
AutoSynth: Learning to Generate 3D Training Data
for Object Point Cloud Registration

Zheng Dang1 and Mathieu Salzmann1,2

1CVLab, EPFL, Switzerland 2ClearSpace, Switzerland
{zheng.dang, mathieu.salzmann}@epfl.ch

Abstract

In the current deep learning paradigm, the amount and
quality of training data are as critical as the network archi-
tecture and its training details. However, collecting, pro-
cessing, and annotating real data at scale is difficult, ex-
pensive, and time-consuming, particularly for tasks such as
3D object registration. While synthetic datasets can be cre-
ated, they require expertise to design and include a limited
number of categories. In this paper, we introduce a new
approach called AutoSynth, which automatically generates
3D training data for point cloud registration. Specifically,
AutoSynth automatically curates an optimal dataset by ex-
ploring a search space encompassing millions of potential
datasets with diverse 3D shapes at a low cost. To achieve
this, we generate synthetic 3D datasets by assembling shape
primitives, and develop a meta-learning strategy to search
for the best training data for 3D registration on real point
clouds. For this search to remain tractable, we replace
the point cloud registration network with a much smaller
surrogate network, leading to a 4056.43 times speedup.
We demonstrate the generality of our approach by imple-
menting it with two different point cloud registration net-
works, BPNet [13] and IDAM [34]. Our results on TUD-
L [26], LINEMOD [23] and Occluded-LINEMOD [7] evi-
dence that a neural network trained on our searched dataset
yields consistently better performance than the same one
trained on the widely used ModelNet40 dataset [65].

1. Introduction

3D point cloud registration, which aims to estimate the
relative transformation between two given point clouds, is a
traditional computer vision task. With the advent of deep
learning, point cloud registration is nowadays commonly
tackled with deep networks, achieving impressive results.
The main research direction in this area consists of de-
signing new network architectures to improve performance.
Here, by contrast, we argue that the quantity and quality
of training data have as crucial an impact on the networks’

performance as its architecture and training details, and thus
advocate data creation as a research goal in itself.

The traditional approach to collecting 3D registration
data consists of scanning real objects. This, however, is
highly time-consuming and does not scale to the quantity of
data commonly expected for deep network training. Gener-
ating synthetic data, therefore, comes as a promising alter-
native. Nevertheless, it requires access to 3D object models,
thus often limiting the number of categories, and human ex-
pertise to generate realistic data, typically leading to a do-
main gap w.r.t. real-world point clouds despite best efforts.

In this work, we address this by introducing an approach
dubbed AutoSynth, automating the process of curating a 3D
dataset. Specifically, we aim for the resulting dataset to act
as effective training data for a 3D object registration net-
work that will then be deployed on real-world point clouds.
To achieve this, we develop a meta-learning strategy that
searches for the optimal dataset over a space encompass-
ing millions of potential datasets, covering a wide diver-
sity of 3D shapes. The search is guided by a target real-
world dataset, thus producing data that reduces the domain
gap. Our experiments demonstrate that the resulting train-
ing dataset yields improved registration performance not
only on the target data but on other real-world point clouds.

For this to be possible, we design a very large search
space based on the assumption that complex shapes can be
created by combining simple primitives. Diverse datasets
can then be sampled from this space, and we design an evo-
lutionary algorithm to automatically curate the best training
dataset to achieve high performance on the target data. Em-
ploying a registration network in the search process, how-
ever, would be impractical as even the smallest competitive
model would require 1, 875 GPU days on a single RTX8000
for only 1, 000 search steps. To make the search tractable,
we observe that the true quality function, i.e., the accuracy
of the registration network of interest, can be replaced with
a proxy one, i.e., the reconstruction accuracy of an autoen-
coder. Specifically, our experiments evidence that, for the
same training and testing data, registration accuracy and re-
construction quality follow the same trend, even when using

ar
X

iv
:2

30
9.

11
17

0v
1 

 [
cs

.C
V

] 
 2

0 
Se

p 
20

23



an autoencoder whose architecture is orders of magnitude
smaller than that of any registration network able to produce
nontrivial results. As such, our approach yields a 4056.43×
speedup compared to using a registration network.

We demonstrate the generality of our approach by imple-
menting it with two different point cloud registration net-
works, BPNet [13] and IDAM [34]. Our results on TUD-
L [26], LINEMOD [23] and Occluded-LINEMOD [7] con-
sistently demonstrate that a neural network trained on our
searched dataset achieves better performance than the same
one trained on the widely used ModelNet40 dataset [65].

Our main contributions can be summarized as follows:

• We present AutoSynth, a novel meta-learning-based
approach to automatically generate large amounts of
3D training data and curate an optimal dataset for point
cloud registration.

• We show that the search can be made tractable by
leveraging a surrogate network that is 4056.43 times
more efficient than the point cloud registration one.

• We evidence that using a single scanned real-object as
target dataset during the search yields a training set that
leads to good generalization ability.

2. Related Work
Traditional point cloud registration methods. Point

cloud registration aims to estimate the relative pose between
two input point sets. Many algorithms [2, 41, 46, 42, 17, 40,
50, 27, 29, 54, 53, 70, 33, 1, 24, 22, 18, 9, 8, 21, 35] have
contributed to achieving this. The best-known one proba-
bly is Iterative Closest Point (ICP) [5], which has served
as basis for many variants, such as Generalized-ICP [55]
and Sparse ICP [6], aiming to improve robustness to noise
and mismatches. We refer the reader to [44, 52] for a re-
view of ICP-based strategies. The main drawback of ICP-
based methods is their requirement for a reasonable initial-
ization to converge to a good solution. As a consequence,
recent efforts have been made towards global optimization
strategies, leading to algorithms such as Go-ICP [72], Su-
per4PCS [41], and Fast Global Registration (FGR) [77].
While effective, these methods still suffer from the pres-
ence of noise and outliers in the point sets. This is ad-
dressed by post-processing strategies, such as that of [60],
TEASER [70], and TEASER++ [71].

Learning-based object point cloud registration. Fol-
lowing the current trend in computer vision, much recent
point cloud registration research has focused on a deep
learning-based approach. A key requirement to achieve
this was the design of deep networks acting on unstruc-
tured sets. Deep sets [75] and PointNet [45] constitute
pioneering works in this direction. In particular, Point-
NetLK [3] combines the PointNet backbone with the tradi-

tional, iterative Lucas-Kanade (LK) algorithm [39] so as to
form an end-to-end registration network; DCP [62] exploits
DGCNN [64] backbones followed by Transformers [59] to
establish 3D-3D correspondences. While effective, Point-
NetLK and DCP cannot tackle the partial-to-partial regis-
tration scenario. That is, they assume that both point sets
are fully observed, during both training and test time. PR-
Net [63] and IDAM [34] address this via a deep network
designed to extract keypoints from each input set and match
these keypoints. By contrast, RPM-Net [73] and RGM-
Net [19] build on DCP and adopt a different strategy, re-
placing the softmax layer with an optimal transport one so
as to handle outliers. DeepGMR [74] leverages mixtures of
Gaussians and formulates registration as the minimization
of the KL-divergence between two probability distributions
to handle outliers. While the above-mentioned methods
were designed to handle point clouds in full 3D, the recent
BPNet [13] was shown to successfully tackle registration
from 2.5D measurements, including on real scene datasets,
such as TUD-L [26], LM [23] and LMO [7]. Here, we fol-
low an orthogonal direction to these works, and address the
task of learning to generate synthetic training data to gener-
alize to real scene test-time observations. We will demon-
strate our approach using both BPNet [13] and IDAM [34].

Learning to generate training data. Data is essential
for the success of learning-based methods, including point
cloud registration ones. While much effort has been made to
obtain real-world 3D ground truth [26, 23, 7, 25, 16, 31, 67,
48, 15, 58, 20], synthetic data generation [65, 66, 37, 61, 11]
has emerged as an effective alternative source for supervi-
sion. For such synthetic datasets, e.g., ModelNet40 [65],
the creation of each mesh model nonetheless requires hu-
man supervision to control its size, position, texture, etc.
Hence producing a large amount of synthetic objects re-
mains laborious. This raises the question of the feasibility
to automatically generate the training data.

In this context, most existing works focus on synthesiz-
ing images. For example, the work of [51], Meta-Sim [30],
Meta-Sim2 [14], and AutoSimulate [4] learn simulator hy-
perparameters to maximize the performance of a model on
semantic segmentation or object detection. This is achieved
by treating the entire data generation and network training
pipeline as a black-box, and using reinforcement learning-
based gradient estimation. However, these methods still re-
quire manually-designed object and scene models as input
to the simulator, thus limiting the generated data to a small
number of scenes. By contrast, AutoFlow [57] leverages
web images to learn to generate image pairs, thus greatly
increasing the data diversity. This, however, does not eas-
ily generalize to generating point cloud data. A few works
have nonetheless tackled the problem of generating 3D data
using shape primitives. In particular, [68] does so to build
training data for a shape-from-shading network that recon-



structs object shapes from image sequences; [69] generates
3D synthetic training data to estimate the surface normals,
depth, albedo, and shading maps from a single RGB image.

Importantly, these techniques rely on the main task net-
work to evaluate the effectiveness of the training data. With
the typical growth of state-of-the-art deep network for point
cloud registration, this would result in an intractable com-
putational cost. Here, we therefore propose to replace the
main task network with a lightweight surrogate network in
the searching phase, which we demonstrate to maintain the
final performance while requiring three orders of magni-
tude less computation. Note that our approach does not fol-
low the predictor-based strategy commonly used in neural
architecture search [36, 43, 12]. Specifically, these meth-
ods still require training a thousand target models to then
train the predictor, which remains too expensive for the
computationally-intensive state-of-the-art point cloud reg-
istration networks. Here, instead, we leverage a surrogate
network that completely replaces the original one.

3. Methodology
3.1. Problem Formulation

Our objective is to automatically generate a synthetic 3D
dataset Dsyn such that the main task model (MTM), i.e., a
point cloud registration model Ψ in our case, achieves max-
imum accuracy on the test set when trained on Dsyn until
convergence. The test set is evidently not available during
training, and thus we mimic it with a target dataset Dtgt.

Formally, we express the problem of searching for a syn-
thetic dataset Dsyn as that of finding a policy P , encom-
passing hyperparameters to generate a 3D dataset, such that
Ψ(w,Dsyn(P )) achieves the best performance on Dtgt.
The set of all policies is referred to as the search space O,
and we use an evolutionary algorithm to find the best policy
P̂ that minimizes the evaluation loss

P̂ = argmin
P∈O

Leval(Ψ(w,Dsyn(P )), Dtgt), (1)

where w denotes the weights of the MTM trained on Dsyn

until convergence.

3.2. Search Space

The search space defines the set of policies that the
meta-learning method can explore during training. In other
words, it encompasses all possible training datasets, with
each policy corresponding to the hyperparameters used to
create one 3D dataset. To generate a dataset, we exploit
the observation that complex shapes can be obtained by
combining simple primitives [10, 68, 56], such as cuboids,
cones, cylinders, etc. Following [49, 68], we define each
shape primitive as an implicit surface function F : R3 → R,
such that a point x ∈ R3 on the primitive’s surface satis-
fies F(x) = 0, whereas F(·) < 0 for interior points and

F(·) > 0 for exterior ones. In other words, F encodes a
signed distance function.

Each primitive can then undergo a set of transformations.
Specifically, we focus on affine transformations, such as
translation, rotation, scaling, shearing, and stretching. For a
3D point x, this can be expressed as

T (x) = αTrotTshearTstretchx− t, (2)

where α is a scaling parameter controlling the overall size of
the primitive, t is a translation vector, Trot is a rotation ma-
trix, Tshear = SxSySz is a matrix combining shearing op-
erations along the different axes, and Tstretch = AxAyAz

is a matrix controlling the scale of the primitive along the
different axes. Given an existing shape primitive F(x), the
transformed shape can be obtained as F(T (x)).

To composite the individual transformed primitives into
a complex shape, we utilize logic operators between shapes,
as discussed below. Specifically, to create more distinct
shapes from our primitives, we perform truncation with a
plane. Let F(x) denote a transformed primitive, where we
neglect the explicit dependency on the transformation T (·)
for ease of notation. Furthermore, let Fplane(x) denote a
plane, defined by a point and a surface normal. The trunca-
tion operation can then be expressed as

Ftruncation(x) = max(F(x), Fplane(x)) . (3)

Given a set of m transformed and truncated primitives
with implicit representations {F1(x),F2(x), . . . ,Fm(x)},
we combine the shapes using the union operator, which can
be expressed as

Funion(x) = {F1(x),F2(x), . . . ,Fm(x)} . (4)

The final object mesh is generated by merging all ver-
tices and faces of each transformed shape primitive. This
operation is substantially faster than mesh union [28],
Funion(x) = min(F1(x),F2(x), . . . ,Fm(x)), in practice.
The mesh of the primitives can be obtained via the marching
cube [38] or simply-defined vertices and faces, and shape
generation can be sped up by saving and reusing them.

In this framework, a policy P consists of the 11 pa-
rameters corresponding to the above-mentioned 11 opera-
tions. Specifically, the operations we search over are ro-
tation {1}, translation {1}, overall scale {1}, shearing on
each axes {3}, and stretching on each axes {3}, with ad-
ditional parameters encoding the number of primitives to
consider {1} and the truncation plane {1}. Each operation
also comes with a default range of magnitude. We discretize
the range of magnitude into nine values so that we can use a
discrete search algorithm to find them. Ultimately, finding
the optimal policy P becomes a search problem in a space
that contains 911 = 31, 381, 059, 609 possibilities. We refer
to this search space as O.



Point Cloud

DGCNN Encoder Decoder

Reconstructed 
Point Cloud L

Point Cloud

Share

Point Cloud

DGCNN Transformer

Score
Map

Outlier
Rejection

Layer

R, t 

Figure 1: Comparison of the point cloud registration net-
work (top) and the point cloud reconstruction one (bottom)

Note that the operations described above allow us to
form a large search space, which we will show to be effec-
tive in practice. However, they are by no means the unique
way of defining such a space, and we hope that our work
will motivate others to design new search spaces.

3.3. Evolutionary Algorithm

To automatically search for the optimal policy P in the
search space so as to minimize L in Eq. (1), we employ
an evolutionary algorithm with a tournament selection strat-
egy [47]. This algorithm acts as a meta-learner, which itera-
tively provides policies from which we generate the dataset
Dsyn(P ). The deep network is then trained on the gener-
ated dataset Dsyn(P ) and evaluated on Dtgt to obtain feed-
back on its effectiveness. The meta-learner then generates a
new policy based on this feedback, which causes the dataset
to evolve due to policy changes. This approach allows Dtgt

to affect the final policy, and if it consists of scanned real-
objects, it can help to narrow the domain gap.

Specifically, the evolutionary algorithm starts with an
initial population of k policies: Q = {P1, P2, . . . , Pk|Pi ∈
O}. During each evolutionary step, two individuals
{Pi, Pj} are chosen from the population Q and their eval-
uation loss {L(Pi),L(Pj)} are compared, where L(Pi) =
Leval(Ψ(w,Dsyn(Pi)), Dtgt). After each competition, we
select the best policy as parent and generate a new policy,
Pchild, through mutation. By adding the new Pchild to the
policy pool and removing the worst-performing policy, we
ensure that the policy pool remains of the same size and
does not shrink. Specifically, the mutation is performed by
randomly choosing one out of the 11 policy hyperparame-
ters from the duplicated best policy and changing this hy-
perparameter label to another discrete label. For example,
for rotation, assuming a discretization in steps of π

8 , the mu-
tation may change the original label π

8 to 3π
8 . We then cre-

ate a new synthetic dataset Dsyn(Pchild) from the mutated
child, and train the network Ψ on it until convergence. At

the next evolutionary step, the child has then the possibility
of becoming a parent. This process is repeated to evolve
policies until a maximum number of trials is reached. We
then select the policy with the best evaluation result as the
optimal policy P̂ . The details are given in Algorithm 1.

Algorithm 1: Evolutionary Policy Search
Input : Search space O, population size k, max

number of trials M , target dataset Dtgt,
deep network Ψ.

Output: Policy P̂ to generate the data that achieves
the highest validation performance

1 initialize population(Q) by randomly sampling k
policies from O.

2 current trial num := 0
3 while current trial num < M do
4 1. randomly select two individuals Pi and Pj

from Q.
5 2. train the network Ψ on these two datasets

Dsyn(Pi) and Dsyn(Pj) until convergence.
6 3. compare the evaluation loss on the target

dataset Dtgt, and get the best individual and
the worst individual (tournament selection)

7 4. delete the worst individual from Q;
8 5. mutate the best individual, add it to the

population Q, and train the individual;
9 6. current trial num += 1 ;

10 end

3.4. Surrogate Task Model

The search algorithm described in Sec. 3.3 requires train-
ing a target task model to convergence at every evolutionary
trial. Unfortunately, the state-of-the-art point cloud regis-
tration networks tend to involve many parameters and ex-
pensive layers, such as transformers, as illustrated in the
top portion of Fig. 1 for BPNet. As such, searching for the
best training data with our search procedure would become
prohibitively expensive. For example, using BPNet, one of
the smallest registration models, a single trial in the search
process would cost 1.875 GPU days on one Nvidia-V100.
Therefore, a standard search process of 1, 000 trials would
require 1, 875 GPU days.

To address this, we propose to replace the target task
model with a model tackling a surrogate task. For this sub-
stitution to make sense, the surrogate model should meet the
following conditions: (i) It should take as input the same
type of data as the target model, i.e., point clouds; (ii)it
should not require any extra annotations; (iii) it should be
trainable much more quickly than the task model; (iv) its be-
havior, i.e., evaluation loss, should follow a similar trend to
that of the target model as the training data changes. These
constraints immediately discard any point registration net-



work, even much reduced versions of existing ones, as we
have observed that meaningful registration results can only
be obtained with architectures that would be too large for
our purpose. Instead, we propose to make use of a point
cloud reconstruction network. This choice was motivated
by the observation that, by definition, such a network also
operates on point clouds; it does not require any annota-
tions, only the point clouds themselves; it can exploit a
much more lightweight architecture, as it does not need to
compare two point clouds and thus can be designed without
transformer layers.

This leaves the question of evaluation loss behavior. This
can be answered from the perspective of multi-task learning
literature [76], which has demonstrated that different tasks
performed on the same input data often follow similar be-
havior, i.e., improving one also improves the others. More
pragmatically, we will show in our experiments that the be-
havior of our point cloud reconstruction network follows
that of the registration one as we vary the training set.

Surrogate network architecture. The architecture of
our surrogate network is shown in the bottom portion
of Fig. 1. In essence, it is an autoencoder, relying on the
same DGCNN block as the registration network but with-
out any transformer layers. Instead, to prevent the network
from directly copying the input point cloud to the output,
we project the outputs of the DGCNN to a low-dimensional
latent space, and then force the network to reconstruct the
whole point cloud from this compressed representation.

Formally, the input to the network is a point set X =
{x1, . . . , xv}, where xi ∈ R3 represents a 3D point posi-
tion. We obtain the point set X by uniform sampling from
the mesh model. The output Y is the same size point set,
representing the reconstructed point positions. The encoder
projects each input point cloud into a latent space and the
decoder reconstructs the point cloud from the latent repre-
sentation. We then compute the reconstruction error for Y
using the symmetric Chamfer distance

LCD =
1

2m
(
∑
x∈X

min
y∈Y

∥x−y∥22+
∑
y∈Y

min
x∈X

∥y−x∥22) . (5)

We train the surrogate network parameter θ by solving

θ∗ = argmin
θ

LCD(Ψsurrogate(θ,Dsyn)). (6)

In the searching phase, we therefore also use the symmetric
Chamfer distance as fitness score, giving the loss

L(P ) = LCD(Ψsurrogate(θ
∗, Dsyn(P )), D̂tgt) . (7)

Our surrogate task model only needs 15min to converge
and only requires 1.42GB GPU memory. An experiment
with 1, 000 trials only takes 0.462 GPU days on Nvidia-
V100 GPU, which is 4056.43 times more efficient than us-
ing the original registration network.

4. Experiments
In this section, we evaluate the effectiveness of our Au-

toSynth training set search strategy. Below, we first pro-
vide implementation details. We then present results on real
scenes, and finally analyze different aspects of our approach
via ablation studies.

Implementation details. Our complete pipeline con-
sists of two steps: Searching for the best policy using Au-
toSynth, and training the registration network on the train-
ing dataset generated using the best policy.

To generate complex 3D datasets, we utilize a set of
shape primitives that includes sphere, cuboid, cone, cylin-
der, torus, tetrahedron, octahedron, icosahedron, and dodec-
ahedron, as these have shown promising results in our anal-
ysis. This set of primitives, however, is not exhaustive and
we hope that our results will encourage other researchers to
further expand it and propose better alternatives.

In the search process, we build our target dataset Dtgt

using one scanned real object, i.e., Stanford bunny. We
augment it with random rotations to generate 100 samples,
which constitute Dtgt. We set the population size to be 32
and the maximum number of trials to be 1, 000, which we
observed to be sufficient to obtain a good policy. For the
reconstruction network, we set the batch size to be 8 and
use the Adam [32] with a learning rate of 0.001. For each
trial in the search phase, we train the reconstruction network
for 20, 000 iterations, after which the network has typically
converged. Once the best policy is found, we use it for all
the experiments, i.e., we only searched for the policy once.

For BPNet [13] and IDAM [34], we use the modified
versions of [13] with Match Normalization. We only re-
place the training data but keep the same parameter settings
as in [13] to train them to convergence. For the real-scene
datasets, we use the provided training sequence. For Mod-
elNet40 [65], we use the official training split, which con-
sists of 9, 843 mesh models across 40 categories. To ob-
tain a source point cloud, we sample points uniformly from
a mesh model. For the target point cloud, we generate a
depth map from the mesh and with a random camera pose,
and sample points from it. For our AutoSynth search pro-
cess, we only need the source point cloud as input, which
also acts as ground truth for the reconstruction network.

Following [13], we report the rotation and translation
mAP, the ADD, and the BOP benchmark metrics.

4.1. Results on Real-scene Datasets

Here, we compare our AutoSynth searched dataset to
ModelNet40 by evaluating the performance of the registra-
tion models, i.e., BPNet and IDAM, trained on them. To
this end, we evaluate the trained models on three different
real-scene datasets, i.e, TUD-L, LM, and LMO. Note that
this corresponds to an unseen-object setting, as the training
mesh models do not overlap with the test ones.



Rotation mAP Translation mAP ADD BOP Benchmark
Method 5◦ 10◦ 20◦ 1cm 2cm 5cm 0.1d VSD MSSD MSPD AR

IDAM-Real 0.56 0.58 0.61 0.55 0.66 0.81 0.58 0.580 0.604 0.618 0.601
BPNet-Real 0.91 0.92 0.93 0.86 0.95 0.99 0.93 0.859 0.914 0.935 0.903

ICP 0.02 0.02 0.02 0.01 0.14 0.57 0.02 0.117 0.023 0.027 0.056
FGR(FPFH) 0.00 0.01 0.01 0.04 0.25 0.63 0.01 0.071 0.007 0.008 0.029
TEASER++(FPFH) 0.13 0.17 0.19 0.03 0.22 0.56 0.17 0.175 0.196 0.193 0.188
Super4PCS 0.30 0.50 0.56 0.05 0.40 0.92 0.54 0.265 0.500 0.488 0.418
⋆Vidal-Sensors18 - - - - - - - 0.811 0.910 0.907 0.876
⋆Drost - - - - - - - 0.809 0.875 0.872 0.852
IDAM-MN40 0.30 0.32 0.36 0.31 0.41 0.73 0.34 0.373 0.362 0.364 0.366
IDAM-AutoSynth 0.40 0.43 0.46 0.41 0.54 0.83 0.45 0.496 0.454 0.471 0.474
BPNet-MN40 0.71 0.74 0.77 0.70 0.80 0.94 0.76 0.724 0.772 0.796 0.763
BPNet-AutoSynth 0.78 0.81 0.85 0.77 0.86 0.95 0.84 0.777 0.845 0.867 0.829

Table 1: Quantitative comparison of registration models trained on AutoSynth and ModelNet40 on the TUD-L real scene
dataset. Note that BPNet-Real and IDAM-Real were trained with the TUD-L real scene training sequence, i.e., not in the
unseen-object setting. BPNet-MN40 was trained on ModelNet40-full. BPNet-AutoSynth was trained on our AutoSynth
generated dataset with the Stanford bunny as target dataset. The results for Vidal-Sensor18 [60] and Drost (Drost-CVPR10-
3D-Edges) [17] were directly taken from the BOP leaderboard.

Rotation mAP Translation mAP ADD BOP Benchmark
Method 5◦ 10◦ 20◦ 1cm 2cm 5cm 0.1d VSD MSSD MSPD AR

IDAM-Real 0.15 0.23 0.27 0.25 0.54 0.91 0.23 0.352 0.311 0.345 0.336
BPNet-Real 0.43 0.59 0.67 0.49 0.83 0.97 0.60 0.616 0.680 0.737 0.678

ICP 0.00 0.01 0.01 0.04 0.27 0.82 0.01 0.092 0.014 0.027 0.044
FGR(FPFH) 0.00 0.00 0.00 0.05 0.31 0.89 0.00 0.068 0.000 0.010 0.026
TEASER++(FPFH) 0.01 0.03 0.05 0.03 0.21 0.73 0.03 0.108 0.076 0.098 0.094
Super4PCS 0.02 0.09 0.15 0.04 0.31 0.89 0.10 0.117 0.178 0.201 0.165
⋆PPF 3D ICP - - - - - - - 0.719 0.856 0.866 0.814
⋆Drost - - - - - - - 0.678 0.786 0.789 0.751
IDAM-MN40 0.08 0.11 0.14 0.15 0.44 0.89 0.12 0.258 0.178 0.206 0.214
IDAM-AutoSynth 0.21 0.29 0.33 0.28 0.60 0.91 0.29 0.420 0.359 0.398 0.392
BPNet-MN40 0.31 0.42 0.50 0.37 0.69 0.95 0.43 0.491 0.518 0.571 0.527
BPNet-AutoSynth 0.36 0.49 0.58 0.41 0.74 0.94 0.50 0.538 0.579 0.641 0.586

Table 2: Quantitative comparison of registration models trained on AutoSynth and ModelNet40 on the LINEMOD real
scene dataset. PPF 3D ICP [17] and Drost (Drost-CVPR10-3D-Only) [17] are traditional methods and represent the best
depth-only performers from the BOP leaderboard.

TUD-L dataset. The results of all methods on TUD-
L are summarized in Tab. 1. In Tab. 1, the ’-Real’ model
was trained and tested on TUD-L’s real scene data, corre-
sponds to the ’seen’ object setting. On the other hand, the
’-AutoSynth’ model, trained on synthetic data and tested
on TUD-L’s real scene data, represents an ’unseen’ object
setting. This discrepancy in settings accounts for the ob-
served performance difference. The same principle applies
to Tabs. 2 and 3, which were tested using the LM and LMO
datasets. Furthermore, we also report the results of the top-
performing traditional, learning-free, registration methods.

BPNet and IDAM trained on our AutoSynth searched

dataset yield significantly better performance than their
counterparts trained on ModelNet40. This evidences the
superiority of our searched dataset, containing more diverse
and complex objects.

Note that the traditional methods based on FPFH fea-
tures yield poor results. However, ‘VidalSensors18’ and
‘CVPR10-3D-Edges’, two traditional methods correspond-
ing to the top depth-only performers in the BOP leader-
board, remain more effective than any learning-based
method, including ours, in the unseen-object setting. Nev-
ertheless, we push the limits of what synthetic data can
achieve for deep learning-based methods, thus opening the



Rotation mAP Translation mAP ADD BOP Benchmark
Method 5◦ 10◦ 20◦ 1cm 2cm 5cm 0.1d VSD MSSD MSPD AR

IDAM-Real 0.15 0.22 0.32 0.23 0.58 0.88 0.25 0.349 0.320 0.374 0.348
BPNet-Real 0.31 0.46 0.56 0.37 0.70 0.91 0.47 0.478 0.542 0.612 0.544

ICP 0.01 0.01 0.01 0.07 0.36 0.85 0.01 0.085 0.014 0.032 0.044
FGR(FPFH) 0.00 0.00 0.00 0.08 0.43 0.85 0.00 0.055 0.000 0.009 0.021
TEASER++(FPFH) 0.01 0.02 0.05 0.04 0.26 0.77 0.02 0.096 0.060 0.093 0.083
Super4PCS 0.01 0.03 0.06 0.06 0.31 0.83 0.03 0.054 0.072 0.113 0.080
⋆Vidal-Sensors18 - - - - - - - 0.473 0.625 0.647 0.582
⋆PPF 3D ICP - - - - - - - 0.523 0.669 0.716 0.636
IDAM-MN40 0.04 0.08 0.11 0.12 0.47 0.88 0.07 0.205 0.112 0.153 0.157
IDAM-AutoSynth 0.14 0.21 0.26 0.23 0.57 0.88 0.20 0.316 0.272 0.322 0.303
BPNet-MN40 0.22 0.32 0.41 0.30 0.63 0.92 0.34 0.395 0.404 0.472 0.423
BPNet-AutoSynth 0.25 0.35 0.41 0.34 0.65 0.92 0.37 0.410 0.429 0.501 0.447

Table 3: Quantitative comparison of registration models trained on AutoSynth and ModelNet40 on the Occluded-LINEMOD
real scene dataset. Vidal-Sensors18 [60] and PPF 3D ICP [17] are traditional methods and represent the best depth-only
performers from the BOP leaderboard.

door to future research on learning to generate training data.
The reason why BPNet-Real and IDAM-Real achieve

better performance than these models trained on synthetic
data is twofold. First, they work in the easier setting where
the test object has been observed during training. Second,
there remains a domain gap between real-scene depth maps
and synthetic ones. While our results show that our Au-
toSynth approach bridges part of this gap, further reducing
it remains a topic for future research.

LINEMOD dataset. The LINEMOD dataset is more
challenging than TUD-L because of the presence of sym-
metric objects and minor occlusions at the object bound-
aries. As shown in Tab. 2, even Super4PCS fails to yield
meaningful results on this dataset. Our BPNet-AutoSynth
and IDAM-AutoSynth again achieve better performance
than BPNet-MN40 and IDAM-MN40. This shows that
the dataset searched by our AutoSynth algorithm on the
Stanford bunny generalizes well to different real-scene
datasets. Note that, the IDAM-AutoSynth achieves even
better performance than IDAM-Real. This is because the
LINEMOD dataset does not provide real depth maps for
training data, and we thus used the synthetic ones provided
by LINEMOD, which also suffer from a domain gap w.r.t.
the real test data. This shows that training on data with more
diverse shapes can improve evaluation performance when
the domain gap is large.

Occluded-LINEMOD dataset. The Occluded-
LINEMOD dataset depicts an even more challenging
scenario than LINEMOD by including severe occlusions.
As such, as shown in Tab. 3, the results of all the methods
deteriorate. Nevertheless, BPNet-AutoSynth and IDAM-
AutoSynth still significantly outperform BPNet-MN40
and IDAM-MN40, respectively. This further demonstrates
that our searched dataset delivers a consistent performance

improvement across different real evaluation datasets and
different point cloud registration frameworks.

4.2. Analysis

Here, we conduct ablation studies to analyze (i) the be-
havior similarity of the main and surrogate task networks;
(ii) the impact of the target dataset; (iii) the effectiveness
of the guidance from the surrogate network; and (iii) the
impact of pre-training on the searched data.

Behavior of the main and surrogate task networks.
We conduct experiments to compare the performance of
models trained on datasets with different numbers of shapes
by adjusting the number of ModelNet40 mesh models used
for training. Specifically, we randomly sample M ∈
{1, 5, 10, 50} models per ModelNet40 category. For exam-
ple, MN40(01 per cate) was built by taking a single mesh
model from each category, and thus contains 40 mesh mod-
els. For this set of experiments, we use BPNet as our main
task registration network.

We summarize the results in Tab. 4, where we also re-
port the reconstruction errors of the surrogate reconstruc-
tion network trained on the same data. These results evi-
dence that both tasks, i.e., registration and reconstruction,
follow the same trend as the number of training meshes
changes. In short, increasing the number of training mod-
els improves pose estimation accuracy and lowers recon-
struction error. Importantly, the results obtained with our
AutoSynth searched dataset are the best, confirming the ef-
fectiveness of our surrogate task network.

Impact of the target dataset Dtgt. To assess the in-
fluence of Dtgt on the search, we compare the use of a
scanned real-object with an MN40(01 per cate) dataset, us-
ing BPNet as backbone. Our framework leverages a feed-
back mechanism to learn from Dtgt, which helps to narrow



Method BPNet AutoEncoder

Rotation mAP Translation mAP ADD Recontruction
Dataset Setting 5◦ 10◦ 20◦ 1cm 2cm 5cm 0.1d Chamfer Dist

TUD-L

MN40(01 per cate) 0.59 0.62 0.68 0.59 0.71 0.92 0.65 22.27
MN40(05 per cate) 0.61 0.66 0.69 0.62 0.74 0.90 0.68 17.81
MN40(10 per cate) 0.66 0.70 0.73 0.66 0.82 0.92 0.72 9.97
MN40(50 per cate) 0.69 0.72 0.75 0.69 0.81 0.91 0.75 6.82

MN40-full 0.71 0.74 0.77 0.70 0.80 0.94 0.76 6.65
AutoSynth 0.78 0.81 0.85 0.77 0.86 0.95 0.84 4.16

Table 4: Comparison of BPNet trained with different datasets and evaluated on the TUD-L real scene dataset. For Model-
Net40, we pick 1, 5, 10 and 50 mesh models from each category, corresponding to 40, 200, 400, 2000 mesh models. The
Chamfer distance is multiplied by 103. Note that, for both registration and reconstruction, increasing the number of training
mesh models improves the performance.

Rotation mAP Translation mAP ADD
Method 5◦ 10◦ 20◦ 1cm 2cm 5cm 0.1d

MN40(01) 0.59 0.62 0.68 0.59 0.71 0.92 0.65
MN40 0.71 0.74 0.77 0.70 0.80 0.94 0.76
AS(MN40(01)) 0.76 0.80 0.84 0.77 0.86 0.93 0.82
AS(Real) 0.78 0.81 0.85 0.77 0.86 0.95 0.84

Table 5: Results of employing different datasets as the tar-
get dataset with BPNet as backbone. MN40(01) stands for
MN40(01 per cate); AS stands for AutoSynth.

Rotation mAP Translation mAP ADD
Method 5◦ 10◦ 20◦ 1cm 2cm 5cm 0.1d

full-range 0.66 0.68 0.70 0.64 0.75 0.90 0.69
no-feedback 0.61 0.65 0.69 0.62 0.74 0.89 0.68
Surrogate net 0.78 0.81 0.85 0.77 0.86 0.95 0.84

Table 6: Effectiveness of the feedback mechanism. Using
our surrogate reconstruction network to guide the search
clearly outperforms both selecting a random policy and us-
ing the full range policy.

the reality gap when using scanned real-objects. The re-
sults presented in Tab. 5 show that AutoSynth(Real) outper-
forms AutoSynth(MN40(01 per cate)), which confirms our
claim. Note that BPNet trained using MN40(01 per cate)
as Dsyn yields better results than the one trained on it di-
rectly. This is due to the fact that the 3D dataset evolved
from MN40(01 per cate) contains more distinct shapes than
it, resulting in better performance.

Effectiveness of the guidance from the surrogate net-
work. Here, we evaluate the effectiveness of the surro-
gate network Ψsurrogate at guiding the search towards the
best policy by comparing it with two alternatives that of-
fer no guidance: (i) A no-feedback strategy corresponding
to randomly picking a policy from the search space; (ii)

Rotation mAP Translation mAP ADD
Method 5◦ 10◦ 20◦ 1cm 2cm 5cm 0.1d

Real 0.91 0.92 0.93 0.86 0.95 0.99 0.93
AutoSynth 0.78 0.81 0.85 0.77 0.86 0.95 0.84
Pretrain 0.94 0.95 0.96 0.90 0.97 1.00 0.96

Table 7: BPNet trained on TUD-L vs AutoSynth vs Au-
toSynth pre-trained followed by TUD-L fine-tuning.

a full-range policy consisting of randomly sampling using
the largest possible range of transformations during train-
ing. The comparison in Tab. 6 on the TUD-L dataset testing
sequence and with BPNet as registration network clearly
shows the benefits of the surrogate network for the search.

Impact of pre-training on the searched data. To eval-
uate the use of our approach as a pre-training strategy, we
pre-train the network on the AutoSynth-searched data and
fine-tune it on the TUD-L training set. As shown in Tab. 7,
this lets us reach a new SOTA performance (0.94 in R5◦

mAP), showing the effectiveness of our AutoSynth dataset.

5. Conclusion

We have introduced a novel algorithm to automatically
generate large amounts of 3D training dataset and curate
the optimal one from the millions of options. To this end,
we have proposed to use a surrogate reconstruction network
while searching for a data generation policy, thus acceler-
ating the search by 4056.43 times. We have evidenced the
generality of our approach by evaluating it with two dif-
ferent point cloud registration methods, BPNet and IDAM.
Our experiments on real-scene datasets have evidenced that
a network trained on our searched dataset consistently out-
performs the same model trained on the widely used Mod-
elNet40 dataset. As shown by our results, however, there
remains a gap between our searched dataset and real scans.
In the future, we will study how to further bridge this gap
by improving the realism of the synthesized data.



6. Acknowledgements
Zheng Dang would like to thank H. Chen for the highly-

valuable discussions and for her encouragement. This work
was funded in part by the Swiss Innovation Agency (Inno-
suisse).

References
[1] Gabriel Agamennoni, Simone Fontana, Roland Y Siegwart,

and Domenico G Sorrenti. Point clouds registration with
probabilistic data association. In 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 4092–4098. IEEE, 2016. 2

[2] Dror Aiger, Niloy J Mitra, and Daniel Cohen-Or. 4-points
congruent sets for robust pairwise surface registration. In
ACM SIGGRAPH 2008 papers, pages 1–10, 2008. 2

[3] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivat-
san, and Simon Lucey. Pointnetlk: Robust & efficient point
cloud registration using pointnet. In Conference on Com-
puter Vision and Pattern Recognition, pages 7163–7172,
Long Beach, California, 2019. 2

[4] Harkirat Singh Behl, Atilim Güneş Baydin, Ran Gal,
Philip HS Torr, and Vibhav Vineet. Autosimulate:(quickly)
learning synthetic data generation. In European Conference
on Computer Vision, pages 255–271. Springer, 2020. 2

[5] P. Besl and N. Mckay. A method for registration of 3d
shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, February 1992. 2

[6] Sofien Bouaziz, Andrea Tagliasacchi, and Mark Pauly.
Sparse iterative closest point. In Computer graphics forum,
volume 32, pages 113–123, Hoboken, New Jersey, 2013. Wi-
ley Online Library. 2

[7] Eric Brachmann, Alexander Krull, Frank Michel, Stefan
Gumhold, Jamie Shotton, and Carsten Rother. Learning 6d
object pose estimation using 3d object coordinates. In Euro-
pean conference on computer vision, pages 536–551, Zürich,
Switzerland, 2014. Springer. 1, 2

[8] Alexander M Bronstein and Michael M Bronstein. Regular-
ized partial matching of rigid shapes. In European Confer-
ence on Computer Vision, pages 143–154. Springer, 2008.
2

[9] Alexander M Bronstein, Michael M Bronstein, Alfred M
Bruckstein, and Ron Kimmel. Partial similarity of objects, or
how to compare a centaur to a horse. International Journal
of Computer Vision, 84(2):163–183, 2009. 2

[10] Jeff Clune and Hod Lipson. Evolving 3d objects with a gen-
erative encoding inspired by developmental biology. ACM
SIGEVOlution, 5(4):2–12, 2011. 3

[11] Jasmine Collins, Shubham Goel, Kenan Deng, Achlesh-
war Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang, Tomas
F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al.
Abo: Dataset and benchmarks for real-world 3d object un-
derstanding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 21126–
21136, 2022. 2

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation

strategies from data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
113–123, 2019. 3

[13] Zheng Dang, Wang Lizhou, Guo Yu, and Mathieu Salzmann.
Learning-based point cloud registration for 6d object pose
estimation in the real world. In European Conference on
Computer Vision, 2022. 1, 2, 5

[14] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-
sim2: Unsupervised learning of scene structure for synthetic
data generation. In European Conference on Computer Vi-
sion, pages 715–733. Springer, 2020. 2

[15] Andreas Doumanoglou, Rigas Kouskouridas, Sotiris Malas-
siotis, and Tae-Kyun Kim. Recovering 6d object pose and
predicting next-best-view in the crowd. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 3583–3592, Las Vegas, Nevada, 2016. 2

[16] Bertram Drost, Markus Ulrich, Paul Bergmann, Philipp
Hartinger, and Carsten Steger. Introducing mvtec itodd-a
dataset for 3d object recognition in industry. In Proceedings
of the IEEE International Conference on Computer Vision
Workshops, pages 2200–2208, Venice, Italy, 2017. 2

[17] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan
Ilic. Model globally, match locally: Efficient and robust 3d
object recognition. In 2010 IEEE computer society confer-
ence on computer vision and pattern recognition, pages 998–
1005, 2010. 2, 6, 7

[18] Andrew W Fitzgibbon. Robust registration of 2d and 3d
point sets. Image and vision computing, 21(13-14):1145–
1153, 2003. 2

[19] Kexue Fu, Shaolei Liu, Xiaoyuan Luo, and Manning Wang.
Robust point cloud registration framework based on deep
graph matching. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
8893–8902, 2021. 2

[20] Ruohan Gao, Zilin Si, Yen-Yu Chang, Samuel Clarke, Jean-
nette Bohg, Li Fei-Fei, Wenzhen Yuan, and Jiajun Wu. Ob-
jectfolder 2.0: A multisensory object dataset for sim2real
transfer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10598–
10608, 2022. 2

[21] Natasha Gelfand, Niloy J Mitra, Leonidas J Guibas, and Hel-
mut Pottmann. Robust global registration. In Symposium on
geometry processing, page 5. Vienna, Austria, 2005. 2

[22] Dirk Hähnel and Wolfram Burgard. Probabilistic matching
for 3d scan registration. In Proc. of the VDI-Conference
Robotik, volume 2002. Citeseer, 2002. 2

[23] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian
Conference on Computer Vision, pages 548–562, Daejeon,
2012. 1, 2

[24] Timo Hinzmann, Thomas Stastny, Gianpaolo Conte, Patrick
Doherty, Piotr Rudol, Marius Wzorek, Enric Galceran,
Roland Siegwart, and Igor Gilitschenski. Collaborative 3d
reconstruction using heterogeneous uavs: System and ex-
periments. In International Symposium on Experimental
Robotics, pages 43–56. Springer, 2016. 2



[25] Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, Jiri Matas,
Manolis Lourakis, and Xenophon Zabulis. T-less: An rgb-d
dataset for 6d pose estimation of texture-less objects. In 2017
IEEE Winter Conference on Applications of Computer Vi-
sion (WACV), pages 880–888, Santa Rosa, CA, USA, 2017.
IEEE. 2

[26] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl,
Anders GlentBuch, Dirk Kraft, Bertram Drost, Joel Vidal,
Stephan Ihrke, Xenophon Zabulis, et al. Bop: Benchmark
for 6D Object Pose Estimation. In European Conference on
Computer Vision, pages 19–34, Munich, Germany, 2018. 1,
2

[27] Gregory Izatt, Hongkai Dai, and Russ Tedrake. Globally
optimal object pose estimation in point clouds with mixed-
integer programming. In Robotics Research, pages 695–710,
Ventura, CA, 2020. Springer. 2

[28] Xiaotong Jiang, Qingjin Peng, Xiaosheng Cheng, Ning Dai,
Cheng Cheng, and Dawei Li. Efficient booleans algorithms
for triangulated meshes of geometric modeling. Computer-
Aided Design and Applications, 13(4):419–430, 2016. 3

[29] Andrew E. Johnson and Martial Hebert. Using spin im-
ages for efficient object recognition in cluttered 3d scenes.
TPAMI, 21(5):433–449, 1999. 2

[30] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,
Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,
and Sanja Fidler. Meta-sim: Learning to generate synthetic
datasets. In Conference on Computer Vision and Pattern
Recognition, pages 4551–4560, 2019. 2

[31] Roman Kaskman, Sergey Zakharov, Ivan Shugurov, and Slo-
bodan Ilic. Homebreweddb: Rgb-d dataset for 6d pose es-
timation of 3d objects. In Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops, pages
0–0, Seoul, Korea, 2019. 2

[32] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, San Diego, CA, USA, 2015. 5

[33] Huu M Le, Thanh-Toan Do, Tuan Hoang, and Ngai-Man
Cheung. Sdrsac: Semidefinite-based randomized approach
for robust point cloud registration without correspondences.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 124–133, 2019. 2

[34] Jiahao Li, Changhao Zhang, Ziyao Xu, Hangning Zhou, and
Chi Zhang. Iterative distance-aware similarity matrix con-
volution with mutual-supervised point elimination for effi-
cient point cloud registration. In ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XXIV 16, pages 378–394. Springer, 2020. 1,
2, 5

[35] Or Litany, Alexander M Bronstein, and Michael M Bron-
stein. Putting the pieces together: Regularized multi-part
shape matching. In European Conference on Computer Vi-
sion, pages 1–11. Springer, 2012. 2

[36] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In European Conference on Computer Vision, pages
19–34, 2018. 3

[37] Liu Liu, Wenqiang Xu, Haoyuan Fu, Sucheng Qian, Qiao-
jun Yu, Yang Han, and Cewu Lu. Akb-48: A real-world
articulated object knowledge base. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14809–14818, 2022. 2

[38] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 3

[39] Bruce D Lucas, Takeo Kanade, et al. An iterative image
registration technique with an application to stereo vision.
In International Joint Conference on Artificial Intelligence,
Vancouver, British Columb, 1981. 2

[40] Haggai Maron, Nadav Dym, Itay Kezurer, Shahar Kovalsky,
and Yaron Lipman. Point registration via efficient convex
relaxation. ACM Transactions on Graphics (TOG), 35(4):1–
12, 2016. 2

[41] Nicolas Mellado, Dror Aiger, and Niloy J Mitra. Super 4pcs
fast global pointcloud registration via smart indexing. In
Computer graphics forum, volume 33, pages 205–215. Wi-
ley Online Library, 2014. 2

[42] Mustafa Mohamad, Mirza Tahir Ahmed, David Rappaport,
and Michael Greenspan. Super generalized 4pcs for 3d reg-
istration. In 2015 International Conference on 3D Vision,
pages 598–606. IEEE, 2015. 2

[43] Juan-Manuel Perez-Rua, Moez Baccouche, and Stephane
Pateux. Efficient progressive neural architecture search.
arXiv preprint arXiv:1808.00391, 2018. 3

[44] François Pomerleau, Francis Colas, Roland Siegwart, et al.
A review of point cloud registration algorithms for mobile
robotics. Foundations and Trends® in Robotics, 4(1):1–104,
2015. 2

[45] C.R. Qi, H. Su, K. Mo, and L.J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
In Conference on Computer Vision and Pattern Recognition,
Honolulu, Hawaii, 2017. 2

[46] Carolina Raposo and Joao P Barreto. Using 2 point+ normal
sets for fast registration of point clouds with small overlap.
In 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 5652–5658. IEEE, 2017. 2

[47] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Ku-
rakin. Large-scale evolution of image classifiers. In Interna-
tional Conference on Machine Learning, pages 2902–2911.
PMLR, 2017. 4

[48] Colin Rennie, Rahul Shome, Kostas E Bekris, and Alberto F
De Souza. A dataset for improved rgbd-based object de-
tection and pose estimation for warehouse pick-and-place.
IEEE Robotics and Automation Letters, 1(2):1179–1185,
2016. 2

[49] Antonio Ricci. A constructive geometry for computer graph-
ics. The Computer Journal, 16(2):157–160, 1973. 3

[50] David M Rosen, Luca Carlone, Afonso S Bandeira, and
John J Leonard. Se-sync: A certifiably correct algorithm for
synchronization over the special euclidean group. The In-
ternational Journal of Robotics Research, 38(2-3):95–125,
2019. 2



[51] Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker.
Learning to simulate. In International Conference on Learn-
ing Representations, 2019. 2

[52] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of
the icp algorithm. In Proceedings Third International Con-
ference on 3-D Digital Imaging and Modeling, pages 145–
152, Quebec City, Canada, 2001. IEEE. 2

[53] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (fpfh) for 3d registration. In In-
ternational Conference on Robotics and Automation, pages
3212–3217, Kobe, Japan, 2009. IEEE. 2

[54] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and
Michael Beetz. Aligning point cloud views using persistent
feature histograms. In International Conference on Intelli-
gent Robots and Systems, pages 3384–3391, Nice, France,
2008. IEEE. 2

[55] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun.
Generalized-icp. In In Robotics: Science and Systems, Cam-
bridge, 2009. 2

[56] Kenneth O Stanley. Compositional pattern producing net-
works: A novel abstraction of development. Genetic pro-
gramming and evolvable machines, 8(2):131–162, 2007. 3

[57] Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun
Jampani, Michael Krainin, Huiwen Chang, Ramin Zabih,
William T Freeman, and Ce Liu. Autoflow: Learning a better
training set for optical flow. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10093–10102, 2021. 2

[58] Alykhan Tejani, Danhang Tang, Rigas Kouskouridas, and
Tae-Kyun Kim. Latent-class hough forests for 3d object
detection and pose estimation. In European Conference
on Computer Vision, pages 462–477, Zürich, Switzerland,
2014. Springer. 2

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neu-
ral Information Processing Systems, pages 5998–6008, Long
Beach, California, United States, 2017. 2

[60] Joel Vidal, Chyi-Yeu Lin, Xavier Lladó, and Robert Martı́.
A method for 6d pose estimation of free-form rigid objects
using point pair features on range data. Sensors, 18(8):2678,
2018. 2, 6, 7

[61] Pengyuan Wang, HyunJun Jung, Yitong Li, Siyuan Shen,
Rahul Parthasarathy Srikanth, Lorenzo Garattoni, Sven
Meier, Nassir Navab, and Benjamin Busam. Phocal: A
multi-modal dataset for category-level object pose estima-
tion with photometrically challenging objects. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21222–21231, 2022. 2

[62] Yue Wang and Justin M Solomon. Deep closest point: Learn-
ing representations for point cloud registration. In Interna-
tional Conference on Computer Vision, pages 3523–3532,
Seoul, Korea, 2019. 2

[63] Yue Wang and Justin M Solomon. Prnet: Self-supervised
learning for partial-to-partial registration. In Advances in
Neural Information Processing Systems, pages 8812–8824,
Vancouver, British Columbia, Canada, 2019. 2

[64] Y. Wang, Y. Sun, Z. Liu, S. Sarma, M. Bronstein, and J.M.
Solomon. Dynamic graph cnn for learning on point clouds.
In ACM Transactions on Graphics (TOG), TOG, 2019. 2

[65] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Conference on Computer Vision and Pattern Recognition,
pages 1912–1920, Boston, MA, USA, 2015. 1, 2, 5

[66] Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher
Choy, Hao Su, Roozbeh Mottaghi, Leonidas Guibas, and Sil-
vio Savarese. Objectnet3d: A large scale database for 3d
object recognition. In European conference on computer vi-
sion, pages 160–176. Springer, 2016. 2

[67] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for 6d
object pose estimation in cluttered scenes. In Robotics: Sci-
ence and Systems Conference, Pittsburgh, PA, USA, 2018.
2

[68] Dawei Yang and Jia Deng. Shape from shading through
shape evolution. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3781–
3790, 2018. 2, 3

[69] Dawei Yang and Jia Deng. Learning to generate 3d training
data through hybrid gradient. In Conference on Computer
Vision and Pattern Recognition, pages 779–789, 2020. 3

[70] H. Yang and L. Carlone. A polynomial-time solution for
robust registration with extreme outlier rates. In Robotics:
Science and Systems Conference, Freiburg im Breisgau, Ger-
many, 2019. 2

[71] H. Yang, J. Shi, and L. Carlone. Teaser: Fast and certifiable
point cloud registration. In arXiv Preprint, 2020. 2

[72] Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde
Jia. Go-icp: A globally optimal solution to 3d icp point-set
registration. TPAMI, 38(11):2241–2254, 2015. 2

[73] Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point
matching using learned features. In Conference on Computer
Vision and Pattern Recognition, Online, 2020. 2

[74] Wentao Yuan, Benjamin Eckart, Kihwan Kim, Varun Jam-
pani, Dieter Fox, and Jan Kautz. Deepgmr: Learning latent
gaussian mixture models for registration. In European Con-
ference on Computer Vision, pages 733–750. Springer, 2020.
2

[75] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Russ R Salakhutdinov, and Alexander J Smola.
Deep sets. In Advances in Neural Information Processing
Systems, pages 3391–3401, Long Beach, California, United
States, 2017. 2

[76] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3712–3722, 2018. 5

[77] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global
registration. In European Conference on Computer Vi-
sion, pages 766–782, Amsterdam, the Netherlands, 2016.
Springer. 2


