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Abstract

Monocular 3D object detection has long been a challenging
task in autonomous driving. Most existing methods follow
conventional 2D detectors to first localize object centers,
and then predict 3D attributes by neighboring features.
However, only using local visual features is insufficient
to understand the scene-level 3D spatial structures and
ignores the long-range inter-object depth relations. In
this paper, we introduce the first DETR framework for
Monocular DEtection with a depth-guided TRansformer,
named MonoDETR. We modify the vanilla transformer
to be depth-aware and guide the whole detection process
by contextual depth cues. Specifically, concurrent to
the visual encoder that captures object appearances,
we introduce to predict a foreground depth map, and
specialize a depth encoder to extract non-local depth
embeddings. Then, we formulate 3D object candidates as
learnable queries and propose a depth-guided decoder to
conduct object-scene depth interactions. In this way, each
object query estimates its 3D attributes adaptively from
the depth-guided regions on the image and is no longer
constrained to local visual features. On KITTI benchmark
with monocular images as input, MonoDETR achieves
state-of-the-art performance and requires no extra dense
depth annotations. Besides, our depth-guided modules can
also be plug-and-play to enhance multi-view 3D object
detectors on nuScenes dataset, demonstrating our superior
generalization capacity. Code is available at https:
//github.com/ZrrSkywalker/MonoDETR.

1. Introduction
With a wide range of applications in autonomous driv-

ing, 3D object detection is more challenging than its 2D
counterparts, due to the complex spatial circumstances.
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Figure 1. Center-guided (Top) and Depth-guided Paradigms
(Bottom) for monocular 3D object detection. Existing center-
guided methods predict 3D attributes from local visual features
around the centers, while our MonoDETR guides the detection by
a predicted foreground depth map and adaptively aggregates fea-
tures in global context. The lower right figure visualizes the atten-
tion map of the target query in the depth cross-attention layer.

Compared to methods based on LiDAR [57, 20, 41, 50]
and multi-view images [49, 22, 26, 17], 3D object detection
from monocular (single-view) images [9, 1, 46] is of most
difficulty, which generally does not rely on depth measure-
ments or multi-view geometry. The detection accuracy thus
severely suffers from the ill-posed depth estimation, leading
to inferior performance.

Except for leveraging pseudo 3D representations [48, 51,
32, 38], standard monocular 3D detection methods [33, 52,
53, 31] follow the pipeline of traditional 2D object detec-
tion [40, 24, 43, 56]. They first localize objects by detecting
the projected centers on the image, and then aggregate the
neighboring visual features for 3D property prediction, as
illustrated in Figure 1 (Top). Although it is conceptually
straightforward, such center-guided methods are limited by
the local appearances without long-range context, and fail to
capture implicit geometric cues from 2D images, e.g., depth
guidance, which are critical to detect objects in 3D space.

To tackle this issue, we propose MonoDETR, which
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Figure 2. Comparison of DETR-based methods for camera-based 3D object detection. We utilize yellow, blue, green, and red to
respectively denote the feature or prediction space related with 2D, depth, 3D, and BEV. Different from other methods, our MonoDETR
leverages depth cues to guide 3D object detection from monocular images.

presents a novel depth-guided 3D detection scheme in Fig-
ure 1 (Bottom). Compared to DETR [4] in 2D detection, the
transformer in MonoDETR is equipped with depth-guided
modules to better capture contextual depth cues, serving as
the first DETR model for monocular 3D object detection,
as shown in Figure 2 (a) and (b). It consists of: two parallel
encoders for visual and depth representation learning, and a
decoder for adaptive depth-guided detection.

Specifically, after the feature backbone, we first utilize
a lightweight depth predictor to acquire the depth features
of the input image. To inject effective depth cues, a fore-
ground depth map is predicted on top, and supervised only
by discrete depth labels of objects, which requires no dense
depth annotations during training. Then, we apply the par-
allel encoders to respectively generate non-local depth and
visual embeddings, which represent the input image from
two aspects: depth geometry and visual appearance. On
top of that, a set of object queries is fed into the depth-
guided decoder, and conducts adaptive feature aggregation
from the two embeddings. Via a proposed depth cross-
attention layer, the queries can capture geometric cues from
the depth-guided regions on the image, and explore inter-
object depth relations. In this way, the 3D attribute predic-
tion can be guided by informative depth hints, no longer
constrained by the limited visual features around centers.

As an end-to-end transformer-based network, Mon-
oDETR is free from non-maximum suppression (NMS) or
rule-based label assignment. We only utilize the object-
wise labels for supervision without using auxiliary data,
such as dense depth maps or LiDAR. Taking monocular
images as input, MonoDETR achieves state-of-the-art per-
formance among existing center-guided methods, and sur-
passes the second-best by +2.53%, +1.08%, and +0.85% for
three-level difficulties on KITTI [14] test set.

Besides single-view images, the depth-guided mod-

ules in MonoDETR can also be extended as a plug-and-
play module for multi-view 3D detection on nuScenes [3]
dataset. By providing multi-view depth cues, our method
can not only improve the end-to-end detection performance
of PETRv2 [27] by +1.2% NDS, but also benefit the BEV
representation learning in BEVFormer [22] by +0.9% NDS.
This further demonstrates the effectiveness and generaliz-
ability of our proposed depth guidance.

We summarize the contributions of our paper as follows:

• We propose MonoDETR, a depth-guided framework
to capture scene-level geometries and inter-object
depth relations for monocular 3D object detection.

• We introduce a foreground depth map for object-wise
depth supervision, and a depth cross-attention layer for
adaptive depth features interaction.

• MonoDETR achieves leading results on monocular
KITTI benchmark, and can also be generalized to en-
hance multi-view detection on nuScenes benchmark.

2. Related Work

Existing methods for camera-based 3D object detection
can be categorized as two groups according to the input
number of views: monocular (single-view) and multi-view
methods. Monocular detectors only take as input the front-
view images and solve a more challenging task from insuf-
ficient 2D signals. Multi-view detectors simultaneously en-
code images of surrounding scenes and can leverage cross-
view dependence to understand the 3D space.

Monocular (Single-view) 3D Object Detection. Most
previous monocular detectors adopt center-guided pipelines
following conventional 2D detectors [40, 43, 56]. As early



Method
DETR
-based

Extra
Data

Guided
by

Object
Query

Feat.
Aggre.

Mutli-view Methods
DETR3D [49] ✓ - Visual 3D Local
PETR (v2) [26] ✓ Temporal Visual 3D Global
BEVFormer [22] ✓ Temporal Visual BEV, 3D Global

Monocular Methods
MonoDTR [18] × LiDAR Center × Local
MonoDETR ✓ - Depth Depth Global

Table 1. Comparison of DETR-based methods for camera-
based 3D object detection. Our MonoDETR is uniquely guided
by depth cues with depth-aware object queries.

works, Deep3DBox [35] introduces discretized representa-
tion with perspective constraints, and M3D-RPN [1] de-
signs a depth-aware convolution for better 3D region pro-
posals. With very few handcrafted modules, SMOKE [28]
and FCOS3D [46] propose concise architectures for ef-
ficient one-stage detection, while MonoDLE [33] and
PGD [47] analyze depth errors on top with improved per-
formance. To supplement the limited 3D cues, additional
data are utilized for assistance: dense depth annotations [32,
12, 45, 36], CAD models [29], and LiDAR [7, 38, 18].
Some recent methods introduce complicated geometric pri-
ors into the networks: adjacent object pairs [10], 2D-3D
keypoints [21], and uncertainty-related depth [52, 31]. De-
spite this, the center-guided methods are still limited by lo-
cal visual features without scene-level spatial cues. In con-
trast, MonoDETR discards the center localization step and
conducts adaptive feature aggregation via a depth-guided
transformer. MonoDETR requires no additional annota-
tions and contains minimal 2D-3D geometric priors.

Multi-view 3D Object Detection. For jointly extracting
features from surrounding views, DETR3D [49] firstly uti-
lizes a set of 3D object queries and back-projects them
onto multi-view images for feature aggregation. PETR se-
ries [26, 27] further proposes to generate 3D position fea-
tures without unstable projection and explores the advan-
tage of temporal information from previous frames. From
another point of view, BEVDet [17, 16] follows [37] to
lift 2D images into a unified Bird’s-Eye-View (BEV) repre-
sentation and appends BEV-based heads [50] for detection.
BEVFormer [22] instead generates BEV features via a set
of learnable BEV queries, and introduces a spatiotemporal
BEV transformer for visual features aggregation. Follow-up
works also introduce cross-modal distillation [19, 11] and
masked image modeling [25, 6] for improved performance.
Different from the above methods for multi-view input,
MonoDETR targets monocular images and extracts depth
guidance to capture more geometric cues. Our depth-guided
modules can also be generalized to surrounding views as a
plug-and-play module to enhance multi-view detectors.
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Figure 3. The lightweight depth predictor. We utilize the depth
predictor to predict the depth features and foreground depth map,
which only contains discrete object-wise depth values.

Comparison of DETR-based Methods. DETR [5] and
its follow-up works [13, 59, 54, 34] have attained great
success on 2D object detection without NMS or anchors.
Inspired by this, some efforts have transferred DETR into
camera-based 3D object detection. We specifically compare
our MonoDETR with existing DETR-based 3D object de-
tectors in Figure 2 and Table 1. (1) MonoDTR [18]. Also as
a single-view detector, MonoDTR utilizes transformers [44]
to incorporate depth features with visual representations.
However, MonoDTR is not a DETR-based method, and still
adopts the traditional center-guided paradigm, which local-
izes objects by their centers and only aggregate local fea-
tures. MonoDTR contains no object queries for global fea-
ture aggregation, and follows YOLOv3 [39] to adopt com-
plicated NMS post-processing with pre-defined anchors. (2)
DETR3D [49] and PETR (v2) [26, 27] (Figure 2 (c))
are multi-view methods and follow the DETR detection
pipeline. In contrast, they contain no transformer-based
encoders (visual or depth), and detect objects by 3D ob-
ject queries without the perspective transformation. Impor-
tantly, they are only guided by visual features and explores
no depth cues from the input images. (3) BEVFormer [22]
(Figure 2 (d)) firstly utilizes a BEV transformer to lift multi-
view images into BEV representations, and then conducts
DETR-based detection within the BEV space. Different
from all aforementioned methods, MonoDETR introduces
a unique depth-guided transformer that guides the 3D de-
tection by geometric depth cues, which can generalize well
to both monocular and multi-view inputs.

3. Method

The overall framework of MonoDETR is shown in Fig-
ure 4. We first illustrate the concurrent visual and depth fea-
ture extraction in Section 3.1, and detail our depth-guided
transformer for aggregating appearance and geometric cues
in Section 3.2. Then, we introduce the attribute prediction
and loss functions of MonoDETR in Section 3.3. Finally,
we illustrate how to plug our depth-guided transformer into
existing multi-view object detectors in Section 3.4.
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Figure 4. Overall pipeline of MonoDETR. We first acquire the visual and depth features of the input image and utilize two parallel
encoders for non-local encoding. Then, we propose a depth-guided decoder to adaptively aggregate scene-level features in global context.

3.1. Feature Extraction

Taking as input a monocular (single-view) image, our
framework utilizes a feature backbone, e.g., ResNet-
50 [15], and a lightweight depth predictor to generate its
visual and depth features, respectively.

Visual Features. Given the image I ∈ RH×W×3, where
H and W denote its height and width, we obtain its multi-
scale feature maps, f 1

8
, f 1

16
, and f 1

32
, from the last three

stages of ResNet-50. Their downsample ratios to the orig-
inal size are 1

8 , 1
16 and 1

32 . We regard the highest-level
f 1

32
∈ RH

32×
W
32×C with sufficient semantics as the visual

features fV of the input image.

Depth Features. We obtain the depth features from the
image by a lightweight depth predictor, as shown in Fig-
ure 3. We first unify the sizes of three-level features to the
same 1

16 downsample ratio via bilinear pooling, and fuse
them by element-wise addition. In this way, we can inte-
grate multi-scale visual appearances and also preserve fine-
grained patterns for objects of small sizes. Then, we apply
two 3×3 convolutional layers to obtain the depth features
fD ∈ RH

16×
W
16×C for the input image.

Foreground Depth Map. To incorporate effective depth
information into the depth features, we predict a foreground
depth map Dfg ∈ RH

16×
W
16×(k+1) on top of fD via a 1×1

convolutional layer. We supervise the depth map only by
discrete object-wise depth labels, without extra dense depth
annotations. The pixels within the same 2D bounding box
are assigned with the same depth label of the correspond-
ing object. For pixels within multiple boxes, we select the

depth label of the object that is nearest to the camera, which
accords with the visual appearance of the image. Here, We
discretize the depth into k+1 bins [38], where the first ordi-
nal k bins denote foreground depth and the last one denotes
the background. We adopt linear-increasing discretization
(LID), since the larger depth estimation errors of farther ob-
jects can be suppressed with a wider categorization interval.
We limit the foreground depth values within [dmin, dmax],
and set both the first interval length and LID’s common dif-
ference as δ. We then categorize a ground-truth depth label
d into the k-th bin as:

k = ⌊−0.5 + 0.5

√
1 +

8(d− dmin)

δ
⌋, (1)

where δ = 2(dmax−dmin)
k(k+1) . By focusing on the object-

wise depth values, the network can better capture fore-
ground spatial structures and inter-object depth relations,
which produces informative depth features for the subse-
quent depth-guided transformer.

3.2. Depth-guided Transformer

The depth-guided transformer of MonoDETR is com-
posed of a visual encoder, a depth encoder, and a depth-
guided decoder. The two encoders produce non-local vi-
sual and depth embeddings, and the decoder enables object
queries to adaptively capture scene-level information.

Visual and Depth Encoders. Given depth and visual fea-
tures fD, fV , we specialize two transformer encoders to
generate their scene-level embeddings with global recep-
tive fields, denoted as fe

D ∈ R
HW
162

×C and fe
V ∈ R

HW
322

×C .



We set three blocks for the visual encoder and only one
block for the depth encoder, since the discrete foreground
depth information is easier to be encoded than the rich vi-
sual appearances. Each encoder block consists of a self-
attention layer and a feed-forward neural network (FFN).
By the global self-attention mechanism, the depth encoder
explores long-range dependencies of depth values from dif-
ferent foreground areas, which provides non-local geomet-
ric cues of the stereo space. In addition, the decoupling of
depth and visual encoders allows them to better learn fea-
tures for themselves, encoding the input image from two
perspectives, i.e., depth geometry and visual appearance.

Depth-guided Decoder. Based on the non-local fe
D, fe

V ,
we utilize a set of learnable object queries q ∈ RN×C

to detect 3D objects via the depth-guided decoder, where
N denotes the pre-defined maximum number of objects in
the input image. Each decoder block sequentially contains
a depth cross-attention layer, an inter-query self-attention
layer, a visual cross-attention layer, and an FFN. Specif-
ically, the queries first capture informative depth features
from fe

D via the depth cross-attention layer, in which we
linearly transform the object queries and depth embeddings
into queries, keys, and values,

Qq = Linear(q), KD, VD = Linear(fe
D), (2)

where Qq ∈ RN×C and KD, VD ∈ R
HW
162

×C . Then, we
calculate the query-depth attention map AD ∈ RN×HW

162 ,
and aggregate informative depth features weighted by AD

to produce the depth-aware queries q′, formulated as,

AD = Softmax(QqK
T
D/

√
C), (3)

q′ = Linear(ADVD). (4)

Such a mechanism enables each object query to adaptively
capture spatial cues from depth-guided regions on the im-
age, leading to better scene-level spatial understanding.
Then, the depth-aware queries are fed into the inter-query
self-attention layer for feature interaction between objects,
and the visual cross-attention layer for collecting visual se-
mantics from fe

V . We stack three decoder blocks to fully
fuse the scene-level depth cues into object queries.

Depth Positional Encodings. In the depth cross-attention
layer, we propose learnable depth positional encodings for
fe
D instead of conventional sinusoidal functions. In de-

tail, we maintain a set of learnable embeddings, pD ∈
R(dmax−dmin+1)×C , where each row encodes the depth
positional information for a meter, ranging from dmin to
dmax. For each pixel (x, y) in Dfg , we first obtain its (k +
1)-categorical depth prediction confidence, Dfg(x, y) ∈
Rk+1, each channel of which denotes the predicted confi-
dence for the corresponding depth bin. The estimated depth

of pixel (x, y) can then be obtained by the weighted sum-
mation of the depth-bin confidences and their correspond-
ing depth values, which is formulated as

dmap(x, y) =

k+1∑
i=1

Dfg(x, y)[i] · dibin, (5)

where dibin denotes the starting value of the i-th depth bin
and

∑k+1
i=1 Dfg(x, y)[i] = 1. Then, we linearly interpolate

pD according to the depth dmap(x, y) to obtain the depth
positional encoding for the pixel (x, y). By pixel-wisely
adding fe

D with such encodings, object queries can better
capture scene-level depth cues and understand 3D geometry
in the depth cross-attention layer.

3.3. Detection Heads and Loss

After the decoder, the depth-aware queries are fed into
a series of MLP-based heads for 3D attribute predictions,
including object category, 2D size, projected 3D center,
depth, 3D size, and orientation. For inference, we convert
these perspective attributes into 3D-space bounding boxes
using camera parameters without NMS post-processing or
pre-defined anchors. For training, we match the orderless
queries with ground-truth labels and compute losses for the
paired ones. We refer to Supplementary Material for details.

Bipartite Matching. To correctly match each query with
ground-truth objects, we calculate the loss for each query-
label pair and utilize Hungarian algorithm [4] to find the
globally optimal matching. For each pair, we integrate the
losses of six attributes into two groups. The first contains
object category, 2D size and the projected 3D center, since
these attributes mainly concern 2D visual appearances of
the image. The second group consists of depth, 3D size and
orientation, which are 3D spatial properties of the object.
We respectively sum the losses of two groups and denote
them as L2D and L3D. As the network generally predicts
less accurate 3D attributes than 2D attributes, especially at
the beginning of training, the value of L3D is unstable and
would disturb the matching process. We only utilize L2D

as the matching cost for matching each query-label pair.

Overall Loss. After the matching, we obtain Ngt valid
pairs out of N queries, where Ngt denotes the number of
ground-truth objects. Then, the overall loss of a training
image is formulated as

Loverall =
1

Ngt
·
Ngt∑
n=1

(L2D + L3D) + Ldmap, (6)

where Ldmap represents the Focal loss [23] of the predicted
categorical foreground depth map Dfg in Section 3.1.
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Figure 5. Plug-and-play for multi-view 3D object detection. We utilize yellow, blue, green, and red to respectively denote the feature
space related to 2D, depth, 3D, and BEV. The depth-guided transformer of MonoDETR is adopted to enhance PETR (v2) [26, 27] and
BEVFormer [22] in a plug-and-play manner, which provides depth guidance from surrounding scenes.

3.4. Plug-and-play for Multi-view Detectors

Besides monocular images, our depth-guided trans-
former can also serve as a plug-and-play module upon
multi-view methods for depth-guided detection. Specifi-
cally, we append our depth predictors and depth encoders
after the backbones of multi-view methods, which are
shared across views and extract surrounding depth embed-
dings. Then, we inject our depth cross-attention layer into
their transformer blocks to guide the 3D or BEV object
queries by scene-level depth cues.

For PETR (v2) [26, 27] in Figure 5 (a), we modify its
previous visual decoder as a depth-guided decoder. In each
decoder block, the 3D object queries are first fed into our
depth cross-attention layer for depth cues aggregation, and
then into the original 3D self-attention and visual cross-
attention for 3D position features interaction. This enables
PETR’s 3D queries to be depth-aware and better capture
spatial characteristics of surrounding scenes.

For BEVFormer [22] in Figure 5 (b), as its decoder is
conducted in BEV space, we incorporate the depth guid-
ance into its BEV encoder, which lifts image features
into BEV space by transformers. In each encoder block,
the BEV queries also sequentially pass through our depth
cross-attention layer and the original spatial cross-attention
layer. This contributes to better BEV representation learn-
ing guided by the multi-view depth information.

4. Experiments
4.1. Settings

Dataset. We evaluate MonoDETR on the widely-adopted
KITTI [14] benchmark, including 7,481 training and 7,518

test images. We follow [8, 9] to split 3,769 val images from
the training set. We report the detection results with three-
level difficulties, easy, moderate, and hard, and evaluate by
the average precision (AP ) of bounding boxes in 3D space
and the bird-eye view, denoted as AP3D and APBEV , re-
spectively, which are both at 40 recall positions.

Implementation details. We adopt ResNet-50 [15] as our
feature backbone. To save GPU memory, we apply de-
formable attention [59] for the visual encoder and visual
cross-attention layers, and utilize the vanilla global atten-
tion [4] to better capture non-local geometries for the depth
encoder and depth cross-attention layers. We utilize 8 heads
for all attention modules and set the number of queries N
as 50, which are learnable embeddings with predicted 2D
reference points. We set the channel C and all MLP’s latent
dimensions as 256. For the foreground depth map, we set
[dmin, dmax] as [0m, 60m] and the number of bins k as 80.
On a single RTX 3090 GPU, we train MonoDETR for 195
epochs with batch size 16 and a learning rate 2× 10−4. We
adopt AdamW [30] optimizer with weight decay 10−4, and
decrease the learning rate at 125 and 165 epochs by 0.1. For
training stability, we discard the training samples with depth
labels larger than 65 meters or smaller than 2 meters. Dur-
ing inference, we simply filter out the object queries with
the category confidence lower than 0.2 without NMS post-
processing, and recover the 3D bounding box using the pre-
dicted six attributes following previous works [33, 31].

4.2. Comparison

Performance. In Table 2, MonoDETR achieves state-
of-the-art performance on KITTI test and val sets. On
test set, MonoDETR exceeds all existing methods includ-
ing those with different additional data input and surpasses



Method Extra data
Test, AP3D Test, APBEV Val, AP3D

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PatchNet [32]
Depth

15.68 11.12 10.17 22.97 16.86 14.97 - - -
D4LCN [12] 16.65 11.72 9.51 22.51 16.02 12.55 - - -
DDMP-3D [45] 19.71 12.78 9.80 28.08 17.89 13.44 - - -

Kinematic3D [2] Video 19.07 12.72 9.17 26.69 17.52 13.10 19.76 14.10 10.47

MonoRUn [7]
LiDAR

19.65 12.30 10.58 27.94 17.34 15.24 20.02 14.65 12.61
CaDDN [38] 19.17 13.41 11.46 27.94 18.91 17.19 23.57 16.31 13.84
MonoDTR [18] 21.99 15.39 12.73 28.59 20.38 17.14 24.52 18.57 15.51

AutoShape [29] CAD 22.47 14.17 11.36 30.66 20.08 15.59 20.09 14.65 12.07

SMOKE [28]

None

14.03 9.76 7.84 20.83 14.49 12.75 14.76 12.85 11.50
MonoPair [10] 13.04 9.99 8.65 19.28 14.83 12.89 16.28 12.30 10.42
RTM3D [21] 13.61 10.09 8.18 - - - 19.47 16.29 15.57
PGD [47] 19.05 11.76 9.39 26.89 16.51 13.49 19.27 13.23 10.65
IAFA [55] 17.81 12.01 10.61 25.88 17.88 15.35 18.95 14.96 14.84
MonoDLE [33] 17.23 12.26 10.29 24.79 18.89 16.00 17.45 13.66 11.68
MonoRCNN [42] 18.36 12.65 10.03 25.48 18.11 14.10 16.61 13.19 10.65
MonoGeo [53] 18.85 13.81 11.52 25.86 18.99 16.19 18.45 14.48 12.87
MonoFlex [52] 19.94 13.89 12.07 28.23 19.75 16.89 23.64 17.51 14.83
GUPNet [31] 20.11 14.20 11.77 - - - 22.76 16.46 13.72

MonoDETR (Ours) None 25.00 16.47 13.58 33.60 22.11 18.60 28.84 20.61 16.38
Improvement v.s. second-best +2.53 +1.08 +0.85 +2.94 +1.73 +1.41 +4.32 +2.04 +0.81

Table 2. Monocular performance of the car category on KITTI test and val sets. We utilize bold numbers to highlight the best results,
and color the second-best ones and our gain over them in blue.

the second-best under three-level difficulties by +2.53%,
+1.08% and +0.85% in AP3D, and by +2.94%, +1.73% and
+1.41% in APBEV . The competitive MonoDTR [18] also
applies transformers to fuse depth features, but it is still a
center-guided method and highly relies on additional dense
depth supervision, anchors and NMS. In contrast, Mon-
oDETR performs better without extra input or handcrafted
designs, illustrating its simplicity and effectiveness.

Efficiency. Compared to existing methods in Table 3,
MonoDETR can achieve the best detection performance
without consuming too much computational budget. As
illustrated in Section 3, we only process the feature maps
with 1

16 and 1
32 downsample ratios, which reduces our Run-

time and GFlops, while others adopt 1
4 and 1

8 ratios.

4.3. Ablation Studies

We verify the effectiveness of each our component and
report AP3D for the car category on the KITTI val set.

Depth-guided Transformer. In Table 5, we first remove
the entire depth-guided transformer along with the depth
predictor, which constructs a pure center-guided baseline.
This variant, denoted as ‘w/o Depth-guided Trans.’ can be
regarded as a re-implementation of MonoDLE [33] with our
detection heads and loss functions. As shown, the absence

Method MonoDLE GUPNet MonoDTR MonoDETR

Runtime↓ 40 34 37 38
GFlops↓ 79.12 62.32 120.48 62.12
AP3D Mod. 12.26 15.02 15.39 16.47

Table 3. Efficiency comparison. We test the Runtime (ms) on one
RTX 3090 GPU with batch size 1, and compare AP3D on test set.

of the depth-guided transformer greatly hurts the perfor-
mance, for the lack of non-local geometric cues. Then, we
investigate two key designs within the depth-guided trans-
former: the transformer architecture and depth guidance.
For ‘w/o Transformer’, we only append the depth predictor
upon the center-guided baseline to provide implicit depth
guidance without transformers. For ‘w/o Depth Guidance’,
we equip the center-guided baseline with a visual encoder
and decoder, but include no depth predictor, depth encoder,
and the depth cross-attention layer in the decoder. This
builds a transformer network guided by visual appearances,
without any depth guidance for object queries. The perfor-
mance degradation of both variants indicates their signifi-
cance for our depth-guided feature aggregation paradigm.

Depth Encoder. The depth encoder produces non-local
depth embeddings fe

D, which are essential for queries to



Method Image Size NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

CenterNet [56] - 0.328 0.306 0.716 0.264 0.609 1.426 0.658
FCOS3D* [46] 1600×900 0.415 0.343 0.725 0.263 0.422 1.292 0.153
PGD* [47] 1600×900 0.428 0.369 0.683 0.260 0.439 1.268 0.185
DETR3D† [49] 1600×900 0.434 0.349 0.716 0.268 0.379 0.842 0.200
BEVDet† [17] 1408×512 0.417 0.349 0.637 0.269 0.490 0.914 0.268
PETR† [26] 1600×900 0.442 0.370 0.711 0.267 0.383 0.865 0.201

PETRv2 [27]
800×320

0.496 0.401 0.745 0.268 0.448 0.394 0.184
+ Depth-gudied 0.508 0.410 0.727 0.265 0.389 0.419 0.187

BEVFormer [22]
1600×900

0.517 0.416 0.673 0.274 0.372 0.394 0.198
+ Depth-gudied 0.526 0.423 0.661 0.272 0.349 0.371 0.192

Table 4. Multi-view performance on nuScenes val set. * denotes the two-step fine-tuning with test-time augmentation, and † denotes
CBGS [58] training. We compare with the best-performing variants of other methods and utilize bold numbers to highlight the best results.

Architecture Easy Mod. Hard

MonoDETR 28.84 20.61 16.38
w/o Depth-guided Trans. 19.69 15.15 13.93

w/o Transformer 20.19 16.05 14.18
w/o Depth Guidance 24.14 17.81 15.60

Table 5. Effectiveness of depth-guided transformer. ‘Depth-
guided Trans.’ and ‘Depth Guidance’ denote the depth-guided
transformer and the depth cross-attention layer, respectively

explore scene-level depth cues in the depth cross-attention
layer. We experiment with different encoder designs in Ta-
ble 6. ‘Deform. SA’ and ‘3×3 Conv.×2’ represent one-
block of deformable attention and two 3 × 3 convolutional
layers, respectively. As reported, ‘Global SA’ with only one
block generates the best fe

D for global gemoetry encoding.

Depth-guided Decoder. As the core depth-guided com-
ponent, we explore how to better guide object queries to
interact with depth embeddings fe

D in Table 7. With the
sequential inter-query self-attention (‘I’) and visual cross-
attention (‘V ’) layers, we insert the depth cross-attention
layer (‘D’) into each decoder block with four positions. For
‘I → D + V ’, we fuse the depth and visual embeddings
fe
D, fe

V by element-wise addition, and apply only one uni-
fied cross-attention layer. As shown, the ‘D → I → V ’
order performs the best. By placing ‘D’ in the front, object
queries can first aggregate depth cues to guide the remain-
ing operations in each decoder block.

Foreground Depth Map. We explore different represen-
tations for our depth map in Table 8. Compared to dense
depth supervision (‘Dense’), adopting object-wise depth la-
bels (‘Fore.’) can focus the network on more important
foreground geometric cues, and better capture depth rela-
tions between objects. ‘LID’ outperforms other discretiza-
tion methods, since the linear-increasing intervals can sup-
press the larger estimation errors of farther objects.

Mechanism Easy Mod. Hard

Global SA 28.84 20.61 16.38
Deform. SA 26.43 18.91 15.55

3×3 Conv.×2 25.55 18.36 15.28
w/o 24.25 18.38 15.41

Table 6. The design of depth encoder. ‘Deform. SA’ denotes a
one-block deformable self-attention layer. ‘w/o’ denotes directly
feeding depth features into the decoder without the depth encoder.

Depth Positional Encodings pD. In Table 9, we experi-
ment with different depth positional encodings for fe

D in the
depth cross-attention layer. By default, we apply the meter-
wise encodings pD ∈ R(dmax−dmin+1)×C that assign one
learnable embedding per meter with depth value interpola-
tion for output. We then assign one learnable embedding
for each depth bin, denoted as ‘k-bin pD ∈ Rk×C’, and
also experiment sinusoidal functions to encode either the
depth values or 2D coordinates of the feature map, denoted
as ‘Depth sin/cos’ and ‘2D sin/cos’, respectively. As shown,
‘meter-wise pD’ performs the best for encoding more fine-
grained depth cues ranging from dmin to dmax, which pro-
vides the queries with more scene-level spatial structures.

4.4. Multi-view Experiments

As a plug-and-play module for multi-view 3D object
detection, we append our depth-guided transformer upon
two DETR-based multi-view networks, PETR v2 [27] and
BEVFormer [22]. The detailed network architectures are
shown in Figure 5. For a fair comparison, we adopt the
same training configurations as the two baseline models,
and utilize the same [dmin, dmax] with k as monocular ex-
periments. We report the performance on nuScenes [3] val
set in Table 4, where we apply no test-time augmentation or
CGBS [58] training. For end-to-end detection in PETRv2,
the depth guidance contributes to +1.2% NDS and +0.9%
mAP by providing sufficient multi-view geometric cues.



Figure 6. Visualizations of attention maps AD in the depth cross-attention layer. The top column denotes the input image, and the last three
columns denote the attention maps of the target queries (denoted as white dots). Hotter colors indicate higher attention weights.

Architecture Easy Mod. Hard

D → I→ V 28.84 20.61 16.38
I → D→ V 26.24 19.28 16.03
I → V→ D 25.84 18.85 15.72
I → D + V 24.94 18.41 15.39

Table 7. The design of depth-guided decoder. ‘D’, ‘I’, and ‘V’
denote the depth cross-attention, inter-query self-attention, and vi-
sual cross-attention layers, respectively.

For the BEV feature generation, our modules benefit BEV-
Former by +0.9% NDS and +0.7% mAP, indicating the im-
portance of auxiliary depth information for BEV-space fea-
ture encoding. The additional experiments on multi-view
3D object detection well demonstrate the effectiveness and
generalizability of our approach.

5. Visualization
We visualize the attention maps AD in Equation 3 of the

depth cross-attention layer at the last decoder block. As
shown in Figure 6, the areas with high attention scores for
the target object query spread over the entire image, con-
centrating on other objects with long distances. This in-
dicates, via our depth guidance, object queries are able to
adaptively capture non-local depth cues from the image and
are no longer limited by neighboring visual features.

6. Conclusion
We propose MonoDETR, an end-to-end transformer-

based framework for monocular 3D object detection, which
is free from any additional input, anchors, or NMS. Dif-
ferent from existing center-guided methods, we enable ob-
ject queries to explore geometric cues adaptively from the
depth-guided regions, and conduct inter-object and object-
scene depth interactions via attention mechanisms. Ex-
tensive experiments have demonstrated the effectiveness of
our approach for both single-view (KITTI) and multi-view
(nuScenes) input. We hope MonoDETR can serve as a

Depth Map Easy Mod. Hard

Fore. LID 28.84 20.61 16.38

Dense LID 27.69 19.85 15.98
Fore. UD 25.61 18.90 15.49
Fore. SID 26.05 18.95 15.59

Table 8. Different representations of the predicted depth map.
‘UD’, ‘SID’, and ‘LID’ denote uniform, spacing-increasing, and
linear-increasing discretizations.

Settings Easy Mod. Hard

Meter-wise pD 28.84 20.61 16.38
k-bin pD 28.06 19.68 16.04
Depth sin/cos 27.42 19.57 15.82
2D sin/cos 26.48 18.63 15.52
w/o 26.76 18.94 15.85

Table 9. The design of depth positional encodings. ‘Meter-wise’
and ‘k-bin’ assign learnable embeddings by meters and depth bins,
respectively. ‘sin/cos’ denotes sinusoidal functions for encodings.

strong DETR baseline for future research in monocular 3D
object detection. Limitations. How to effectively incor-
porate multi-modal input into our transformer framework
is not discussed in the paper. Our future direction will fo-
cus on this to further improve the performance of depth-
guided transformers, e.g., distilling more sufficient geomet-
ric knowledge from LiDAR and RADAR modalities.
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