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Abstract

Existing deep learning-based depth completion meth-
ods generally employ massive stacked layers to predict
the dense depth map from sparse input data. Although
such approaches greatly advance this task, their accompa-
nied huge computational complexity hinders their practical
applications. To accomplish depth completion more effi-
ciently, we propose a novel lightweight deep network frame-
work, the Long-short Range Recurrent Updating (LRRU)
network. Without learning complex feature representa-
tions, LRRU first roughly fills the sparse input to obtain
an initial dense depth map, and then iteratively updates
it through learned spatially-variant kernels. Our itera-
tive update process is content-adaptive and highly flexi-
ble, where the kernel weights are learned by jointly con-
sidering the guidance RGB images and the depth map to
be updated, and large-to-small kernel scopes are dynam-
ically adjusted to capture long-to-short range dependen-
cies. Our initial depth map has coarse but complete scene
depth information, which helps relieve the burden of di-
rectly regressing the dense depth from sparse ones, while
our proposed method can effectively refine it to an ac-
curate depth map with less learnable parameters and in-
ference time. Experimental results demonstrate that our
proposed LRRU variants achieve state-of-the-art perfor-
mance across different parameter regimes. In particular,
the LRRU-Base model outperforms competing approaches
on the NYUv2 dataset, and ranks 1st on the KITTI depth
completion benchmark at the time of submission. Project
page: https://npucvr.github.io/LRRU/.

1. Introduction
Acquiring accurate and dense scene depth plays a fun-

damental role in various applications, such as autonomous
driving [33] and augmented reality [25]. However, exist-
ing depth sensors have inevitable limitations for both indoor
and outdoor scenes [39], for example, the depth acquired by
LiDAR is too sparse to be used directly. Thus, depth com-
pletion, i.e., estimating the dense depth maps from sparse
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Figure 1. The performance in terms of RMSE versus runtime on
the KITTI test dataset. The bubble size represents the number of
parameters. LRRU performs better while maintaining efficiency.

distance measurements, has attracted extensive research in-
terests in industry and research communities.

Recently, deep learning-based methods [32, 35] have
shown dominant performance for this task, which directly
maps sparse depth maps to dense depth maps through mas-
sive stacked filters and layers. Since the RGB images con-
tain rich semantic cues that are critical for filling unknown
depth, some works [22,23,30,42] utilize the RGB informa-
tion to guide depth completion. Although many advanced
networks such as ResNet [10] and Transformer [8, 29, 43]
have been exploited, it is still difficult to directly predict
an accurate and dense depth map from a sparse input depth
map and the corresponding RGB image. Specifically, exist-
ing methods employ tens of millions of learnable parame-
ters in exchange for a desirable model capacity to learn ro-
bust features, for example, 132M parameters are contained
in PENet [11]. Such large-scale networks usually require
heavy computing resources, which fail to be applied in the
real world, while the method performance drops signifi-
cantly if the network size is simply reduced [13]. In addi-
tion, the predicted depth maps obtained by direct regression
suffer from blur effect and distortion of object boundaries,
which need to be further refined through extra refinement
modules [4]. For example, the popular spatial propagation
networks (SPNs) [3, 4, 11, 17, 21, 26, 41] update the output
of the direct-regression methods by a recurrent operation.

ar
X

iv
:2

31
0.

08
95

6v
1 

 [
cs

.C
V

] 
 1

3 
O

ct
 2

02
3

https://npucvr.github.io/LRRU/


Thus, designing an efficient depth completion architecture
that performs better while maintaining efficiency is essen-
tial for further research.

Inspired by the success of the recurrent design [18, 31,
34], we propose the Long-short Range Recurrent Updat-
ing (LRRU) network, a novel lightweight deep network
framework for depth completion. Unlike existing direct-
regression methods, LRRU iteratively updates an initial
depth map obtained by a non-learning approach [15]. The
initial depth map has coarse but complete scene depth in-
formation, which can help relieve the heavy burden of di-
rectly regressing the precise dense depth from sparse input
depth map. Although existing SPNs [3, 4, 11, 17, 21, 26, 41]
have shown that the depth map can be refined by learned
spatially-variant kernels that model relevant neighbors and
their affinities of each pixel, these methods cannot be di-
rectly used in our framework due to the following limita-
tions: (a) content-agnostic update unit: the kernel parame-
ters required for updating are predicted by the features from
RGB and sparse depth, which are not adaptively adjusted to
the target map (the depth map to be updated); (b) inflexible
recurrent strategy: the kernel scope is fixed during the up-
date process, and multiple iterations are required to obtain
long-range dependencies and satisfactory results.

To address the above issues, we propose a Target-
Dependent Update (TDU) unit and a long-short range re-
current strategy, which make our iterative update process
content-adaptive and highly flexible. Our TDU predicts the
sampling position of the neighbors and the weights (affini-
ties) between them and the reference point by jointly con-
sidering the cross-guided and self-guided features. The
cross-guided features extracted from RGB images and
sparse depths can guide the TDU to avoid irrelevant neigh-
bors, while the self-guided features extracted from the depth
map to be updated allow the TDU to be adaptive to the
content of the target map. Moreover, our TDU further im-
proves the performance by learning the residual. In addi-
tion, we observe that when multiple TDUs of the update
process employ the cross-guided features of different scales
respectively, the TDU guided by smaller scale cross-guided
features will adaptively learn to obtain the neighbors in a
relatively large scope, and vice versa. Since our initial depth
is obtained by dilating sparse measurement points [15], sur-
rounding points of most pixels are inaccurate. Therefore, at
the beginning of the update process, we employ small scale
cross-guided features to lead the TDU to predict a large
scope, which obtains some long-range but accurate points
as neighbors. As the depth map becomes more refined,
larger scale cross-guided features are sequentially used to
pay more attention to shorter-range neighbors. Due to the
elegant recurrent strategy, our LRRU only requires four it-
erations to achieve satisfactory results.

Extensive experiments on both indoor and outdoor

Table 1. The configurations of four LRRU variants, which are
obtained by adjusting the number of channels in different stages
of the cross-guided feature extraction network.

Models Number of channels Params.stage1 stage2 stage3 stage4 stage5

LRRU-Mini 8 16 32 32 32 0.3 M
LRRU-Tiny 16 32 64 64 64 1.3 M
LRRU-Small 32 64 128 128 128 5 M
LRRU-Base 64 128 256 256 256 21 M

datasets verify the performance of our method. Fur-
thermore, we conduct comprehensive ablation studies to
demonstrate the effectiveness of each component. Lastly,
we extend our network framework to the depth-only case.

Our main contributions are summarized as:

• We propose a novel lightweight deep network archi-
tecture for depth completion, which pre-fills the sparse
depth map and iteratively updates it by the proposed
Target-Dependent Update (TDU) unit.

• We propose a long-short range recurrent strategy, which
dynamically adjusts kernel scopes during the update pro-
cess to obtain long-to-short range dependencies.

• As shown in Fig. 1 and Table 1, our four LRRU variants
achieve state-of-the-art performance across different pa-
rameter regimes. Especially, the LRRU-Base model out-
performs SOTA methods on NYUv2 [24] and ranks 1st
on the KITTI benchmark [2] at the time of submission.

2. Related Work
Depth Completion. In the deep learning era, the straight-
forward depth completion methods [32,35,46] employ vari-
ous network structures to directly predict dense depth maps.
Since the RGB images contain rich texture and semantic in-
formation, which are critical to recover the structure details
of depth maps, many popular methods [11, 19, 22, 23, 28]
fuse the information of RGB images and sparse depth maps
to boost the depth completion. Ma et al. [23] propose to
concatenate the depth maps and the RGB images to form a
4D tensor, which is known as “early-fusion”. To reduce the
gap between different modalities, some works[11,19,22,28]
propose a “later-fusion” method, which extracts the feature
of the RGB images and the sparse depth maps separately,
and feeds the fusion features into the network. Further,
Tang et al. [30] propose a feature fusion module based on
the guided dynamic convolutional network [9, 12] to better
utilize the guidance feature of RGB images. In addition,
some works [16, 36, 38] propose to first densify the sparse
depth by classical approaches [15, 37], and then learn a
residual of the initial depth approximation. However, exist-
ing methods usually employ massive parameters and com-
putation to obtain good results. A lightweight and efficient
network architecture is lack.
Spatial Propagation Networks. The depth maps predicted
by the direct-regression methods suffer from blur effect and
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Figure 2. The Long-short Range Recurrent Updating (LRRU) network, which extracts the cross-guided features from RGB images and
sparse depth map, and then iteratively updates the pre-filled depth map by the proposed Target-Dependent Update (TDU) unit according
to our long-short range recurrent strategy.

distortion of object boundaries [4]. To address this issue,
some works propose a series of spatial propagation net-
works (SPNs) [3, 4, 11, 17, 21, 26, 41], which iteratively up-
date the output of direct-regression methods by aggregating
the reference and neighbor pixels. The original SPN [20]
updates each pixel by three adjacent pixels from the previ-
ous row or column. The serial update process is performed
in four directions individually, and the results are combined
by max-pooling. To make the update process more effi-
cient, Cheng et al. [4] propose the convolutional spatial
propagation network (CSPN), which updates all pixels si-
multaneously within a fixed-local neighbors. However, the
fixed-local neighborhood configuration will introduce irrel-
evant points. Furthermore, CSPN++ [3] assembles the re-
sults obtained by using different kernel sizes. DSPN [41]
and NLSPN [26] predict a non-local neighborhood by learn-
ing the offsets to the regular grid, while the difference be-
tween them is that DSPN obtains the kernel weights by
calculating the similarity between features, while NLSPN
learns it by the network. Despite the improved SPN-based
methods providing more flexibility in selecting neighbors,
they employ fixed kernel weights during the update process,
which limits the representation capability of SPN. To alle-
viate the problem, DySPN [17] gives variable weights to
neighbors with different distances through learned attention
maps. GraphCSPN [21] leverages graph neural networks
(GNN) to integrate 3D information into the update process.
However, existing SPNs still use fixed neighbors and are not
able to dynamically adjust them during the update process.

3. Method

Given a sparse depth map, we first densify it by a sim-
ple non-learning method [15]. Then, according to the long-
short range recurrent strategy (described in Sec. 3.2), our
method iteratively updates the initial depth map through the
target-dependent update unit (described in Sec. 3.1) to ob-
tain accurate and dense depth map. In Sec. 3.3, we provide
implementation details of our method. For the convenience
of description, we use the target depth (denoted as D̂t )
to refer to the depth map to be updated in the t-th update.
Thus, D̂1 represents the initial map obtained by [15]. More-
over, D̂t+1 denotes the updated result.

3.1. Target-dependent Update Unit

The proposed Target-Dependent Update (TDU) unit up-
dates the target depth map by learned spatially-variant ker-
nels, which model neighbors and their affinities of each
pixel. To avoid irrelevant neighbors brought by the fixed-
local neighborhood configuration, our TDU employs fully
convolutional networks to predict the kernel weights and
sampling position of neighbors as [26], where the sampling
position is obtained by learning offsets to the regular grid.
However, direct supervisory information for the weights
and offsets is typically not available, which often results
in the training instability. To overcome the instability, we
use the features from RGB images and sparse depth maps
to guide our TDU to obtain relevant neighbors, motivated
by rich structure details in RGB images and the accurate
scene depth information in sparse depth maps. Since the
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Figure 3. The Target-Dependent Update (TDU) unit updates
the target map by learning its residual map, where the cross-
guided features from guidance images guide TDU to obtain rel-
evant neighbors and the self-guided features from target maps en-
sure TDU adjust adaptively based on the content of the target map.

dense RGB image and the sparse depth map belong to dif-
ferent modalities, we employ a dual-encoder network simi-
lar to [30], which uses two separate sub-networks to extract
the features of RGB images and sparse depth maps respec-
tively, and fuses them at multiple scales. However, if only
the features from RGB and sparse depth maps are used to
guide the TDU, the update operation is independent of the
content of the depth map to be updated, which may lead to
sub-optimal solutions, especially when the initial depth map
is not directly regressed from RGB images and sparse depth
maps. Therefore, in addition to RGB images and sparse
depth maps, we propose to extract the features from the tar-
get depth map itself to guide our TDU. We refer to the fea-
tures form RGB images and sparse depth maps as the cross-
guided features, and the features from the target depth map
as the self-guided features. As shown in Eq. (1), the cross-
guided features FCross−guided are extracted from the input
RGB image I and sparse depth map S by the feature extrac-
tion network fθ, and the self-guided features FSelf−guided
are obtained from the target depth map D̂t through a con-
volutional layer fψ .

FCross−guided = fθ(I, S), FSelf−guided = fψ(D̂
t). (1)

Weights and Offsets Regression. As shown in Fig. 3, our
TDU first concatenates the cross-guided features and the
self-guided features, and then learns the weight and offset
feature map by two individual 1 × 1 convolutional layers.
To make the weights and offsets converge quickly, we add
some restrictions to regulate their behaviors and guide the
learning process. Concretely, the weight feature map has
k2 channels, where k is the kernel size and set to 3 in this
paper. We apply a sigmoid layer to make the weight larger
than zero and smaller than one. In addition, we subtract the
mean value from the output of the sigmoid layer to make the
sum of the weight to be zero, which performs like a a high-
pass filter [14]. The offset feature map has 2k2 channels,
which represents the deviation of the sampling point from
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Figure 4. The Long-short Range Recurrent Strategy, which dy-
namically adjust the kernel scope from large to small during the
update process, while existing SPNs keep it unchanged.

locations on a regular grid in the x and y directions. How-
ever, to ensure that each reference pixel participates in its
own update process, we first predict an offset feature map
with 2(k2−1) channels, and then insert zero into the center
of the offset feature map channel [26].
Residual Connection. We observe that the input and out-
put map of the update unit are highly correlated, and share
the low-frequency information. Therefore, unlike existing
SPNs [3, 4, 11, 17, 21, 26, 41] that directly predict the up-
dated depth map, we propose to learn a residual image of
the target depth map to enhance structural details and sup-
press noise. Given the learned weights and sampling off-
sets, as shown in Eq. (2), the residual image ∆D̂t

p at posi-
tion p = (x, y) is obtained by a weighted average.

∆D̂t
p =

∑
q∈N (p)

Wpq(FCross−guided, FSelf−guided)D̂
t
q.

(2)
In Eq. (2), N (p) denotes the set of neighbors of the posi-

tion p. Since the offsets are normally fractional, we use the
bilinear interpolation to sample local four points as [5] and
[47]. The filter weights W are predicted from the cross-
guided and self-guided features. We aggregate depth values
from the sparsely chosen locations with the learned weights.
Then, we add the residual image to the target depth map as
Eq. (3) to obtain the updated depth map D̂t+1.

D̂t+1 = D̂t +∆D̂t. (3)

3.2. Long-short Range Recurrent Update Strategy

During the update process, we need an effective recur-
rent update strategy to enable the TDUs to obtain appro-
priate kernel weights and scopes for their respective tar-
get. Specifically, for the initial depth map obtained by a
non-learning method [15], only a few available sparse mea-
surement points and their surrounding points have high ac-
curacy, the surrounding points of most pixels are inaccu-
rate [35]. Therefore, at the beginning of the update process,



we should employ a large kernel scope to obtain some long-
range but accurate points as neighbors. As the depth map
becomes more refined, the kernel scope should be gradu-
ally narrowed to pay more attention to short-range points,
as they are generally more relevant to the reference point.
However, existing recurrent update strategies used by SPNs
are not flexible enough to meet the above needs. For ex-
ample, CSPN [4] and NLSPN [26] use fixed kernel weights
and scopes during the update process, which not only lim-
its the representation capability of SPNs, but also requires
massive iterations to obtain long-range dependencies. Al-
though CSPN++ [3] and DySPN [17] alleviate this issue by
the model ensemble and attention mechanism, their kernel
scopes remain unchanged during the update process, even
in the deformable DySPN.

In this paper, we propose a long-short range recurrent up-
date strategy that is shown in Fig. 4. The parameters of each
TDU, including the kernel weights and sampling positions
of neighbors, are learned by considering the cross-guided
and self-guided features. We observe that when TDUs of
the iterative update process are guided by the cross-guided
features of different scales respectively, the TDU guided
by smaller scale cross-guided features will adaptively learn
to obtain the neighbors with a relatively large scope, and
vice versa. We consider this is due to the different recep-
tive fields of the cross-guided features at different scales.
Building upon the above observations, we employ the 1/8-
scale cross-guided feature map to guide the TDU of the
first iteration to obtain the neighbors with a large scope.
In subsequent iterations, the TDU gradually uses the larger
scale cross-guided features, such as 1/4-scale, 1/2-scale,
and full-scale, to obtain the neighbors with smaller scopes.
Fig. 5 and Fig. 6 demonstrate the kernel scope changes from
large to small during the iterative update process on the
KITTI and NYUv2 dataset. Since the proposed recurrent
update strategy is highly flexible, we can achieve satisfac-
tory results by using fewer iterations and neighbors.

3.3. Implementation Details

Network Architecture. Our network architecture, shown
in Fig. 2 consists of the cross-guided feature extraction net-
work and the long-short range recurrent update module.
The cross-guided feature extraction network employs two
sub-networks, the depth encoder and the RGB encoder, to
extract features from the sparse depth map and correspond-
ing RGB image respectively. The extracted multi-scale
RGB features are injected into the depth encoder to fully
integrate the information from different modalities. Then,
a decoder network is used to learn the residual of the fused
multi-scale features. The cross-guided features are first up-
sampled to the same resolution as the initial depth map, and
utilized in the TDUs of the iterative update process.
Loss Function. We supervise our network through L1 and

First Iter. Second Iter. Third Iter. Fourth Iter.

Figure 5. Typical examples to illustrate that large-to-small kernel
scopes are dynamically adjusted to capture long-to-short range
dependencies during the iterative update process (the red points
denote the reference pixel and blue points denote the neighbors).

Figure 6. Analysis of the max and mean pixel distances from
neighbors to the reference pixel on KITTI and NYUv2 dataset.

L2 distance between the output and the ground truth Dgt

over results of each iteration, {D̂2, · · · , D̂N}, with expo-
nentially increasing weights. The loss is defined in Eq. (4).

L =

2∑
σ=1

N∑
i=2

γN−i∥(D̂i −Dgt)⊙ 1{Dgt>0}∥σ, (4)

where 1 indicates whether there is a value in the ground
truth, and ⊙ denotes the element-wise multiplication. We
set γ = 0.8 in our experiments.
Training Details. We employ PyTorch [27] to implement
our model, which is trained and tested with GeForce RTX
3090 GPUs. All models are initialized from scratch with
random weights. During training, we employ the Adam op-
timizer with a batch size of 8. We set β1 = 0.9, β2 = 0.999,
weight decay is 10−6, and the total number of epochs is 45.
The initial learning rate is 10−3, and the learning rate re-
mains unchanged for the first 15 epochs and decreases by
50% every 5 epochs.

4. Experiments
4.1. Datasets and Metrics

KITTI Dataset [7]. The KITTI dataset, a popular real-
world autonomous driving dataset, consists of sparse depth
maps projected from raw LiDAR scans and corresponding
RGB images. It contains 86k frames for training, 1k se-
lected frames for validation, and 1k frames without ground
truth that need to be tested on the KITTI online benchmark.
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Figure 7. Qualitative comparison with SOTA methods on KITTI test dataset. From top to bottom are RGB images, dense depth maps pre-
dicted by NLSPN [26], CSPN++ [3], DySPN [17] and Ours, respectively. We zoom in some representative areas for detailed comparison.

NYUv2 Dataset [24]. The NYUv2 dataset consists of
RGB and depth images acquired from 464 different indoor
scenes. Following the standard setting [22], we train the
model with 50K images sampled from the training set, and
test it on 654 official labeled images. For both train and test
datasets, the original images of size 640 × 480 are down-
sampled to half and then center-cropped to 304× 228.
Evaluation Metrics. Following exiting depth completion
methods [22, 26, 30], we employ Root Mean Squared Er-
ror (RMSE), Mean Absolute Error (MAE), inverse RMSE
(iRMSE), inverse MAE (iMAE), mean absolute relative er-
ror (REL), and percentage of pixels satisfying δτ for quan-
titative evaluation.

4.2. Comparison with SOTA Methods on KITTI

Quantitative Comparison. Table 2 reports the quantita-
tive evaluation of our methods and state-of-the-art (SOTA)
depth completion methods on the KITTI benchmark, which
ranks all methods according to the RMSE value. Since di-
rectly predicting dense depth maps from sparse depth maps
and RGB images is a difficult “ill-posed” task, most direct-
regression methods, such as S2D [22], DeepLiDAR [28],
GuideNet [30], ACMNet[44], PENet [11], and RigNet[42],
generally require massive stacked filters and layers to learn
robust features. They usually have a large number of model
parameters and a relatively long inference time, while the
performances of the method are difficult to achieve the
best of the time [7]. Even the efficiency-oriented depth
completion methods, such as excellent GAENet [1] and
FuseNet[28], are not able to achieve a good balance be-
tween model parameters, inference time and performance.
To improve the performance of direct-regression methods,
a series of SPNs are proposed to refine the output of these
methods, such as CSPN [4], NLSPN [26], CSPN++ [3], and

Table 2. Quantitative comparison with state-of-the-art (SOTA)
methods on the KTTTI benchmark. The best and second-best re-
sults are highlighted in red and blue colors , respectively.
Methods RMSE [mm] MAE [mm] iRMSE [1/km] iMAE [1/km]

CSPN[4] 1019.64 279.46 2.93 1.15
S2D[22] 814.73 249.95 2.80 1.21
GAENet[1] 773.90 231.29 2.29 1.08
DeepLiDAR[28] 758.38 226.50 2.56 1.15
FuseNet[28] 752.88 221.19 2.34 1.14
MDANet[13] 738.23 214.99 2.12 0.99
GuideNet[30] 736.24 218.83 2.25 0.99
CSPN++[3] 743.69 209.28 2.07 0.90
NLSPN[26] 741.68 199.59 1.99 0.84
ACMNet[44] 744.91 206.09 2.08 0.90
PENet[11] 730.08 210.55 2.17 0.94
RigNet[42] 712.66 203.25 2.08 0.90
DySPN[17] 709.12 192.71 1.88 0.82
LRRU-Mini 774.43 210.87 2.21 0.90
LRRU-Tiny 738.86 200.28 2.04 0.85
LRRU-Small 717.50 197.72 1.96 0.85
LRRU-Base 696.51 189.96 1.87 0.81

DySPN[17]. The results show that the supplemental refine-
ment modules improve the performance of the method, but
also requires longer inference time.

By contrast, our proposed method (LRRUs) is more
effective. Specifically, our smallest LRRU-Mini model
achieves better results than some large-scale methods, such
as S2D [22] and CSPN [4]. In addition, LRRU-Tiny model
significantly improves the performance over LRRU-Mini by
increasing only 1M parameters, which outperforms many
excellent methods, such as DeepLiDAR [28]. The experi-
mental results strongly demonstrate the effectiveness of our
proposed method. It is worth noting that our largest LRRU-
Base model achieves the best results of the KITTI bench-
mark in all evaluation metrics, including RMSE, MAE,
iRMSE and iMAE, which ranks 1st at the time of submis-
sion. To the best of our knowledge, it is the first depth com-



Table 3. Ablation studies of the proposed LRRU on the KITTI validation dataset. “x-scale” denotes the scale of the cross-guided feature, and
“←” indicates that LRRU uses 1/8-scale, 1/4-scale, 1/2-scale, and full-scale cross-guided features sequentially during the update process.
The results of our four LRRU variants are highlighted with a gray background. The lower result values represent better performance.

Models Long-short Range Recurrent Update Strategy Target-Dependent Update Unit Results

Full-scale 1/2-scale 1/4-scale 1/8-scale iterative
w/o kernel
prediction

w/o self-guided
feature

w/o
Res.

w/o mean
subtraction

w/o fix
reference RMSE[mm] MAE[mm]

(a) Baseline 1027.1 302.1
(b)

Mini

✓ 819.4 228.9
(c) ✓ 823.6 228.4
(d) ✓ 825.2 229.4
(e) ✓ 838.3 237.3
(f) ✓ ✓ ✓ ✓ 812.4 226.3
(g) ✓ ✓ ✓ ✓ → 844.5 236.4
(h) ✓ ✓ ✓ ✓ ← 800.9 218.9
(i)

Mini

✓ ✓ ✓ ✓ ← ✓ 812.2 219.7
(j) ✓ ✓ ✓ ✓ ← ✓ 817.5 223.1
(k) ✓ ✓ ✓ ✓ ← ✓ 803.4 221.5
(l) ✓ ✓ ✓ ✓ ← ✓ 804.0 224.8
(m) ✓ ✓ ✓ ✓ ← ✓ 799.4 222.2
(n) Tiny ✓ ✓ ✓ ✓ ← 761.5 207.6
(o) Small ✓ ✓ ✓ ✓ ← 741.3 201.8
(p) Base ✓ ✓ ✓ ✓ ← 728.3 197.9

pletion method that obtains an RMSE value below 700 mm.
Qualitative Comparison. Fig. 7 compares the dense depth
maps predicted by our LRRU-Base and several popular
SPNs-based methods, such as NLSPN [26], CSPN++ [3],
and DySPN [17]. These SPNs-based methods use addi-
tional refinement modules, which are generally considered
to have good visualization results. However, as shown in the
enlarged results, the dense depth maps predicted by these
SPNs-based methods have depth discontinuity and blur ef-
fect in some areas, especially in thin structures. By contrast,
our results have better structure details and are more accu-
rate at the object boundaries.

4.3. Ablation Studies

To reduce the training time, the ablation experiments are
conducted on our smallest LRRU-Mini model.
Network Architectures. Existing deep-learning methods
based on direct regression rely heavily on the representa-
tion capability of the network. When the network size de-
creases, the method performance drops significantly. We
select the method that employs the cross-guided feature ex-
traction network to directly predict dense depth maps as the
baseline. Table 3 (a) shows that the results of the baseline
method has a large error, the RMSE is 1027.1 mm, and
the MAE is 302.1 mm. Unlike direct regression, we iter-
atively update the initial coarse depth map by the proposed
TDU to obtain an accurate depth map. As shown in Ta-
ble 3 (b)-(e), even if we only employ a TDU guided by the
cross-guided feature of arbitrary scales to update the ini-
tial depth map once, the proposed method achieves better
performance. Specifically, compared to the baseline, the
results obtained by using the full-scale cross-guided feature
reduce RMSE and MAE by 207.7 mm and 73.2 mm, respec-

tively. It illustrates that our proposed network framework is
more effective than direct regression when the network size
is limited. In addition, As shown in Table 3 (f), when we use
a TDU guided by the fusion cross-guided feature of various
scales, the method performance is further improved.

Long-short Range Recurrent Update Strategy. In this
paper, we propose a long-short range recurrent update strat-
egy to manipulate the update process. By sequentially using
small-to-large scale cross-guided feature to guide the TDU,
our method dynamically obtains long-to-short range depen-
dencies. The results in Table 3 (h) show that the method us-
ing our proposed strategy achieves substantially improved
performance. Meanwhile, we report the results obtained
by using the cross-guided features in the reverse order of
ours, namely a short-to-long range recurrent update strat-
egy. The results in Table 3 (g) show that the method using
this strategy achieves poor results, which demonstrates the
advantage of the proposed recurrent strategy.

Target-Dependent Update Unit. The TDU explicitly
builds the cross-guided feature and self-guided feature into
update unit, and updates the depth map by learned spatially-
variant kernels. If the TDU predicts the residual map by di-
rect regression rather than learning spatially-variant kernels,
the results in Table 3 (i) show that the method performance
will decrease significantly. Meanwhile, as shown in Table 3
(j), TDU without using the self-guided feature also heavily
harms the method results. In addition, if the residual learn-
ing is not adopted, the performance shown in Table 3 (k)
will decrease. As described in Sec. 3.1, we perform many
operations, including subtracting the mean value from the
output of the sigmoid layer and fixing the reference pixel of
the update unit, to regulate the behaviors of the weights and
offsets and guide their learning process. The results in Ta-



ble 3 (l) and (m) show that these restrictions are beneficial to
improve the performance of the method. It is worth noting
that although fixing the reference pixel is not able to boost
the quantitative results greatly, we empirically observe that
it effectively avoids unreliable neighboring pixels.
LRRU vs existing SPNs. To better show the advantages of
our method, we employ the refinement modules of existing
SPNs directly in our proposed framework. We select the re-
finement module of NLSPN [26] under its original setting
for the comparison, which performs best among all open-
source SPN-based methods. The results in Table 4 show
that our framework using existing refinement module di-
rectly performs worse than our method, which illustrate the
effectiveness of our proposed method.
Table 4. The performance comparison of our proposed framework
using the refinement module of this paper and existing SPNs.

Methods RMSE [mm] MAE [mm] iRMSE [1/km] iMAE [1/km]
LRRU-Mini (Ours) 800.9 218.9 2.4 0.9
LRRU-Mini(NLSPN [26]) 891.5 240.2 5.0 1.1

Loss Functions. The above ablation experiments are
trained with L2 loss. As shown in Table 5, we test the com-
bination of L1 and L2 losses that improves MAE perfor-
mance while decreases RMSE performance slightly. For a
balance between the RMSE and MAE, we adopt the L1+L2

loss to train the model on the KITTI test dataset.
Table 5. The performance comparison of using different loss.

Methods Loss RMSE [mm] MAE [mm] iRMSE [1/km] iMAE [1/km]
LRRU-Mini L2 + L1 806.3 210.2 2.3 0.9
LRRU-Tiny L2 + L1 763.8 198.9 2.1 0.8
LRRU-Small L2 + L1 745.3 195.7 2.0 0.8
LRRU-Base L2 + L1 729.5 188.8 1.9 0.8

Hardware cost comparison. Table 6 compares the hard-
ware cost of LRRUs and most open-source methods on the
KITTI validate dataset (the resolution of the input image is
356 ∗ 1216), including the model parameters, GPU mem-
ory, and runtime. The experiment is conducted on the same
hardware (a GeForce RTX 3090 GPU). Although our pre-
filled method (IP-BASIC [15]) needs extra 8ms CPU-time,
the proposed LRRUs are more efficient. Especially, our
smallest LRRU-Mini model contains only 0.3M parameters
and has a fast inference speed (38.3ms).

Table 6. Hareware cost comparison of KITTI validate dataset (the
resolution of input images 356 ∗ 1216) on a 3090 GPU. Our pre-
filled method (IP-BASIC [15]) needs extra 8ms CPU-time.

Methods Parameters GPU Memory GPU Time CPU Time Total Time
MDANet[13] 3M 2092M 89.4ms - 89.4ms

CSPN[4] 26M 2350M 152.7ms - 152.7ms
S2D[22] 26M 2706M 65.5ms - 65.5ms

DeepLiDAR[28] 144M 3496M 323.6ms - 323.6ms
NLSPN[26] 26M 2628M 76.0ms - 76.0ms

GuideNet[30] 74M 2074M 51.3ms - 51.3ms
PENet[11] 132M 2822M 129.6ms - 129.6ms

LRRU-Mini 0.3M 1448M 30.3ms 8ms 38.3ms
LRRU-Tiny 1.3M 1672M 41.4ms 8ms 49.4ms
LRRU-Small 5M 2152M 59.3ms 8ms 67.3ms
LRRU-Base 21M 3170M 117.4ms 8ms 125.4ms

Table 7. Results of LRRU models on the KITTI validate dataset
with test-time augmentation (TTA).

Methods TTA RMSE [mm] MAE [mm] iRMSE [1/km] iMAE [1/km]
LRRU-Mini False 806.3 210.2 2.3 0.9
LRRU-Tiny False 763.8 198.9 2.1 0.8
LRRU-Small False 745.3 195.7 2.0 0.8
LRRU-Base False 729.5 188.8 1.9 0.8
LRRU-Mini True 0.7943 208.5 2.3 0.9
LRRU-Tiny True 757.8 198.0 2.1 0.8
LRRU-Small True 739.2 195.0 2.0 0.8
LRRU-Base True 723.4 188.1 1.9 0.8

Figure 8. The performance (RMSE [mm]) of our methods,
PENet [11] and pNCNN [6] on fewer points.

Test-time augmentation (TTA). The TTA is widely used in
depth completion methods (such as GuideNet [30], ACM-
Net [44], et al.) as a performance-enhancing strategy, but
is rarely described. In the inference stage, the model with
TTA predicts the results of the original sample and the hor-
izontally reversed sample at the same time, and averages
their results as the final result. Table 9 shows that the TTA
strategy makes the model obtain lower RMSE, especially in
the smallest LRRU-Mini model.

4.4. Experiments on fewer points

The sparse depth map of the KITTI dataset is obtained by
a 64-line Velodyne LiDAR. However, in many practical ap-
plications, only 32-line or 16-line LiDAR will be uesed due
to cost constraints, which only provide fewer depth points.
Therefore, it is crucial to analyze the performance of the
method on sparse depth maps with different sparsity lev-
els. We trained LRRUs on 64-Line LiDAR depth of KITTI
validation set and tested the performance (RMSE[mm]) on
fewer lines that is obtained by the method provided by [45].
Although our results shown in the Fig. 8 gradually decrease
with decreasing depth points (from 64-Line to 16-Line),
they still outperform competing methods at different sparse
patterns, which shows that our model has better generaliza-
tion capability on more sparse depth maps.

4.5. Experiments on NYUv2 Dataset

To verify the effectiveness of our proposed method in in-
door scenes, we conduct comparative experiments on the



Table 8. Quantitative evaluation on the NYUv2 dataset. The best and
second-best RMSE and REL results are highlighted in red and blue
colors , respectively.

Methods Params. RMSE[m] REL δ1.25 δ1.252 δ1.253

S2D [22] 26 M 0.230 0.044 97.1 99.4 99.8
CSPN [4] 17.4 M 0.117 0.016 99.2 99.9 100.0
DeepLiDAR [28] 48 M 0.115 0.022 99.3 99.9 100.0
DepthNormal [40] - M 0.112 0.018 99.5 99.9 100.0
FCFRNet [19] - M 0.106 0.015 99.5 99.9 100.0
ACMNet [44] 4.9 M 0.105 0.015 99.4 99.9 100.0
GuideNet [30] 74 M 0.101 0.015 99.5 99.9 100.0
NLSPN [26] 25.8 M 0.092 0.012 99.6 99.9 100.0
RigNet [42] - M 0.090 0.012 99.6 99.9 100.0
DySPN [17] ∼26 M 0.090 0.012 99.6 99.9 100.0
LRRU-Mini 0.3 M 0.101 0.013 99.4 99.9 100.0
LRRU-Tiny 1.3 M 0.096 0.012 99.5 99.9 100.0
LRRU-Small 5 M 0.093 0.012 99.5 99.9 100.0
LRRU-Base 21 M 0.091 0.011 99.6 99.9 100.0

Table 9. Quantitative evaluation on the KITTI validation dataset
under the depth-only setting.

Methods Params. RMSE [mm] MAE [mm]

S2D (Depth-only) [22] 26 M 985.1 286.5
CUNet [35] 35 M 958.8 245.3
LRRU-Mini 0.3 M 987.7 251.8
LRRU-Tiny 1.3 M 958.2 242.4
LRRU-Small 5 M 950.9 237.1
LRRU-Base 21 M 957.4 235.9

NYUv2 dataset. Following existing methods [17, 22, 30],
we train and evaluate our model with the setting of 500
sparse LiDAR samples. The quantitative evaluation results
in Table 8 demonstrate that the four variants of the proposed
LRRU achieve the best performance across different param-
eter regimes. Specifically, our LRRU-Mini model achieves
an impressive results, which employs only 0.3M parameters
to obtain the same RMSE as GuideNet [30] using 74M pa-
rameters. We empirically found that if using a UNet-like
model with similar amount of parameters (0.3M) to directly
regress, the model will fail. Meanwhile, the LRRU-Base
model outperforms state-of-the-art methods with relatively
fewer parameters.

Fig. 9 shows the qualitative results of the proposed
LRRU models. Since the input depth of the NYUv2 dataset
is more sparse than the depth of the KITTI dataset, the
pre-filled depth map obtained by a simple hand-crafted
method [15] looks terrible. However, LRRUs can rectify
the initial depth map by the recurrent update process, which
obtains satisfactory results, even in some thin structures.

4.6. Extension to Depth-only Case

As a general framework for depth completion, our ap-
proach can be extended to scenarios where only sparse
depth maps are available. In the depth-only setting, we
only extract the cross-guided feature from the sparse input
depth map. We report the performance of our method on
the KITTI validation dataset in Table 9. The experimen-
tal results show that the method performance drops signif-
icantly compared to using RGB image input. We consider
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Figure 9. Qualitative results of the proposed LRRUs on the
NYUv2 dataset. The sparse depth is dilated to show and “Pre-
filled” denotes the pre-filled depth map. Since the sparse depth
map has few available points, the pre-filled depth is very coarse.
However, our LRRUs can update it to satisfactory results.

that this is because if only the sparse depth map is input,
the information provided is very limited. It is difficult for
the depth completion methods to recover the structural de-
tails of the depth map. However, it is worth noting that
our method still achieves better results compared with S2D
(Depth-only) [22] and CUNet[35], where CUNet is specifi-
cally designed for the depth-only case and achieves the best
performance at present. Meanwhile, we notice that the re-
sults of LRRU-Base decrease due to over-fitting.

5. Conclusion
In this paper, we have proposed Long-short Range Re-

current Updating (LRRU) network, a novel lightweight
deep network framework for depth completion. Based
on the proposed target-dependent update unit and long-
short range recurrent strategy, our iterative update pro-
cess is content-adaptive and highly flexible. Compared
with conventional direct-regression approaches, our method
achieves superior performance with fewer parameters and
inference time. Experimental results demonstrate that our
methods outperform existing methods on both indoor and
outdoor scenes, and achieve SOTA performance across dif-
ferent parameter regimes. In the future, we will explore our
method for other dense prediction tasks, such as monocular
depth estimation and semantic segmentation.
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