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Abstract

Semantic scene completion (SSC) requires an accurate
understanding of the geometric and semantic relationships
between the objects in the 3D scene for reasoning the oc-
cluded objects. The popular SSC methods voxelize the 3D
objects, allowing the deep 3D convolutional network (3D
CNN) to learn the object relationships from the complex
scenes. However, the current networks lack the control-
lable kernels to model the object relationship across mul-
tiple views, where appropriate views provide the relevant
information for suggesting the existence of the occluded
objects. In this paper, we propose Cross-View Synthesis
Transformer (CVSformer), which consists of Multi-View
Feature Synthesis and Cross-View Transformer for learn-
ing cross-view object relationships. In the multi-view fea-
ture synthesis, we use a set of 3D convolutional kernels ro-
tated differently to compute the multi-view features for each
voxel. In the cross-view transformer, we employ the cross-
view fusion to comprehensively learn the cross-view rela-
tionships, which form useful information for enhancing the
features of individual views. We use the enhanced features
to predict the geometric occupancies and semantic labels
of all voxels. We evaluate CVSformer on public datasets,
where CVSformer yields state-of-the-art results.

1. Introduction
The recent progress on artificial intelligence is mainly

driven by the advanced machine power of recognizing 3D
objects. It significantly benefits various downstream appli-
cations, such as autonomous driving and video surveillance.
An essential problem of 3D object recognition is letting the
machine accurately recognize the occluded objects in com-

*Co-first authors. The names are listed in alphabetical order.
†Co-corresponding authors.

plex 3D scenes. This problem leads to the emergence of
research on semantic scene completion (SSC).

The latest success of SSC is primarily attributed to deep
neural networks, which are good at learning the geometric
and semantic representations of 3D objects. To facilitate
fast representation learning in the large-scale 3D scene, the
popular SSC methods [5, 7, 11, 15, 16, 21, 32, 38, 40, 27,
23, 30, 39, 35, 2, 12, 28, 25, 24, 18, 13] employ 3D CNN
to learn representations from the voxelized objects. To alle-
viate the limitation of the regular 3D convolutional kernels
that fix the range of capturing the object relationship, the
variant 3D CNNs involve spatial pyramid [40] and defor-
mation [37] to diversify the kernel shapes, which attend to
the object relationships in different ranges. Yet, the pyra-
midal kernels lack the flexibility to exclude the irrelevant
voxels; the deformable kernels are sensitive to the object
shapes, usually capturing the relationship between voxels
from a mono-view. These kernels work without the control-
lable view like the camera. They are also less effective for
modeling the object relationship across multiple perspec-
tives, like multiple cameras, which enable the change of
view directions to offer the information of relevant objects
for recognizing the occluded things.

In this paper, we propose Cross-View Synthesis Trans-
former (CVSformer), which consists of Multi-View Fea-
ture Synthesis (MVFS) and Cross-View Transformer
(CVTr), as illustrated in Figure 1. CVSformer employs the
basic 3D CNN to learn the visual feature map from RGB-D
image. The original-view feature map contains the feature
of each voxel, whose correlation with the adjacent voxels
is captured from the original view. Next, MVFS controls
the rotation of the 3D convolutional kernel, synthesizing the
change of view direction and providing new object relation-
ships. Here, we remark that 3D kernel’s view is an analogy
with the camera’s view. It has a conceptual view direction
to determines the center voxel’s spatial neighbors and their
correlations. MVFS employs the kernels with different ro-
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Figure 1. The overall architecture of CVSformer, which consists of Multi-View Feature Synthesis (MVFS) and Cross-View Transformer
(CVTr). Based on a single-view RGB-D image, CVSformer computes the semantic and geometric feature maps, which are input into the
MVFS (a) to achieve multiple synthetic-view feature maps. (b) CVTr takes input as the synthetic-view feature maps, yielding augmented-
view feature maps for the final completion task.

tations to compute the synthetic-view feature maps, which
capture the object relationships for each voxel from multi-
ple views. Finally, all synthetic-view feature maps are input
to CVTr, which conducts the cross-view fusion to estab-
lish the object relationships across multiple views. Based
on the cross-view object relationships, CVTr enhances the
synthetic-view feature maps, yielding the augmented-view
feature maps for SSC.

We evaluate CVSformer on the public datasets for SSC,
where we achieve the state-of-the-art results (i.e., 52.6 and
63.9 mIoUs on NYU [31] and NYUCAD [16] datasets).

2. Related work
Below, we mainly survey the literature on semantic

scene completion and multi-view information fusion, which
highly correlate to our method in modeling the geometric
and semantic relationships between 3D objects.

2.1. Semantic Scene Completion

SSCNet [32] is a pioneering work that uses the deep net-
work for semantic scene completion. It generates a com-
plete 3D voxel representation of volumetric occupancy and
semantic labels based on a single-view depth map. AIC-
Net [19] employs an anisotropic convolution module to bal-
ance performance and computational cost. 3D sketch [5]
introduces CVAE in the network to guide sketch genera-
tion. SISNet [1] lets the instance-completion and scene-
completion promote mutually to obtain better completion
results. CCPNet [40] has a cascaded architecture to achieve
multi-scale 3D context and integrate local geometric details
of the scene. SATNet [26] decomposes the semantic scene

completion task into 2D semantic segmentation and 3D se-
mantic scene completion, whose outputs are fused. ES-
SCNet [38] divides the input voxels into different groups
and performs 3D sparse convolution separately. DDR-
Net [20] has a lightweight decomposition network to bet-
ter fuse multi-scale features. FFNet [34] obtains augmented
features by modeling the frequency domain correlation be-
tween RGB and depth data. ForkNet [36] generates new
samples to assist the training process.

Currently, semantic scene completion relies on the input
of single-view images, which provide little information to
establish the connection between the occluded objects and
their neighbors. In contrast, we propose the multi-view fea-
ture synthesis by controlling the rotated kernels, which are
used to extract the geometric and semantic representations
for modeling the multi-view object relationships.

2.2. Multi-View Information Fusion

Many works on multi-view information fusion have
combined the features learned from bird’s eye view (BEV)
and range view (RV) images. S3CNet [8] resorts to a set of
bird’s eye views to assist scene reconstruction. VISTA [10]
has dual cross-view spatial attention for fusing the multi-
view image features. MVFuseNet [17] utilizes the sequen-
tial multi-view fusion network to learn the image features
from the RV and BEV views. 3DMV [9] leverages a
differentiable back-projection layer to incorporate the se-
mantic features of RGB-D images. CVCNet [4] unifies
BEV and RV, using a transformer to merge the two views.
MVCNN [33] combines features of the same 3D shape from
multiple perspectives. MV3D [6] uses the region-based rep-



resentation to fuse multi-scale features deeply.
The above methods either fuse BEV and RV of objects

or fuse features of RGB-D sequences. Yet, these methods
are less applicable in considering the object relationships
across various views, which offer critical object context for
semantic scene completion. Our framework uses kernels
with different rotations to synthesize multi-view features
based on a single-view image. Furthermore, we feed the
multi-view features into the cross-view transformer, which
communicates the multi-view features and yields the aug-
mented information of cross-view object relationships for
the completion task.

3. Method Overview

We illustrate the overall architecture of CVSformer in
Figure 1. At first, CVSformer takes the RGB image and the
depth image as input. It projects the 2D semantic segmenta-
tion map of the RGB image into the voxelized segmentation
volume [26], where each voxel is associated with a category.
Meanwhile, CVSformer computes the voxelized TSDF vol-
ume based on the depth map, where each voxel in the TSDF
volume has a signed distance to the nearest object surface.
We perform 3D convolution on the segmentation and TSDF
volumes, computing the 3D semantic feature and geometric
maps S,D ∈ RH×W×D×C . Here, H , W , and D represents
the spatial resolutions along x−, y−, and z−axes1. C is the
number of channels.

Next, CVSformer adds the 3D semantic feature and ge-
ometric maps S and D and passes them into an encoder
architecture with multiple 3D convolutional layers for com-
puting the original-view feature map V ∈ RH×W×D×C .
Multi-View Feature Synthesis (MVFS) takes V as in-
put. As illustrated in Figure 1(a), MVFS outputs a set of
synthetic-view feature maps {V′

r ∈ RH×W×D×C | r =
1, ..., R}. Each synthetic-view feature map is computed by
convoluting a set of 3D kernels, which are rotated by a con-
trollable degree (see Figure 3).

As illustrated in Figure 1(b), all of the synthetic-
view feature maps are fed into Cross-View Transformer
(CVTr). CVTr employs cross-view fusion to let the
synthetic-view feature maps mutually augment each other
in an all-for-one fashion. Rather than straightforwardly fus-
ing multiple synthetic-view feature maps, where the high-
dimensional feature represents each voxel, CVTr computes
separate view-tokens for the synthetic-view feature maps
(see Figure 4). Each view token is low-dimensional. It
represents the complete information of the corresponding
synthetic-view feature map. CVTr resorts to the view-
tokens to enhance all of the synthetic-view feature maps,
yielding a set of augmented-view feature maps {V′′

r ∈
RH×W×D×C | r = 1, ..., R}.

1x−, y−, and z−axes are pre-defined by the ground-truth data.

(0,0,0) = (0,0,0)

regular kernel rotated kernel

Figure 2. The illustration of controlling the degree to rotate a 3D
convolutional kernel. We fix the kernel center during rotation.

Eventually, we concatenate the augmented-view feature
maps, feeding them into a 3D-convolutional decoder. The
decoder outputs the voxelized volume, where each voxel
has a semantic category as the completion result.

4. Architecture of CVSformer

In this section, we provide more details of the critical
components of CVSformer (i.e., Multi-View Feature Syn-
thesis and Cross-View Transformer).

4.1. Multi-View Feature Synthesis

MVFS controls the rotation degree of 3D convolutional
kernels. It convolutes the rotated kernels with the original-
view feature map, yielding the synthetic-view feature maps.

Kernel Rotation We explain how to control the rotation
of the 3D convolutional kernel in Figure 2. In the left of
Figure 2, we denote a K ×K ×K 3D kernel as a set of 3D
points K = {Pk ∈ R3 | k = 0, · · · ,K ×K ×K − 1}. Pk

contains x−, y−, and z−coordinates, which are computed
as: 

xk = 2(k mod K2 mod K)−K−1
2 ,

yk = 2(k mod K2)−K(K−1)
2K ,

zk = −2k+K2(K−1)
2K2 ,

Pk = (xk,yk, zk),

(1)

where P0 =
(
−K−1

2 ,−K−1
2 , K−1

2

)
, PK×K×K−1

2
=

(0, 0, 0), and PK×K×K−1 =
(
K−1
2 , K−1

2 ,−K−1
2

)
repre-

sent the top-left, center, and bottom-right vertexes of the
3D kernel K, respectively. And mod means the remainder
operator with a left-to-right precedence.

As illustrated in the right of Figure 2, we rotate the ker-
nel K around x−, y−, and z−axes centered on PK×K×K−1

2
.

For this purpose, we prepare a set of hybrid rotation matri-
ces {Rr (θx, θy, θz) ∈ R3×3 | r = 1, ..., R}. We compute



(b) feature interpolation (c) synthetic-view feature map (a) kernel traverse

：interpolation ：convolution：neighbor’s feature ：original-view feature：kernel center point
Figure 3. The architecture of MVFS. It consists of two parts: Kernel Rotation and Interpolation. We calculate the synthetic-view feature
maps by convoluting the different rotated kernels to the feature map of the original view.

the rth rotation matrix Rr (θx, θy, θz) as:

Rr (θx) =

 − cos θx sin θx 0
− sin θx − cos θx 0

0 0 1

 ,

Rr (θy) =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 ,

Rr (θz) =

 1 0 0
0 − cos θz sin θz
0 − sin θz − cos θz

 ,

Rr (θx, θy, θz) = Rr (θx) ·Rr (θy) ·Rr (θz) ,

(2)

where θx, θy , θz represent the rotation degrees around the
x−, y−, and z−axes, respectively. We use Rr (θx, θy, θz)
to rotate the vertexes in the kernel K as:

P′
r,k = Pk ·Rr (θx, θy, θz) , (3)

where we form a new kernel K′
r = {P′

r,k ∈ R3 | k =
0, · · · ,K ×K ×K − 1} with a rotated view.

Feature Interpolation for Rotated Kernel We convolute
the rotated 3D kernels with the original-view feature map
V ∈ RH×W×D×C to compute a set of synthetic-view fea-
ture maps {V′

r ∈ RH×W×D×C | r = 1, ..., R}. We pro-
vide the details of using the rotated kernel K′

r to compute
the synthetic-view feature map V′

r in Figure 3. During the
convolution, we traverse the center of the rotated kernel K′

r

along x−, y−, and z−axes of the original-view feature map
V (see Figure 3(a)).

Given the ith vertex vi of V (see Figure 3(b)), which
overlaps with the center of the rotated kernel K′

r, we achieve
K ×K ×K neighbors of vi. We denote the neighbors as a
set of 3D points {ṽi,k ∈ R3 | k = 1, ...,K ×K ×K − 1},
where we compute ṽi,k as:

ṽi,k = vi +P′
r,k. (4)

Different from any vertex of the feature map V, the feature
located at the vertex ṽi,k may be unavailable. To enable a
valid convolution on the set N (vi), we resort to the feature
interpolation to approximate the feature Ṽi,k ∈ RC of the
vertex ṽi,k. The interpolation uses the vertexes of the unit
cube, where the ṽi,k resides, to compute Ṽi,k as:

Ṽi,k =

K×K×K−1∑
k=0

(1− |vj − ṽi,k|) ·Vj ,

s.t. (vj − ṽi,k)
⊤(vj − ṽi,k) ≤ 1.

(5)

Here, vj is the jth vertex of the feature map V. vj is as-
sociated with the feature Vj ∈ RC . The feature interpola-
tion yields a set of features N (vi) = {Ṽi,k ∈ RC | k =
1, ...,K ×K ×K − 1} centered at the vertex vi. We con-
volute the rotated kernel K′

r with the feature set N (vi) as:

V′
r,i =

K×K×K−1∑
k=0

w′
r,k · Ṽi,k, (6)

where w′
r,k is the weight associated with the vertex P′

r,k of
the rotated kernel K′

r. V′
r,i ∈ RC represents the feature of

the vertex vi of the synthetic-view feature map V′
r.

4.2. Cross-View Transformer

We illustrate the architecture of CVTr in Figure 4(a). We
elaborate on the key modules of CVTr, i.e., transformer en-
coder and cross-view fusion in Figure 4(b–c).

Transformer Encoder We illustrate a transformer en-
coder in Figure 4(b). We input the synthetic-view fea-
ture map V′

r ∈ RH×W×D×C , the learnable view embed-
ding Tr ∈ RM×C , and the learnable position embedding
Gr ∈ R(M+H×W×D)×C into the rth encoder. M repre-
sents the resolution of the view embedding. The encoder
outputs a low-dimensional view token T′

r ∈ RM×C for rep-
resenting the entire V′

r with a higher dimension.
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Figure 4. (a) The overall architecture of CVTr. CVTr has several transformer encoders (b) for computing a low-dimensional view token.
All view tokens are used by the cross-view fusion (c) for computing the augmented-view feature map.

The encoder uses convolution to transform the synthetic-
view feature map V′

r, which is added to the view token T′
r.

This step is critical to the completion task based on the vox-
elized structure. It helps the view token T′

r with lower di-
mension to capture the underlying configuration of voxels.

The spatial dimension of the view embedding Tr is
lower than the synthetic-view feature map V′

r (i.e., M <
H×W ×D). By compressing the spatial dimension of Tr,
we drive the Tr to focus on the global semantic meaning of
V′

r, which is injected into the view token T′
r.

The position embedding Gr are jointly learned with the
view embedding Tr and the synthetic-view feature map
V′

r. Thus, Gr can be regarded as a complementary struc-
ture, which stores richer geometric information than the
view embedding Tr. We also inject the geometric infor-
mation of Gr into the view token T′

r.

Cross-View Fusion For all views, we use different
transformer encoders to compute the view tokens {T′

r ∈
RM×C | r = 1, ..., R}. The cross-view fusion harnesses the
view tokens to enhance the synthetic-view feature maps.

We provide more details of cross-view fusion in Fig-
ure 4(c). First, we concatenate all of the view tokens, form-
ing an overall token T ∈ RM×R×C with hybrid informa-
tion across different views. Next, we establish cross atten-
tion between the overall token T and the synthetic-view fea-
ture map V′

r. With the cross-view information of T , the
cross attention enhances V′

r and computes the augmented-

view feature map V′′
r ∈ RH×W×D×C :

q = conv(V′
r), k = conv(T ), v = conv(T ),

A = v⊤ · softmax(k · q⊤),

V′′
r = V′

r + conv(A⊤).

(7)

To simplify the notations above, we omit the subscripts of
the intermediate variables k,v ∈ RM×R×C and q,A ∈
RH×W×D×C . CVTr produces a set of augmented-view fea-
ture maps {V′′

r ∈ RH×W×D×C | r = 1, ..., R}, which are
added together and passed to a 3D convolutional decoder
for predicting the complete scene.

5. Experiments
5.1. Implementation Details

We use PyTorch2 to construct CVSformer. Before train-
ing CVSformer, we pre-train DeepLabv3 [3] for 1,000
epochs to segment the RGB image. Below, we fix the opti-
mized network parameters of DeepLabv3.

The voxel-wise cross-entropy loss supervises the scene
completion task. We employ SGD solver to optimize CVS-
former with a momentum of 0.9 and a weight decay of
0.0005. We set the initial learning rate to 0.05, which is
adjusted by the poly scheduler. We train the network for
500 epoches, where each min-batch contains 16 samples.

The spatial resolution of the segmentation and TSDF
volumes are 60×36×60, and the resolution of original-view
feature map is 15×9×15. In MVFS, the rotated kernels are

2https://pytorch.org/



3×3×3. We empirically choose the rotation degrees along
x−, y−, and z−axes from the set {0◦, 45◦, 90◦, 135◦}. To
simplify the experiment, we empirically rotate the 3D ker-
nel along x−axis. In CVTr, we set the spatial dimension
M=75 of the view token as default.

5.2. Experimental Datasets

Datasets We compare CVSformer with state-of-the-art
methods on the real NYU [31] and NYUCAD [16] datasets.
They both provide 1,449 pairs of RGB-D images, and there
are 795/654 pairs for training and test. We use the 3D an-
notation provided in [29] for the network training.

Evaluation Metrics We report the accuracies of scene
completion (SC) and semantic scene completion (SSC) on
different datasets. We use the recall, precision, and voxel-
wise intersection-over-union (IoU) on the occluded voxels
to measure the accuracy of SC. To calculate the accuracy
of SSC, we report IoUs on different semantic categories,
which are averaged to achieve mean IoU.

5.3. Internal Study of CVSformer

We use NYU [31] for examining the effectiveness of
CVSformer and its key components (i.e., MVFS and CVTr).
Spatial Resolution of View Tokens We change the spa-
tial resolution of view tokens and examine the effect on
the computational overheads (i.e., GPU memory and testing
time in Figure 5(a–b)) and the performances (i.e., SC-IoU
and SSC-mIoU in Figure 5(c–d)). We choose the spatial res-
olution from the set {1, 75, 144, 245}, which corresponds to
{1× 1× 1, 5× 3× 5, 6× 4× 6, 7× 5× 7} voxelized vol-
umes, respectively. A higher resolution (e.g., M = 75) al-
lows view tokens to contain richer information of voxelized
configuration, semantic meaning, and geometric relation-
ship between objects. However, the view tokens with too
high resolutions (e.g., M = 144 and 245) inevitably require
more computation. They contain a too complex mixture of
information. These view tokens are used by the cross-view
fusion, where the complex information distracts the specific
information of each view’s feature map. Thus, they degrade
the performances.

Different Strategies of Learning View Tokens In Table 1,
we experiment with different strategies for learning view to-
kens. As reported in the first and second rows, we use the
regular 3D convolution and self-attention to learn the view
tokens, respectively, achieving (72.6% IoU, 51.8% mIoU)
and (72.7% IoU, 52.0% mIoU). Note that self-attention
slightly outperforms the regular 3D convolution because it
is good at capturing long-range dependencies of the whole
scene. Yet, it eliminates the configuration of the voxelized
structure, which is respected by the regular 3D convolution.
The importance of respecting the voxelized format is evi-
denced by the performance improvement up to (73.7% IoU,

52.6% mIoU) when we combine 3d convolution and self-
attention for learning the view tokens.

View Token IoU(%) mIoU(%)
convolution 72.6 51.8

self-attention 72.7 52.0
convolution + self-attention 73.7 52.6

Table 1. Various strategies for learning view tokens. The perfor-
mances are evaluated on NYU dataset.

Sensitivity to View Number in MVFS We experi-
ment with changing the number of views, where each
view is associated with a rotation degree in the set
{0◦, 45◦, 90◦, 135◦}. Different views yield the correspond-
ing synthetic-view feature maps. We report the perfor-
mances in Table 2. We find that more views saturate IoU
sensitive to the object occupancies in the voxels. Com-
parably, multiple synthetic-view feature maps are used by
CVTr to capture cross-view object relationships for com-
prehensively representing the semantic correlation between
objects. Compared to the single view (i.e., 0◦), more views
improve mIoU up to 52.6%, which requires differentiating
the semantic object categories. More detailed discussion of
MVFS can be found in the supplementary material.

Different Fusion Schemes in CVTr In Table 3, we
compare different alternatives of cross-view fusion. We
concatenate all synthetic-view feature maps fed into self-
attention for computing an augmented-view feature map
(see “all fusion”). This scheme yields the performances of
(73.0% IoU, 52.3% mIoU).

In the second scheme (see “all-for-one w.r.t. feature
maps”), we concatenate all synthetic-view feature maps
as the key and value of cross attention, which enhances
each synthetic-view feature map. This scheme yields per-
formances (72.9% IoU, 51.6% mIoU) worse than the first
scheme. It evidences that high-dimensional synthetic-view
feature maps contain redundant information for distracting
the information fusion between multiple views.

Our cross-view fusion (see “all-for-one w.r.t. tokens”)
employs the concatenated view tokens learned by the trans-
former encoders as the key and value for feature en-
hancement. The cross-view fusion refines the semantic
and geometric information contained in the relatively low-
dimensional view tokens, outperforming other alternatives.
Analysis of Network Components In Table 4, we exam-
ine the effectiveness of the critical components (i.e., MVFS
and CVTr), by removing one or more components from the
completion network. In the first row, we use the baseline
network without decoration, which employs the primary
3D convolution to learn the original-view feature map from
RGB-D image for semantic scene completion. This method
produces (72.9% IoU, 51.3% mIoU).

We add MVFS to the network (see the second row) for



(a) GPU Memory (b) Testing Time (c) IoU(%) (d) mIoU(%)

Figure 5. Sensitivities of GPU memory in MB (a), testing time per image in seconds (b), IoU (c), and mIoU (d) to the spatial resolution of
view token. The performances are evaluated on NYU dataset.

(a) RGB (b) Ground Truth (c) DDRNet (d) AICNet (e) SISNet (f ) CVSformer

Figure 6. Completion results of different methods. The examples are taken from the test set of NYU.

computing multiple synthetic-view feature maps, which are
concatenated for regressing the final result. MVFS helps to
improve performance (73.2% IoU, 51.8% mIoU), demon-
strating the necessity of multi-view information.

Next, we combine MVFS and CVTr (see the third row)
to form the entire model. Here, we fuse the multi-view
information to compute the augmented-view feature maps,
further improving performance (73.7 IoU%, 52.6% mIoU).

This result demonstrates that the trivial concatenation of
synthetic-view feature maps in the second alternative is less
effective in modeling the cross-view object relationship.

5.4. Comparisons with State-of-the-Art Methods
Below, we compare CVSformer with state-of-the-art

methods on NYU [31] and NYUCAD [16] datasets in Ta-
bles 5 and 6.

We compare CVSformer with the completion methods



Rotation Degrees IoU(%) mIoU(%)
0◦ 72.9 51.3

{0◦, 45◦} 73.8 52.1
{0◦, 45◦, 90◦} 73.5 52.0

{0◦, 45◦, 90◦, 135◦} 73.7 52.6

Table 2. Various number of views in MVFS. The performances are
evaluated on NYU dataset.

Fusion Scheme IoU(%) mIoU(%)
all fusion 73.0 52.3

all-for-one w.r.t. feature maps 72.9 51.6
all-for-one w.r.t. tokens 73.7 52.6

Table 3. Various fusion schemes in CVTr. The performances are
evaluated on NYU dataset.

MVFS CVTr IoU(%) mIoU(%)
72.9 51.3

✓ 73.2 51.8
✓ ✓ 73.7 52.6

Table 4. Ablation study on MVFS and CVTr. The performances
are evaluated on NYU dataset.

that rely on voxel-wise annotations for the network training.
Here, CVSformer outperforms the current methods (e.g.,
Sketch [5] and SISNet(voxel) [1]) by a remarkable margin.
In Figure 6, CVSformer achieves the visualized results bet-
ter than the competitive methods. More results please refer
to supplementary materials.

The latest SISNet(instance) [1] takes advantage of the
instance-wise annotations, which provide more substantial
supervision than the voxel-wise annotations for the net-
work training. It achieves remarkable performances, i.e.,
(78.2% IoU, 52.4% mIoU) on NYU and (86.3% IoU, 63.5%
mIoU) on NYUCAD. CVSformer still outperforms SIS-
Net(instance) [1] by only requiring voxel-wise annotations
on NYU and NYUCAD.

We also evaluate the computation overhead of CVS-
former with other methods, in terms of GPU mem-
ory, running time, and model capacity. Compared to
AICNet (3413M, 0.23s/scene, 0.72M), DDRNet (3007M,
0.14s/scene, 0.20M), and SISNet (3750M, 0.18s/scene,
0.57M), CVSformer (2633M, 0.13s/scene, 0.41M) requires
reasonable computation.

6. Conclusion
The latest progress in semantic scene completion bene-

fits from deep neural networks to learn the geometric and
semantic features of 3D objects. In this paper, we pro-
pose CVSformer that understands cross-view object rela-
tionships for semantic scene completion. CVSformer con-
trols kernels with different rotations to learn multi-view ob-
ject relationships. Furthermore, we utilize a cross-view fu-

sion to exchange information across different views, thus
capturing the cross-view object relationships. CVSformer
achieves state-of-the-art performances on public datasets.
In the future, we plan to explore how to use CVSformer
for other 3D object recognition tasks.
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