marginal, temporally causal conditional, and
acausal conditional (Fig. 4). Quantitatively, we observe that
both types of conditioning lead to more accurate predictions
for the target agent (Table 4, Fig. 7). Additionally, we see
that acausal conditioning leads to greater improvement than
temporally causal conditioning relative to marginal predic-
tions across all metrics, e.g., 8.2% increase in soft mAP for
acausal vs. 3.7% increase for temporally causal.



Prediction setting minADE (↓) minFDE (↓) Miss Rate (↓) Soft mAP (↑)

Marginal 0.6069 1.2236 0.1406 0.3951
Temporally causal conditional 0.5997 1.2034 0.1377 0.4096
Acausal conditional 0.5899 1.1804 0.1338 0.4274

Table 4. Conditional prediction performance. Displayed are marginal (single-agent) metrics across three prediction settings for our model
on the WOMD interactive validation set: marginal, temporally causal conditional, and acausal conditional.

Intuitively, the greater improvement for acausal condi-
tioning makes sense as it exposes more information to the
model. However, the better quantitative scores are largely
due to predictions that would be deemed nonsensical if in-
terpreted as predicted reactions to the query agent.

This can be illustrated in examples where one agent is
following another, where typically the lead agent’s behavior
is causing the trailing agent’s reaction, and not vice versa,
but this directionality would not be captured with acausal
conditoning. This temporally causal modeling is especially
important when utilizing the conditional predictions to eval-
uate safety for an autonomous vehicle’s proposed plans. In
a scenario where an autonomous vehicle (AV) is stopped be-
hind another agent, planning to move forward into the other
agent’s current position could be viewed as a safe maneu-
ver with acausal conditioning, as the other agent also mov-
ing forward is correlated with (but not caused by) the AV
proceeding. However, it is typically the lead agent moving
forward that causes the trailing AV to proceed, and the AV
moving forward on its own would simply rear-end the lead
agent.

In the supplementary, we compare examples of predic-
tions in various scenarios for the causal and acausal condi-
tioning schemes. Models that ignore temporal dependen-
cies during conditioning (e.g., [44, 29]) may succumb to
the same incorrect reasoning that the acausal version of our
model does.

5. Conclusion and future work

In this work, we introduced a method for interactive mo-
tion forecasting leveraging multi-agent rollouts over dis-
crete motion tokens, capturing the joint distribution over
multimodal futures. The proposed model establishes new
state-of-the-art performance on the WOMD interactive pre-
diction challenge.

Avenues for future work include leveraging the trained
model in model-based planning frameworks, allowing a
search tree to be formed over the multi-agent action rollouts,
or learning amortized value functions from large datasets
of scene rollouts. In addition, we plan to explore distilla-
tion strategies from large autoregressive teachers, enabling
faster student models to be deployed in latency-critical set-
tings.

Marginal Conditional

Figure 7. Visualization of the most likely predicted future for the
pedestrian in the marginal setting (left) and temporally causal con-
ditional setting (right). When considering the pedestrian indepen-
dently, the model assigns greatest probability to a trajectory which
crosses the road. When conditioned on the the vehicle’s ground
truth turn (magenta), the pedestrian is instead predicted to yield.
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A. Motion token vocabulary
Delta action space. The models presented in this paper
use the following parameters for the discretized delta action
space:

• Step frequency: 2 Hz

• Delta interval (per step): [-18.0 m, 18.0 m]

• Number of bins: 128

At 2 Hz prediction, a maximum delta magnitude of 18 m
covers axis-aligned speeds up to 36 m/s (∼80 mph), > 99%
of the WOMD dataset.

Verlet-wrapped action space. Once the above delta ac-
tion space has the Verlet wrapper applied, we only require
13 bins for each coordinate. This results in a total of
132 = 169 total discrete motion tokens that the model can
select from the Cartesian product comprising the final vo-
cabulary.

Sequence lengths. For 8-second futures, the model out-
puts 16 motion tokens for each agent (note that WOMD
evaluates predictions at 2 Hz). For the two-agent interac-
tive split, our flattened agent-time token sequences (Sec-
tion 3.2.2) have length 2× 16 = 32.

B. Implementation details
B.1. Scene encoder

We follow the design of the early fusion network pro-
posed by [31] as the scene encoding backbone of our model.
The following hyperparameters are used:

• Number of layers: 4

• Hidden size: 256

• Feed-forward network intermediate size: 1024

• Number of attention heads: 4

• Number of latent queries: 92

• Activation: ReLU

B.2. Trajectory decoder

To autoregressively decode motion token sequences, we
utilize a causal transformer decoder that takes in the motion
tokens as queries, and the scene encodings as context. We
use the following model hyperparameters:

• Number of layers: 4

• Hidden size: 256

N agents

T tim
esteps

Figure 8. Masked causal attention between two agents dur-
ing training. We flatten the agent and time axes, leading to an
NT ×NT attention mask. The agents may attend to each other’s
previous motion tokens (solid squares) but no future tokens (empty
squares).

• Feed-forward network intermediate size: 1024

• Number of attention heads: 4

• Activation: ReLU

B.3. Optimization

We train our model to maximize the likelihood of the
ground truth motion token sequences via teacher forcing.
We use the following training hyperparameters:

• Number of training steps: 600000

• Batch size: 256

• Learning rate schedule: Linear decay

• Initial learning rate: 0.0006

• Final learning rate: 0.0

• Optimizer: AdamW

• Weight decay: 0.6

B.4. Inference

We found nucleus sampling [16], commonly used with
language models, to be helpful for improving sample qual-
ity while maintaining diversity. Here we set the top-p pa-
rameter to 0.95.

C. Metrics descriptions
C.1. WOMD metrics

All metrics for the two WOMD [14] benchmarks are
evaluated at three time steps (3, 5, and 8 seconds) and are
averaged over all object types to obtain the final value. For
joint metrics, a scene is attributed to an object class (vehicle,
pedestrian, or cyclist) according to the least common type
of agent that is present in that interaction, with cyclist being



the rarest object class and vehicles being the most common.
Up to 6 trajectories are produced by the models for each
target agent in each scene, which are then used for metric
evaluation.

mAP & Soft mAP mAP measures precision of predic-
tion likelihoods and is calculated by first bucketing ground
truth futures of objects into eight discrete classes of intent:
straight, straight-left, straight-right, left, right, left u-turn,
right u-turn, and stationary.

For marginal predictions, a prediction trajectory is con-
sidered a “miss” if it exceeds a lateral or longitudinal error
threshold at a specified timestep T . Similarly for joint pre-
dictions, a prediction is considered a “miss” if none of the
k joint predictions contains trajectories for all predicted ob-
jects within a given lateral and longitudinal error threshold,
with respect to the ground truth trajectories for each agent.
Trajectory predictions classified as a miss are labeled as a
false positive. In the event of multiple predictions satisfy-
ing the miss criteria, consistent with object detection mAP
metrics, only one true positive is allowed for each scene, as-
signed to the highest confidence prediction. All other pre-
dictions for the object are assigned a false positive.

To compute the mAP metric, bucket entries are sorted
and a P/R curve is computed for each bucket, averaging
precision values over various likelihood thresholds for all
intent buckets results in the final mAP value. Soft mAP
differs only in the fact that additional matching predictions
(other than the most likely match) are ignored instead of be-
ing assigned a false positive, and so are not penalized in the
metric computation.

Miss rate Using the same definition of a “miss” described
above for either marginal or joint predictions, miss rate is a
measure of what fraction of scenarios fail to generate any
predictions within the lateral and longitudinal error thresh-
olds, relative to the ground truth future.

minADE & minFDE minADE measures the Euclidean
distance error averaged over all timesteps for the closest
prediction, relative to ground truth. In contrast, minFDE
considers only the distance error at the final timestep. For
joint predictions, minADE and minFDE are calculated as
the average value over both agents.

C.2. Prediction overlap

As described in [29], the WOMD [14] overlap met-
ric only considers overlap between predictions and ground
truth. Here we use a prediction overlap metric to assess
scene-level consistency for joint models. Our implementa-
tion is similar to [29], except we follow the convention of
the WOMD challenge of only requiring models to gener-
ate (x, y) waypoints; headings are inferred as in [14]. If

the bounding boxes of two predicted agents collide at any
timestep in a scene, that counts as an overlap/collision for
that scene. The final prediction overlap rate is calculated as
the sum of per-scene overlaps, averaged across the dataset.

D. Additional evaluation
Ablations. Tables 5 and 6 display joint prediction perfor-
mance across varying interactive attention frequencies and
numbers of rollouts, respectively. In addition to the ensem-
bled model performance, single replica performance is eval-
uated. Standard deviations are computed for each metric
over 8 independently trained replicas.

Scaling analysis. Table 7 displays the performance of
different model sizes on the WOMD interactive split, all
trained with the same optimization hyperparameters. We
vary the number of layers, hidden size, and number of atten-
tion heads in the encoder and decoder proportionally. Due
to external constraints, in this study we only train a single
replica for each parameter count. We observe that a model
with 27M parameters overfits while 300K underfits. Both
the 1M and 9M models perform decently. In this paper, our
main results use 9M-parameter replicas.

Latency analysis. Table 8 provides inference latency on
the latest generation of GPUs across different numbers of
rollouts. These were measured for a single-replica joint
model rolling out two agents.

E. Visualizations
In the supplementary zip file, we have included GIF an-

imations of the model’s greatest-probability predictions in
various scenes. Each example below displays the associ-
ated scene ID, which is also contained in the corresponding
GIF filename. We describe the examples here.

E.1. Marginal vs. Joint

• Scene ID: 286a65c777726df3
Marginal: The turning vehicle and crossing cyclist
collide.
Joint: The vehicle yields to the cyclist before turning.

• Scene ID: 440bbf422d08f4c0
Marginal: The turning vehicle collides with the cross-
ing vehicle in the middle of the intersection.
Joint: The turning vehicle yields and collision is
avoided.

• Scene ID: 38899bce1e306fb1
Marginal: The lane-changing vehicle gets rear-ended
by the vehicle in the adjacent lane.
Joint: The adjacent vehicle slows down to allow the
lane-changing vehicle to complete the maneuver.



Ensemble Single Replica

Freq. (Hz) minADE (↓) minFDE (↓) MR (↓) mAP (↑) minADE (↓) minFDE (↓) MR (↓) mAP (↑)

0.125 0.9120 2.0634 0.4222 0.2007 1.0681 (0.011) 2.4783 (0.025) 0.5112 (0.007) 0.1558 (0.007)
0.25 0.9083 2.0466 0.4241 0.1983 1.0630 (0.009) 2.4510 (0.025) 0.5094 (0.006) 0.1551 (0.006)

0.5 0.8931 2.0073 0.4173 0.2077 1.0512 (0.009) 2.4263 (0.022) 0.5039 (0.006) 0.1588 (0.004)
1 0.8842 1.9898 0.4117 0.2040 1.0419 (0.014) 2.4062 (0.032) 0.5005 (0.008) 0.1639 (0.005)
2 0.8831 1.9825 0.4092 0.2150 1.0345 (0.012) 2.3886 (0.031) 0.4943 (0.006) 0.1687 (0.004)

Table 5. Joint prediction performance across varying interactive attention frequencies on the WOMD interactive validation set. Displayed
are scene-level joint evaluation metrics. For the single replica metrics, we include the standard deviation (across 8 replicas) in parentheses.

Ensemble Single Replica

# Rollouts minADE (↓) minFDE (↓) MR (↓) mAP (↑) minADE (↓) minFDE (↓) MR (↓) mAP (↑)

1 1.0534 2.3526 0.5370 0.1524 1.9827 (0.018) 4.7958 (0.054) 0.8182 (0.003) 0.0578 (0.004)
2 0.9952 2.2172 0.4921 0.1721 1.6142 (0.011) 3.8479 (0.032) 0.7410 (0.003) 0.0827 (0.004)
4 0.9449 2.1100 0.4561 0.1869 1.3655 (0.012) 3.2060 (0.035) 0.6671 (0.003) 0.1083 (0.003)
8 0.9158 2.0495 0.4339 0.1934 1.2039 (0.013) 2.7848 (0.035) 0.5994 (0.004) 0.1324 (0.003)

16 0.9010 2.0163 0.4196 0.2024 1.1254 (0.012) 2.5893 (0.031) 0.5555 (0.005) 0.1457 (0.003)
32 0.8940 2.0041 0.4141 0.2065 1.0837 (0.013) 2.4945 (0.035) 0.5272 (0.005) 0.1538 (0.004)
64 0.8881 1.9888 0.4095 0.2051 1.0585 (0.012) 2.4411 (0.033) 0.5114 (0.005) 0.1585 (0.004)

128 0.8851 1.9893 0.4103 0.2074 1.0456 (0.012) 2.4131 (0.033) 0.5020 (0.006) 0.1625 (0.004)
256 0.8856 1.9893 0.4078 0.2137 1.0385 (0.012) 2.3984 (0.031) 0.4972 (0.007) 0.1663 (0.005)
512 0.8831 1.9825 0.4092 0.2150 1.0345 (0.012) 2.3886 (0.031) 0.4943 (0.006) 0.1687 (0.004)

Table 6. Joint prediction performance across varying numbers of rollouts per replica on the WOMD interactive validation set. Displayed
are scene-level joint evaluation metrics. For the single replica metrics, we include the standard deviation (across 8 replicas) in parentheses.

Parameter count Miss Rate (↓) mAP (↑)

300K 0.6047 0.1054
1M 0.5037 0.1713
9M 0.4972 0.1663

27M 0.6072 0.1376

Table 7. Joint prediction performance across varying model sizes
on the WOMD interactive validation set. Displayed are scene-
level joint mAP and miss rate for 256 rollouts for a single model
replica (except for 9M which displays the mean performance of 8
replicas).

• Scene ID: 2ea76e74b5025ec7
Marginal: The cyclist crosses in front of the vehicle
leading to a collision.
Joint: The cyclist waits for the vehicle to proceed be-
fore turning.

• Scene ID: 55b5fe989aa4644b
Marginal: The cyclist lane changes in front of the ad-
jacent vehicle, leading to collision.
Joint: The cyclist remains in their lane for the duration
of the scene, avoiding collision.

Number of rollouts Latency (ms)

16 19.9 (0.19)
32 27.5 (0.25)
64 43.8 (0.26)
128 75.8 (0.23)
256 137.7 (0.19)

Table 8. Inference latency on current generation of GPUs for dif-
ferent numbers of rollouts of the joint model. We display the mean
and standard deviation (in parentheses) of the latency measure-
ments for each setting.

E.2. Marginal vs. Conditional

“Conditional” here refers to temporally causal condition-
ing as described in the main text.

• Scene ID: 5ebba77f351358e2
Marginal: The pedestrian crosses the street as a vehi-
cle is turning, leading to a collision.
Conditional: When conditioning on the vehicle’s
turning trajectory as a query, the pedestrian is instead
predicted to remain stationary.

• Scene ID: d557eee96705c822



Marginal: The modeled vehicle collides with the lead
vehicle.
Conditional: When conditioning on the lead vehicle’s
query trajectory, which remains stationary for a bit,
the modeled vehicle instead comes to a an appropriate
stop.

• Scene ID: 9410e72c551f0aec
Marginal: The modeled vehicle takes the turn slowly,
unaware of the last turning vehicle’s progress.
Conditional: When conditioning on the query vehi-
cle’s turn progress, the modeled agent likewise makes
more progress.

• Scene ID: c204982298bda1a1
Marginal: The modeled vehicle proceeds slowly, un-
aware of the merging vehicle’s progress.
Conditional: When conditioning on the query vehi-
cle’s merge progress, the modeled agent accelerates
behind.

E.3. Temporally Causal vs. Acausal Conditioning

• Scene ID: 4f39d4eb35a4c07c
Joint prediction: The two modeled vehicles maintain
speed for the duration of the scene.
Conditioning on trailing agent:
- Temporally causal: The lead vehicle is indifferent
to the query trailing vehicle decelerating to a stop, pro-
ceeding along at a constant speed.
- Acausal: The lead vehicle is “influenced” by the
query vehicle decelerating. It likewise comes to a stop.
Intuitively, this is an incorrect direction of influence
that the acausal model has learned.
Conditioning on lead agent:
- Temporally causal: When conditioning on the query
lead vehicle decelerating to a stop, the modeled trail-
ing vehicle is likewise predicted to stop.
-Acausal: In this case, the acausal conditional pre-
diction is similar to the temporally causal conditional.
The trailing vehicle is predicted to stop behind the
query lead vehicle.


