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Abstract

This paper presents a learning-based method for trans-
parent surface estimation from a single view polarization
image. Existing shape from polarization(SfP) methods have
the difficulty in estimating transparent shape since the in-
herent transmission interference heavily reduces the reli-
ability of physics-based prior. To address this challenge,
we propose the concept of physics-based prior confidence,
which is inspired by the characteristic that the transmission
component in the polarization image has more noise than
reflection. The confidence is used to determine the contribu-
tion of the interfered physics-based prior. Then, we build a
network(TransSfP) with multi-branch architecture to avoid
the destruction of relationships between different hierarchi-
cal inputs. To train and test our method, we construct a
dataset for transparent shape from polarization with paired
polarization images and ground-truth normal maps. Exten-
sive experiments and comparisons demonstrate the superior
accuracy of our method. Our cdataset and code are publicly
available at https://github.com/shaomq2187/TransSfP

1. Introduction

Surface normals provide detailed 3D information about
the surface of objects. However, estimating the high-quality
surface normal of transparent objects is still an open chal-
lenge. The complex rays interactions in transparent objects
lead to the difficulty of standard 3D sensors in acquiring
accurate surface information[23]. Besides, transparent ob-
jects lack texture of their own, adopting instead the texture
of the background, making the regular image-based meth-
ods extremely ill-posed and can not produce satisfied esti-
mation[12]. Compared with regular 3D and RGB sensors,
the polarization sensor can acquire information about the
surface normal from the reflected light on transparent sur-
face. In particular, the commercial polarization image sen-
sors[20] that appeared in recent years have made it possible
to capture polarization images at a single shot, making the
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Figure 1. Examples of our estimation. Our method is capable of
estimating the normal map of various transparent surface from a
single view polarization image

acquisition of polarization images as easy as conventional
sensors. Hence, in this paper, we focus on estimating the
surface normals of transparent objects from a single-view
polarization image.

The key barrier to using polarization information to esti-
mate the surface normals of transparent objects is the exis-
tence of transmission interference. Fresnel specular reflec-
tion model(will be described in Sec.3.2) is commonly used
to solve the possible surface normals, i.e. the physics-based
prior in SfP, from the observed polarization state. How-
ever, due to the high transmittance of transparent objects,
the specular reflection energy only accounts for about 4%
of the incident light energy[26]. The interference transmit-
ted from the background is superimposed on the observed
polarization information, leading to the high estimation er-
ror of the physics-based SfP methods.

Aiming at the problem that the reliability of the Fres-
nel specular reflection model is reduced, we find that the
polarization observation of the transmission component has
more noise. This characteristic is helpful to distinguish the
interfered areas and motivates us to propose the concept of
physics-based prior confidence. The confidence indicates
the reliability of the physics-based prior and hence serves
as the weight of physics-based prior and polarization an-
gle loss. The polarization angle loss is designed to force
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our network to learn the prior knowledge defined by Fresnel
specular reflection model. In addition, we notice that pre-
vious learning-based methods[2, 5] directly concatenating
physics-based prior and raw polarization images will de-
stroy the relationship between different hierarchies and lead
to a decline in the performance. Therefore, we build a net-
work called TransSfP with multi-branch architecture to han-
dle different hierarchical inputs. To demonstrate the perfor-
mance of our method, we construct a dataset for transparent
shape polarization, which consists of both real-world and
synthetic collections. Benefiting from the above designs,
our method can estimate normal maps of various transpar-
ent surfacess with lower error as shown in Fig.1. We sum-
marize our contributions as:

• We propose a novel learning-based method for trans-
parent surface normal estimation from a single view
polarization image.

• We contribute the first dataset for transparent shape
from polarization, which consists of both real-world
and synthetic collections.

• Technically, we introduce three novel designs for
transparent SfP problem: the concept of physics-based
prior confidence, a multi-branch architecture, and a
self-supervised polarization angle loss.

2. Related Work
2.1. Shape from Polarization

When a beam of unpolarized incident light is reflected
from the surface of an object, the polarization state of the
light will change according to the incident angle, the rela-
tive refractive index, and the surface normal vector of the
surface. Early works relied on the physical model of Fres-
nel equations to recover surface normals. Due to the in-
herent ambiguity of SfP, other constraints were required to
determine a unique surface normal, including rotation mea-
surements[15], active lighting[18], boundary prior[17] and
shading cues[13], but these methods are limited due to strict
assumptions and calibrations. With the vigorous develop-
ment of deep learning in many areas of computer vision,
the combination of SfP and deep learning has attracted the
attention of researchers. Ba et al.[2] first proposed using
deep learning to solve the SfP problem and established a
real-world object-level dataset. Some works extended ‘Sfp
+ deep learning’ to other tasks, such as scene-level normal
estimation[9] and human body shape estimation[31]. How-
ever, these approaches and datasets all focus on opaque ob-
jects. As far as we know, there are no publicly available
polarization datasets and deep learning models for trans-
parent objects. To address this issue, we propose the first
dataset and deep learning model for transparent shape from
polarization.

2.2. Shape Estimation for Transparent Objects

Shape estimation for transparent objects is a challeng-
ing problem[27]. Active lighting and capture devices are
used in many methods to estimate the shape of transparent
objects, such as shape from the distortion of the calibra-
tion pattern by transparent objects[25], shape from the re-
flection of transparent objects to known ambient light[28],
shape from the corresponding relationship between the in-
cident and reflected light[27]. These methods all require ex-
pensive experimental equipment and tedious reconstruction
steps. Some researchers tried to use cheaper devices to es-
timate the surface shape of transparent objects. Li et al.[12]
proposed a physics-based neural network, which can recon-
struct 3D models of transparent objects from multi-view
RGB images and achieve state-of-the-art results. These
methods exploited multi-view images to achieve charming
results, while our method aims to recover transparent shape
from a single view image. There are some works focus-
ing on RGB-D sensor depth completion[23, 30], which can
complete the depth map of scenes containing transparent
objects from a single view. But these works usually focused
on transparent object grasping, their estimation accuracy is
limited.

Shape from polarization has long been used to esti-
mate the surface of transparent objects with the advantages
of single-view, weak assumption of lighting, and passive
imaging. Saito et al.[22] applied Fresnels’s law to solve sur-
face orientation by measuring the polarization information
of the transparent object in an optical diffuser. To solve the
ambiguity in SfP, Miyazaki et al.[16] proposed a method of
rotating the transparent object with a tiny angle and match-
ing the feature points of the two polarization states. Since
the polarization state of transparent objects is seriously af-
fected by internal reflection, refraction, and transmission,
Miyazaki et al.[14] employed inverse raytracing to optimize
transparent shapes. However, prior works only focused on
simple transparent objects such as spheres and plates. We
hope to estimate surface shape of more complex transparent
objects by combining SfP with deep learning.

3. Method
3.1. Overview

Our goal is to estimate transparent surface normal from
a single view polarization image. To this end, we present a
data-driven approach as shown in Fig.2. We input the raw
polarization images to our network, which has three compo-
nents: intensity map I , degree of linear polarization(DoLP,
ρ) map, and angle of linear polarization(AoLP, φ) map.
Then, we compute the physics-based prior, the four normal
maps Nphy0, Nphy1, Nphy2, Nphy3, by exploiting Fresnel’s
specular reflection model(Sec.3.2)) and they are input into
our network. To handle the transmission interference, we
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Figure 2. Overview of our proposed method. We use a multi-branch architecture to handle different hierarchical inputs rather than
directly concatenating them. The physics-based prior confidence map is defined from raw polarization images and used for the weighted
fusion of different inputs. In addition, we propose the self-supervised AoLP loss by exploiting the confidence map to force the network to
learn the prior knowledge between the normal and AoLP

analyze the polarization observation characteristic on trans-
parent surface and define the concept of the physics-based
prior confidence C as an additional input(Sec.3.3). In addi-
tion, we propose a self-supervised AoLP loss based on the
confidence to force the network to learn the prior knowl-
edge between AoLP and surface normal(Sec.3.4). Finally,
we propose separately feeding the different three inputs into
the network and the estimated surface normal n̂ can be ex-
pressed as:

n̂ = f(ρ, φ;Nphy0, Nphy1, Nphy2, Nphy3
;C) (1)

where f(·) represents the prediction model(Sec.3.4). In our
method, we used the following assumptions: (a) Transpar-
ent surface is smooth and its refractive index is known. (b)
The noise in AoLP map stems from the background, and
other sources are ignored. (c) The reflection component is
dominant on most areas of the transparent surface.

3.2. Polarization Image Formation of Transparent
Shapes

The ray coming from the transparent surface is the su-
perposition of the reflection component(Ir, ρr, φr) and the
transmission component(It, ρt, φt). Hence, the intensity of
a single pixel under a polarizer with an angle of αpol can be
expressed as follows:

I(αpol) =Ir[1 + ρr cos(2αpol − 2φr)]+ (2)
It[1 + ρt cos(2αpol − 2φt)]

=I[1 + ρ cos(2αpol − 2φ)] (3)

According to Fresnel’s equations, the DoLP and AoLP in
the specular reflection component have the following rela-
tionship with the zenith θ and azimuth angle ϕ of surface
normal n = (sin θ cosϕ, sin θ sinϕ, cos θ):

ρr =
2 sin2 θ cos θ

√
η2 − sin2 θ

η2 − sin2 θ − η2 sin2 θ + 2 sin4 θ
(4)

φr = ϕ± π

2
(5)

where η is the refraction index and is set to 1.52 in this pa-
per. Eq.4 and Eq.5 show that two zenith and two azimuth
angles can be determined for a given DoLP and AoLP. Four
normal maps, i.e. the physics-based prior, can be calcu-
lated from the raw polarization images. For detailed cal-
culations of physics-based prior please refer to our supple-
mentary material.

Since the polarization state of the transmission compo-
nent is unknown, the acquisition of the physics-based prior
implies the following approximations: ρ ≈ ρr and φ ≈ φr,
where ρ and φ are the captured DoLP and AoLP. The error
of physics-based prior depends on the rationality of the ap-
proximations. To understand the impact of the transmission
component, we solve ρ and φ and introduce the transmis-
sion coefficient T to strip the variables in Ir and It:

ρ =

√
I2
r0(1−T )2ρ2

r+I2
t0T

2ρ2
t+2Ir0It0ρrρtT (1−T ) cos(2φr−2φt)

Ir0(1−T )+It0T

(6)

φ =
1

2
arctan

Ir0ρr(1− T ) sin 2φr + It0ρtT sin 2φt

Ir0ρr(1− T ) cos 2φr + It0ρtT cos 2φt

(7)

where Ir0 and It0 can be regarded as constant values and
satisfy the following relationship with Ir and It: Ir = (1−
T )Ir0, It = TIt0. Eq.6 and Eq.7 illustrate the formation of
the polarization state on the transparent surface. The ρt is
usually small if the background is diffuse and the ρr ≫ ρt
since the specular reflection is highly polarized[6]. Hence,
the interference of transmission on the DoLP ρ is weak.

Our experimental setting can ensure Ir0
It0

≈ 10. There-
fore, according to Eq.7, the transmission term interference



is significant only when T is very close to 1. In other words,
φ will be disturbed by φt heavily when T → 1; otherwise,
φ ≈ φr is satisfied. This characteristic inspires us to pro-
pose the physics-based prior confidence and the AoLP loss.

3.3. Physics-based Prior Confidence

Using the physics-based prior in the areas with high
transmittance will lead to a significant angular error. Al-
though we can not directly obtain the transmittance of each
point, fortunately, the characteristic of the transmission
component’s AoLP φt can help us to distinguish the areas
with strong transmission interference.
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Figure 3. Different components captured by polarization cam-
era. The captured ray consists of reflection and transmission com-
ponents, where the transmission component is composed of two
kinds of reflections from the rough background

Compared with the smooth transparent surface, the rays
reflected from the rough background Ibr contain specular
Ibs and diffuse reflection component Ibd as shown in Fig.3,
which can be expressed as follows:

Ibr(αpol) =Ibs [1 + ρbs cos(2αpol − 2φb
s)]+ (8)

Ibd[1 + ρbd cos(2αpol − 2φb
d)]

=Ibr [1 + ρbr cos(2αpol − 2φb
r)] (9)

The shape from polarization theory gives us that the AoLPs
of specular reflection and diffuse reflection are orthogo-
nal[1]:

φb
s = φb

d ±
π

2
(10)

Then, we can solve for φt in terms of Ibs , ρ
b
s, φ

b
s, I

b
d, ρ

b
d:

φb
r = φb

s −
1− sign(Ibsρ

b
s − Ibdρ

b
d)

2
π (11)

It can be seen that there is a sign function in the φb
r ex-

pression, which will lead to the discontinuity in the AoLP
map. For the rough background, both specular and diffuse
reflection exists and their dominance can not be determined,
resulting in the noise in AoLP map. In fact, the polariza-
tion state of Ibr will change according to the incidence angle

θi of the interaction point when the ray passes through the
transparent object. We denote this process as Mt(·) and the
following expression can be obtained:

It(αpol) = Mt(I
b
r(αpol); θi) (12)

The incident angles of rays from a local area are approx-
imately equal, which means that they will gain the same
phase shift from Mt(·). Therefore, the noise in φb

r also ex-
ists in φt. According to the above analysis, the AoLP ob-
servation of transparent surface has the characteristic that
the area with higher transmittance contains more noise as
shown in Fig.4.

AoLP Map

Figure 4. The characteristic in the AoLP map of the transpar-
ent surface. The noise in the AoLP map is derived from the tran-
sition between specular dominance and diffuse dominance on the
background surface. More noise indicates higher transmittance
and also lower reliability of physics-based prior

Above analysis illustrates that the noise in the AoLP map
is related to the transmittance and physics-based prior re-
liability. Therefore, we define the concept Physics-based
Prior Confidence by quantifying the noise in the AoLP
map. The noise for a given pixel can be quantified by the
distance between the pixel and its neighborhood pixels. We
first define the distance dK,m(i, j) between the pixels in the
K ×K neighborhood of point (i, j):

dK,m(i, j) =
∑

p∈Pi,j

|p− p̄i,j |m (13)

where Pi,j represents the set of pixel values in the K ×K
neighborhood of point (i, j), p̄i,j is the mean of pixel values
belonging to the set Pi,j and m is the smoothing exponen-
tial term. K determines the consistency between the AoLP
map and confidence map and its value in this paper is set
to 9. The parameter m controls the mapping relationship
between noise density and the value of confidence and its
default value is 0.5. By normalizing the distance map, the
physics-based prior confidence can be obtained:

CK,m(i, j) = 1− dK,m(i, j)

max
0≤x<W,0≤y<H

dK,m(x, y)
(14)
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Figure 5. Overview of TransSfP. We regard raw polar images, physics-based prior, and confidence map as different hierarchical informa-
tion and input them into three independent encoders. The confidence branch is used for weighting the features from physics-based prior
branch, which is completed in our proposed fusion module

where H,W denote the height and width of the AoLP map
respectively. The physics-based prior confidence defined by
the above equation is also low at the junction of 0 and π in
the AoLP map (according to Eq.3, the value range of AoLP
is [0, π]). This situation is allowed because the lower con-
fidence of the physics-based prior in such area is helpful to
avoid the network being misguided by the jumped physics-
based prior(see additional results which are provided in our
supplementary material).

We first input the physics-based prior confidence map
as an addition prior into the network and guide the fusion
of raw polar images and physics-based prior to minimize
prediction error. Then it is also used as the weight of the
self-supervised AoLP loss.

3.4. Network and Optimization

A straightforward way to use deep learning to solve the
SfP problem is to concatenate the raw polarization images
and physics-based prior into the network for normal esti-
mation[2, 9]. Different with previous methods, we regard
transparent SfP as a multi-modal fusion problem, using sep-
arate encoders to extract features of the different inputs.
Features from the raw polar branch and physics-based prior
branch are fused at multiple levels according to the output
of the confidence branch, and finally, a decoder is employed
to complete the normal estimation.

As shown in Fig.5, our network TransSfP consists of
three encoders and one decoder. The encoders are the physi-
cal prior branch, the physics-based prior confidence branch,
and the raw polarization branch respectively. The structures
of the encoders are completely the same, but the parame-
ters are independent of each other. EPSANet50(Small) is
adopted as the backbone of the Encoder, which is an im-
proved backbone that replaces the Bottleneck in ResNet50

by ESPANet Block which exploits channel attention mech-
anism[29]. At the beginning of the Encoder, the module
named ‘Down 0’ consisting of a 1 × 1 convolutional layer
and a BatchNorm layer is used to force the network to ex-
tract the per-pixel features. At the end of the Encoder, we
add an ASPP(Atrous Spatial Pyramid Pooling) module to
enhance the network’s ability to capture multi-scale infor-
mation[4]. The detailed structure of each module is pro-
vided in the supplementary material.

To mitigate the adverse contribution of interfered
physics-based prior, we propose a fusion module as shown
in the right of Fig.5. Features from the confidence branch xc

are first converted to weights in the range (0, 1) by passing
through a Sigmoid function and then multiply with features
from the physics-based prior branch xprior to control the
contribution of physics-based prior. Then, the U-Net style
skip connection[21] is employed to introduce the fused fea-
tures of different levels into the upsampling modules.

Lastly, we adopt the following loss function to optimize
our network:

Lnet = Lsim + λLaolp (15)

where Lsim is the cosine similarity loss and Laolp is the
AoLP loss. The default value of λ is set to 0.05.

The cosine similarity loss is commonly used in normal
estimation, and its expression is as follows:

Lsim =

W∑
i=0

H∑
j=0

(1− ni,j · n̂i,j

∥ni,j∥2 ∥n̂i,j∥2
) (16)

where ni,j represents the ground-truth normal vector at the
point (i, j), and n̂i,j is the estimated normal vector.

We propose the AoLP loss to force the network to learn
the physical knowledge represented by Eq.5. Due to the



existence of transmission interference, Eq.5 can not be ac-
curately satisfied. Hence, we take the physics-based prior
confidence as the weight of the AoLP error to mitigate this
interference:

Laolp =

W∑
i=0

H∑
j=0

ci,j min(|φi,j +
π

2
− ϕ̂i,j |, |φi,j −

π

2
− ϕ̂i,j |)

(17)

where ci,j is the value of point (i, j) in the confidence map
and ϕ̂i,j represents the azimuth of n̂i,j . Laolp is a self-
supervised loss term since only AoLP and confidence map
are used in the computation.

3.5. Dataset

We establish a dataset for transparent shape from polar-
ization, which contains raw polarization images, physics-
based prior(four normal maps), ground-truth masks and
normal maps. Compared with prior polarization datasets[2,
9, 8], our dataset is the first dataset for transparent shape
from polarization.

Light

Polarization 
Camera

Optical 
Diffuser

Rotatable 
Platform

Object(Inside)

Figure 6. Setup for acquiring real-world dataset

Our dataset consists of two parts: the real-world dataset
and the synthetic dataset. Fig.6 is our real-world setup for
acquiring our dataset. As discussed before, the polariza-
tion information of the transmission component will bring
adverse effect to normal estimation, hence, our dataset ac-
quisition setup should increase the reflection and reduce the
transmission as much as possible. An optical diffuser made
of frosted glass with diameter of 30cm is used to simu-
late global illumination so that the transparent surface has
strong and uniform reflections in all directions. To reduce
the transmission from the background, the transparent ob-
ject is placed on rough background. A DLASA G3-GM14-
M2450 polarization camera is employed as our capture de-
vice, which can capture four polarization images(at θpol of
0◦, 45◦, 90◦, 135◦) at a single shot. We coate transparent
objects with powder and reconstructed their 3D models by
using a 3D scanner with an accuracy of 0.1mm, and then

manually align them with the captured polarization images
in the unity game engine to obtain the ground-truth mask
and normal maps. Using the above steps, we build the real-
world dataset of 10 different objects, each of which is ro-
tated between 0◦ and 360◦ at 5◦-10◦ intervals, resulting in
a total of 486 samples.

The synthetic dataset is created since the real-world data
acquisition requires manual alignment, resulting in the dif-
ficulty of acquiring enough real-world data for training. We
establish a scene similar to the setup in Fig.6 and implement
an integrator capable of outputting a camera-space normal
map in the mitsuba2[19], a physically-based render that can
track the full polarization state of light during a simulation.
To simulate the diffuser’s uniform lighting, we attach the
diffuser’s surface with an area light source. The background
surface uses the diffuse BSDF with the reflectance of 0.1,
and the transparent object adopts the dielectric BSDF with
the refractive index of 1.52. The 3D models of 13 objects,
collected from DiLiGenT-MV dataset[11] and Stanford 3D
Scanning Repository[10], are placed in the scene we build
to run polarization rendering. Each object is rotated 72
times from 0◦ to 360◦, resulting in a total of 936 samples
in the synthetic dataset.

3.6. Implementation Details

We implement our model on PyTorch and the model is
trained on an NVIDIA GeForce RTX 3090 GPU(24GB)
with a batch size of 5. The Adam optimizer[7] with an ini-
tial learning rate of 1e-6 and a weight decay coefficient of
5e-4 is used for optimizing the network. We adopt the Step
learning rate decreasing strategy, the learning rate times 0.1
every 9 epochs. To reduce memory usage, we crop the im-
ages to 512× 512 patches in the data augmentation stage.

4. Experiments
4.1. Experimental Setup

We use the evaluation metrics commonly used in normal
estimation, including mean angular error(mean, MAE), me-
dian angular error(median), and Accuracy 11 .25 ◦, 22 .5 ◦,
30 ◦, which represent the ratio of the number of pixels with
an error lower than this value to the total number of valid
pixels. All samples in the synthetic dataset are used for
training, and some objects in the real-world dataset are also
employed for training to make up for the difference between
the synthetic and the real-world collections.

4.2. Comparisons to Baselines

In this paper, we aim to recover the transparent surface
normals from polarization images in a single view. Hence,
we employ two physics-based SfP methods, Miyazaki
et al.[17], Mahmoud et al.[13], and three learning-based
SfP methods, DeepSfP[2], Kondo et al.[8], SfP in the
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Figure 7. Visual results of the comparisons to baselines. Our method outperforms all baselines on all test objects

Table 1. Quantitaive results of the comparisons to baselines. The best results in the table are marked in Bold

Method
Mean Angular Error ↓

Hemi-Sph
-Big

Hemi-Sph
-Small Bird Cat-Back Cat-Front Tiny-Cup

Tiny-Cup
-Edges All

Miyazaki[17] 36.11° 36.35° 62.38° 64.40° 65.79° 70.49° 90.17° 55.62°
Mahmoud[13] 68.57° 68.20° 66.98° 70.04° 69.30° 72.16° 65.89° 68.72°
ClearGrasp[23] 19.35° 16.38° 29.52° 28.81° 26.42° 19.32° 23.47° 23.32°

DeepSfP[2] 13.48° 12.87° 31.86° 21.85° 24.59° 15.28° 18.86° 19.83°
SPW[9] 13.18° 14.42° 28.42° 20.02° 22.15° 15.88° 18.94° 19.00°

Kondo[8] 24.61° 20.46° 27.24° 19.93° 20.32° 17.03° 20.11° 21.39°
Ours 8.61° 11.64° 23.61° 18.81° 19.51° 15.02° 16.83° 16.29°

Wild(SPW)[9] as the SfP baselines of our method. In addi-
tion, ClearGrasp[23], whose normal prediction module can
estimate the normals of transparent shapes using a single
RGB image, is also employed as one of the baselines. We
retained the learning based-SfP methods on our dataset. For
the ClearGrasp, we performed fine-tuning on our dataset
for the model pre-trained on the ClearGrasp dataset. Mah-
moud’s method needs to provide albedo and light source di-
rection, we assume the albedo is uniform of 1, and the light
source direction is estimated using the method proposed by
Smith et al.[24].

Fig.7 lists the visual results of the comparison with base-
lines, Table 1 lists the quantitative results of the comparison.
Our method achieves the best performance on all objects
in the test set. A notable result is the comparison between
ClearGrasp and other learning-based SfP methods. Though
ClearGrasp uses large-scale synthesized RGB images for
pretraining, its performance is still worse than any other
learning method using polarization information, which il-
lustrates the advantages of polarization sensor over regular
RGB sensor.



4.3. Comparisons of Network Architectures

TransSfP uses the multi-branch architecture as shown
in Fig.5. To illustrate the effectiveness of our architec-
ture, we conduct the comparison with several commonly
used semantic segmentations networks such as U-Net[21],
DeepLabV3+[4] and models for normal estimation: PS-
FCN[3], DeepSfP[2], SPW[9], Kondo[8] and single branch
version of TransSfP. Our multi-branch architecture inputs
the raw-polar input, physics-based prior input, and trans-
mission confidence map separately, while other architec-
tures concatenate them directly.

Table 2. Comparisons of network architectures

Network
Angular Error ↓ Accuracy ↑
Mean Median 11.25° 22.5° 30°

U-Net[21] 25.20° 22.90° 16.06% 49.42% 69.07%
PS-FCN[3] 25.93° 22.42° 22.06% 52.79% 71.12%

DeepLabV3+[4] 21.90° 18.93° 21.04% 63.78% 81.84%
DeepSfP[2] 19.00° 14.91° 38.36% 77.36% 87.48%

SPW[9] 21.73° 18.43° 28.38% 61.24% 84.00%
Kondo[8] 24.40° 22.20° 18.95% 54.39% 75.09%

Ours(Single Branch) 18.73° 15.28° 33.72% 77.67% 88.65%
Ours 16.29° 12.85° 48.31% 83.20% 93.90%

The raw polarization information and the physics-based
prior are converted through Frenel’s physical model, hence
they can be regarded as different hierarchies of polariza-
tion information. Direct concatenation will destroy the rela-
tionship between different hierarchies. The quantitative re-
sults in Table 2 prove that our consideration of treating them
as different hierarchical information and then transforming
them into a multi-modal fusion problem is effective.

Table 3. Ablation experiment results. The module with ‘*’ indi-
cates that the single branch architecture is used

Studied Module
Angular Error ↓ Accuracy ↑
Mean Median 11.25° 22.5° 30°

W/o Polarization* 24.70° 22.99° 18.32% 52.84% 74.25%
With Polarization* 18.73° 15.29° 33.72% 77.67% 91.65%

W/o Confidence 17.72° 14.47° 40.02% 81.08% 92.06%
W/o AoLP Loss 17.17° 14.11° 41.81% 82.06% 93.14%

Full 16.29° 12.85° 48.31% 83.20% 93.90%

4.4. Ablation Studies

Importance of Polarization. In Section.4.2, the per-
formance of ClearGrasp using RGB images is worse than
any learning-based SfP method, which preliminarily illus-
trates the importance of polarization. To avoid the influ-
ence of network architecture, we conducted a further abla-
tion experiment. We adopt the single branch architecture
mentioned in Section.4.3, using light intensity and polar-
ization information as input, respectively. The results listed
in Table 3 show that the performance of using polarization
information is much better than using only intensity since

Full W/o Confidence

Error Maps

W/o AoLP LossGround-Truth

Confidence Map

Figure 8. Importance of AoLP loss and prior confidence

polarization cues contain more information about the sur-
face normal. Both the physical insights and the ablation
study prove the superiority of the polarization sensor in the
surface estimation of transparent objects.

Importance of Physics-based Prior Confidence. We
set the confidence to constant 1 to remove the confidence
branch. The quantitative and qualitative results in Fig.8 and
Table 3 show that our proposed prior confidence is bene-
ficial to transparent shape from polarization. The physics-
based prior defined by the Eq.4 and Eq.5 provides rich infor-
mation for normal estimation while the prior of some areas
may have adverse effects due to the transmission interfer-
ence. The confidence we proposed forces the network more
conservative to use the physics-based prior of these areas
and hence can reduce the adverse contribution significantly.

Importance of AoLP Loss. Fig.8 shows that the AoLP
loss can reduce the error in areas with high confidence(or
weak transmission) because the approximation of φ ≈ ϕ±
π
2 is reliable in these areas. The AoLP loss can force the
network to learn this prior knowledge and thus improving
the prediction accuracy.

5. Conclusions
In this paper, we present a novel method for transparent

shape from polarization. We demonstrate the performance
of our method on our dataset, the first dataset for transpar-
ent shape from polarization. By introducing the physics-
based prior, multi-branch network architecture, and self-
supervised AoLP loss, the negative contribution of the in-
terfered physics-based prior is effectively reduced and our
method outperforms previous approaches on all objects in
the test set. We hope our dataset and model can contribute
to the community of transparent shape estimation.
Limitations Our method alleviates the transmission inter-
ference, however, when the most areas of transparnt sur-
face are dominated by transmission component, our method
will degenerate to a rgb-based method. In addition, we no-
tice that the pure polarization information limits the overall
accuracy of transparent shape estimation. Combining po-



larization information with other reconstruction methods is
one of our future research directions.
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