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Abstract

Multi-object tracking in sports scenes plays a critical
role in gathering players statistics, supporting further anal-
ysis, such as automatic tactical analysis. Yet existing MOT
benchmarks cast little attention on the domain, limiting
its development. In this work, we present a new large-
scale multi-object tracking dataset in diverse sports scenes,
coined as SportsMOT, where all players on the court are
supposed to be tracked. It consists of 240 video sequences,
over 150K frames (almost 15× MOT17) and over 1.6M
bounding boxes (3× MOT17) collected from 3 sports cat-
egories, including basketball, volleyball and football. Our
dataset is characterized with two key properties: 1) fast
and variable-speed motion and 2) similar yet distinguish-
able appearance. We expect SportsMOT to encourage the
MOT trackers to promote in both motion-based associa-
tion and appearance-based association. We benchmark
several state-of-the-art trackers and reveal the key chal-
lenge of SportsMOT lies in object association. To alleviate
the issue, we further propose a new multi-object tracking
framework, termed as MixSort, introducing a MixFormer-
like structure as an auxiliary association model to pre-
vailing tracking-by-detection trackers. By integrating the
customized appearance-based association with the original
motion-based association, MixSort achieves state-of-the-art
performance on SportsMOT and MOT17. Based on Mix-
Sort, we give an in-depth analysis and provide some pro-
found insights into SportsMOT. The dataset and code will
be available at https://deeperaction.github.
io/datasets/sportsmot.html.

1. Introduction
Multi-object tracking (MOT) has been a fundamental

computer vision task for recent decades, aiming to locate
the objects and associate them in video sequences. Re-
searchers have cast much focus on various practical use
cases like crowded street scenes [9, 27], static dancing

* indicates equal contribution. B : Corresponding author.

scenes [33] and driving scenarios [14], achieving consid-
erable progress [2, 4, 30, 37, 38, 40, 41] in MOT. MOT for
sports scenes however is overlooked, where typically only
the players on the court should be tracked for further analy-
sis, such as counting the players’ running distance or aver-
age speed and automatic tactical analysis.

Generally, prevailing state-of-the-art trackers [1,6,11,39,
44] consist of several components to accomplish the track-
ing task: objects localization module, motion based objects
association module and appearance based association mod-
ule. Biased to the data distribution of specific human track-
ing benchmarks, e.g. MOT17 [27], MOT20 [9] and Dance-
Track [33], the components of these trackers have difficulty
adapting to sports scenes. Firstly, motivated by surveillance
or self-driving applications, current human tracking bench-
marks provide tracks for almost all persons in the scenes.
While for sports scenes like basketball or football games,
generally only the players on the court are what we focus
on, hence a specialized training platform is required to make
the detectors suitable for sports scenes. More importantly,
in MOT17 and MOT20, these trackers highlight Kalman
Filter [16] based IoU matching for object association, due
to the slow and regular motion of pedestrians. DanceTrack
highlights diverse motion rather than fast movement [33],
that is, dancers frequently switch the motion direction and
relative position. However in sports scenes, we observe
fast and variable-speed movement of objects on adjacent
frames, i.e. players usually possess high speed and fre-
quently change their running speed in professional sports
events, thus constituting barriers in existing motion based
association. For instance, as visualized in Fig. 1, the ad-
jacent IoU and Kalman-Filter-based IoU in sports scenes
remain lower than that on MOT17 and DanceTrack (More
detailed comparison can be found in Fig. 2 and Fig. 3). As
a consequence, more suitable motion based association for
sports scenes is required. Additionally, compared to the
MOT17 and MOT20 datasets in street scenes, the objects
appearances in sports scenes are less distinguishable, since
not only the players inherently are in similar clothes but also
the players are frequently blurred caused by fast camera mo-
tion or targets motion. Different from DanceTrack, where
generally the dancers are in almost the same clothes and
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(a) Basketball in SportsMOT

(b) Football in SportsMOT

(c) MOT17

(d) DanceTrack

Figure 1. Sampled sequences from the categories of basketball and football of SportsMOT, MOT17 and DanceTrack. There exist two
key properties of SportsMOT: 1) fast and variable-speed motion, i.e. players usually possess high speed and frequently change their
running speed (the visualized adjacent IoU and Kalman Filter based adjacent IoU can indicate the property); 2) similar yet distinguishable
appearance, that is, players in sports scenes inherently wear jerseys with different numbers and usually display distinct postures. We expect
SportsMOT to encourage the MOT trackers to promote in both motion-based association and appearance based association.

thus having indistinguishable appearance, players in sports
scenes inherently wear jerseys with different numbers and
usually display distinct postures. Thereby, we argue that
objects in sports scenes are with similar yet distinguishable
appearance, which necessitates the appearance model de-
veloping more discriminative and extensive representations.

Considering the analysis above, to advance the devel-
opment of tracking and sports analysis, we propose a
multi-object tracking dataset in sports scenes, termed as
SportsMOT. The dataset is large-scale, high-quality and
contains dense annotations for every player on the court in
various sports scenes. It consists of 240 videos, over 150K
frames (almost 15× MOT17 [27]) and over 1.6M bound-
ing boxes (3×MOT17 [27]) collected from 3 categories of
sports, including basketball, volleyball and football. To pro-
vide a platform for making the trackers suitable for sports
scenes, we split the dataset into training, validation and test
subsets, consisting of 45, 45 and 150 video sequences re-
spectively. There exist two core properties of SportsMOT:
(1) fast and variable-speed motion, requiring more suit-
able motion modeling association; (2) similar yet distin-
guishable appearance, which necessitates the appearance
model developing more discriminative and extensive repre-
sentations. Altogether, we expect SportsMOT to encourage
the trackers to promote in both the certain aspects, i.e. mo-
tion based association and appearance based association.

Given the large-scale multi-object tracking dataset
SportsMOT, we benchmark some recent tracking ap-
proaches and retrain all of them on the training split. We ob-
serve IDF1 and AssA metrics are lower than that on MOT17
while the DetA is quite high, indicating that the main chal-

lenge of SportsMOT lies in objects association rather than
objects localization. To alleviate the issue, we propose a
new multi-object tracking framework, dubbed as MixSort,
with introducing a MixFormer-like [8] structure as appear-
ance based association to prevailing tracking-by-detection
trackers (e.g. ByteTrack [44], OC-SORT [6]). By inte-
grating the original motion based objects association and
the designed appearance based association, the performance
gets boosted on both SportsMOT and MOT17 benchmarks.
Based on MixSort, we perform extensive exploration stud-
ies and provide some profound insights into SportsMOT.

The main contributions are summarized as follows:

• We build a new large-scale multi-object tracking
dataset in diverse sports scenes, SportsMOT, equipped
with two key properties of 1) fast and variable-speed
motion and 2) similar yet distinguishable appearance,
aiming to advance the development of both tracking
and sports analysis.

• We benchmark some prevailing trackers on
SportsMOT, which reveals that the key challenge
lies in objects association and hopefully can facilitate
further research.

• We propose a new multi-object tracking framework
MixSort, with introducing a MixFormer-like structure
as appearance based association model to prevailing
tracking-by-detection trackers, so as to boost the ob-
jects association. Based on MixSort, we perform ex-
tensive studies and provide some profound insights
into SportsMOT.
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Dataset Videos Frames Length (s) Bbox Tracks

MOT17 14 11,235 463 292,733 1,342
MOT20 8 13,410 535 1,652,040 3,456
DanceTrack 100 105,855 5,292 - 990
SportsMOT 240 150,379 6,015 1,629,490 3,401

Table 1. Comparison of statistics between existing human MOT
datasets and our SportsMOT.

2. Related Work

Multi-object tracking datasets. Existing Multi-object
tracking datasets usually focus on different scenes, such as
autonomous driving, pedestrians on roads, and dancing. For
autonomous driving, there are KITTI [14], KITTI360 [22]
and BDD100K [42], which focus on pedestrians and vehi-
cles. Besides, other datasets, focusing on only the pedes-
trians, collect the videos from static and moving cameras.
One of the earliest is PETS [12], but it’s too simple in some
scenes. MOT15 [20] proposes the first large-scale bench-
mark for Multi-object tracking, followed by MOT17 [27]
and MOT20 [9]. It’s worth noting that MOT20 focuses on
extremely crowded scenes where many pedestrians are oc-
cluded, increasing the tracking difficulty greatly in both de-
tection and association. Recently, DanceTrack [33], focus-
ing on dancing scenes, is proposed to encourage trackers to
rely less on visual discrimination and depend more on mo-
tion analysis. The emphasized properties are uniform ap-
pearance and diverse motion. While in SportsMOT, the ap-
pearance is similar yet distinguishable, and the players’ mo-
tion is fast and with variable speed. We expect SportsMOT
to encourage algorithms to promote in both appearance and
motion association. Besides, SoccerNet [7] is presented to
track elements in football scenarios. The main difference
lies in that, it only contains soccer scenes and tracks al-
most all elements (players, goalkeepers, referees, balls) on
the court without distinction. While SportsMOT contains
three types of sports where the objects in basketball scenes
are more crowded and thus more challenging (refer to Sec-
tion 5.3), and only focuses on the players to support further
statistics and tactical analysis.

Object association in tracking. Association is a very im-
portant task in tracking, where trackers need to associate
detections in new frames with existing tracks. For most of
the trackers, a similarity matrix (or cost matrix) between
new detections and tracks is computed based commonly on
motion and appearance cues, which is later fed into Hun-
garian algorithm [18] to perform association. For exam-
ple, SORT [4] uses Kalman Filter to predict the location
of objects and computes the IoU of detected and predicted
bounding boxes as similarity matrix. IOU-Tracker [5] di-
rectly computes the IoU without prediction. ByteTrack [44]
adds an association phase for detection with low confidence
score, which can boost the performance. OC-SORT [6] tries
to address the limitation of Kalman Filter.

Appearance cues also play an important role in asso-
ciation. DeepSORT [39] crops the detection from frame
images, which are then used by networks to generate re-
ID features. Then the motion cues and distance of re-ID
features are fused to perform association. FairMOT [45]
uses a re-ID branch on a backbone shared by the detec-
tion branch to generate re-ID features. In CenterTrack [46],
the previous frame is used to help the prediction of tracks.
Recently, Transformer [36] is used by some work such as
TrackFormer [26] and MOTR [43] to boost the association
quality. Our proposed MixSort integrates the motion and
appearance cues with a motion modeling component and
the designed MixFormer-like structure respectively.

3. SportsMOT Dataset
3.1. Dataset Construction

Video Collection. We select three worldwide famous
sports, football, basketball, and volleyball, and col-
lect videos of high-quality professional games includ-
ing NCAA, Premier League, and Olympics from Multi-
Sports [21], which is a large dataset in sports area focusing
on spatio-temporal action localization. Each category has
typical players’ formations and motion patterns, and they
can effectively represent the diversity of sports scenarios.
Only the overhead shots of sports game scenes are used,
guaranteeing certain extreme situations do not occur. The
proposed dataset consists of 240 video sequences in total,
each of which is 720P and 25 FPS. Following the prin-
ciples of multi-object tracking, each video clip is manu-
ally checked to ensure that there are no abrupt viewpoint
switches within the video.

Annotation Pipeline. We annotate the collected videos
according to the following guidelines.

• The entire athlete’s limbs and torso, excluding any
other objects like balls touching the athlete’s body, are
required to be annotated.

• The annotators are asked to predict the bounding box
of the athlete in the case of occlusion, as long as the
athletes have a visible part of body. However, if half
of the athletes’ torso is outside the view, annotators
should just skip them.

• We ask the annotators to confirm that each player has a
unique ID throughout the whole clip.

We provide a customized labeling tool for SportsMOT
and a corresponding manual book to annotators. Once they
start annotating a new object, the labeling tool automatically
assigns a new ID to the object and propagates the bound-
ing box of previous state to the current state, with the help
of the single object tracker KCF [15]. Then the generated
bounding boxes should be refined by the annotators, so as to
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Figure 2. IoU on adjacent frames. (a) Compared to MOT17 and
DanceTrack, SportsMOT has a lower score, indicating that objects
have faster motion. (b) In SportsMOT, the category of football has
the lowest IoU score, which means that football players often have
fast motion.

Category Frames Tracks Track Track Bboxes
gap len. len. per frame

Basketball 845.4 10 68.7 767.9 9.1
Volleyball 360.4 12 38.2 335.9 11.2
Football 673.9 20.5 116.1 422.1 12.8
Total 626.6 14.2 96.6 479.1 10.8

Table 2. Detailed statistics of the three categories in SportsMOT.

improve annotation quality. After carefully reviewing each
annotation result, we refine the bounding boxes and IDs that
do not satisfy the standards, hence building a high-quality
dataset. Finally, the bounding boxes with too small size,
i.e. w < 5 or h < 5, are deleted.

3.2. Dataset Statistic

Overview. SportsMOT is a large-scale and high-quality
MOT dataset, aiming to advance the development of both
sports analysis and multi-object tracking. Table 1 com-
pares the statistics of SportsMOT with the prevailing human
tracking datasets, including MOT17, MOT20 and Dance-
Track. According to the statistics, SportsMOT has a large
number of bounding boxes of over 1.6M, which is com-
parable to MOT20 and significantly larger than MOT17.
Besides, SportsMOT has a large number of video clips,
tracks (2.5× MOT17, 3.4× DanceTrack), frames (13.4 ×
MOT17). As shown in Table 2, we also compare the ba-
sic statistics of each category of SportsMOT. SportsMOT
solely provides fine annotations of the players on the court,
which are supposed to be tracked for further analysis. To
provide a platform for making the trackers suitable for
sports scenes, we split the dataset into training, validation
and test subsets, consisting of 45, 45 and 150 video se-
quences respectively.

Fast and Variable-Speed Motion. Motion cues play an
important role in object association for multi-object track-
ing. The existing human-tracking datasets (e.g. MOT17,
MOT20 and DanceTrack) generally have certain motion
patterns that are distinct with sports scenes, constituting
barriers in players tracking. For instance, in MOT17 and
MOT20, pedestrians are featured by linear motion with con-
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Figure 3. Kalman-Filter-based IoU on adjacent frames. (a) Com-
pared to MOT17 and DanceTrack, SportsMOT has a lower score,
indicating that objects have more variable-speed motion. (b) In
SportsMOT, the category of football has the lowest Kalman-Filter-
based IoU score.

60 40 20 0 20 40
60

40

20

0

20

40

60

(a) MOT17
40 20 0 20 40 60

60

40

20

0

20

40

60

(b) SportsMOT
60 40 20 0 20 40 60

40

20

0

20

40

(c) DanceTrack

Figure 4. Visualization of re-ID features from sampled videos in
MOT17, SportsMOT and DanceTrack dataset using t-SNE [35].
The same object is coded by the same color. It indicates that ob-
ject appearance of SportsMOT is less distinguishable than that of
MOT17, while more distinguishable than that of DanceTrack. We
expect the appearance model to capture more discriminative and
extensive representation for object association.

stant speed, which is easily hacked by association strate-
gies with constant velocity assumption. Besides, Dance-
Track highlights diverse motion rather than fast motion, that
is, dancers usually move in more diverse directions with
relatively low speed. In contrast, SportsMOT has distinct
motion patterns, i.e. fast and variable-speed motion, where
the players typically move fast with their running speed or
camera speed frequently changing. As illustrated in Fig. 2,
among the three datasets, SportsMOT has the lowest IoU
score of the objects bounding boxes on adjacent frames,
indicating the fast movement. We use the ground truth
of previous frames for Kalman Filter prediction. The re-
sult and current ground truth are used to calculate Kalman-
Filter-based IoU. Seen from Fig. 3, SportsMOT also has the
lowest Kalman-Filter-based IoU score on adjacent frames,
which suggests that the motion can not be easily mod-
eled by prevailing methods due to the variable-speed move-
ment. Specifically, football has the smallest adjacent IoU
and Kalman-Filter-based IoU, which is closely related to
the fast running speed, abrupt acceleration or stops. It poses
a major challenge for trackers based on simple motion as-
sumptions and also encourages them to model object mo-
tion in more dynamic and adaptive ways.

Similar yet Distinguishable Appearance. Object ap-
pearance is another kind of cue on which MOT trackers
often rely to distinguish different objects. In MOT17 and
MOT20, pedestrians are usually distinct in body size and
wear different clothes, yielding discriminative visual fea-
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Heatmap

Figure 5. Paradigm for computing visual similarity matrix of
tracks and detections in MixSort. The center of ground-truth target
detection is marked with red dots, the others are green. The blue
dashed box indicates the cropped search region. The blank part of
similarity vector means that for detections not in the search region,
the corresponding value is set to 0.

tures. In contrast, the objects in DanceTrack typically
wear nearly identical outfits, leading to indistinguishable
appearances. Thereby, DanceTrack highlights solely re-
lying on motion-based association rather than appearance-
based association. In SportsMOT, the players also have very
similar appearances. However, the players wear jerseys
with different numbers and usually display distinct pos-
tures, thus resulting in similar yet distinguishable appear-
ance. In Fig. 4, we provide visualization of re-ID feature
from sampled videos in MOT17, SportsMOT and Dance-
Track dataset using t-SNE [35]. It implies that the re-ID
features in SportsMOT are similar yet distinguishable com-
pared to MOT17 and DanceTrack. We aim to encourage the
trackers to learn more discriminative visual representations
for more robust object association.

3.3. Evaluation Metrics

MOTA [3] is the main metric for existing MOT evalu-
ations. However, MOTA focuses more on measuring the
accuracy of detection. To highlight the performance of
object association, we recommend HOTA [25], AssA and
IDF1 [31] as the major evaluation metrics in SportsMOT
dataset. HOTA aims to measure the accuracy of detection
and association equally and has also been found to be more
consistent with human intuition.

4. Multi-Object Tracking on SportsMOT

In this section, we present our proposed multi-object
tracking framework, called MixSort. This framework is
designed to enhance the appearance-based association per-
formance and can be applied to any trackers that follow
the tracking-by-detection paradigm, such as ByteTrack [44]
and OC-SORT [6].

We begin by explaining how we use the MixFormer
[8] network to compute visual similarities between tracked
templates and detected objects in multi-object tracking.
Next, we describe the overall pipeline of MixSort. Finally,
we provide details on the training and inference of MixSort.

4.1. MixFormer for Appearance-based Association

MixFormer. In this paragraph, we discuss the use of Mix-
Former in our proposed framework MixSort. MixFormer
is designed to extract target-specific discriminative features
and perform extensive communication between the target
and search area, therefore, it is the key component that en-
ables MixSort to compute visual similarities between the
templates of tracked objects and detected objects in the
search region of the current frames.

The original MixFormer uses a corner-based localization
head to predict the top-left and bottom-right corners of the
input template in the search region. However, we modify
the corner head by using a heatmap prediction head that pre-
dicts the center of the template and generates a confidence
heatmap. This allows us to compute the similarity between
the detection and the template.

To make MixSort suitable for multi-object tracking and
accelerate inference speed, we reduce the number of mixed
attention modules in MixFormer from 12 to 4. The steps
involved in computing the visual similarity matrix are illus-
trated in Figure 5.

Association Strategy. In order to perform association be-
tween detections and existing tracks, we use a mixed sim-
ilarity matrix generated by computing the visual similarity
between the target template and the detected objects in the
search region of the current frame. Specifically, we obtain
the heatmap response at the center of each detection as its
visual similarity to the template. The resulting similarity
matrix is then combined with the IoU matrix using the Hun-
garian Algorithm.

To start, for each existing track t, we use the Kalman
Filter to predict its new location. Then, we crop the current
frame centered at the predicted location with a certain scale
to obtain the search region s. By feeding s and the template
t into MixFormer, we generate a heatmapH that represents
the similarity between the template and search region.

Next, for each detection d whose center is in the search
region s, we set its similarity to track t as the response in
the heatmapH; the similarity values of other detections are
set to 0. Finally, we fuse the visual similarity and the IoU
score to obtain the mixed similarity matrix

M = α · IoU + (1− α) · V (1)

whereα is the weight coefficient and V represents the visual
similarity matrix calculated using MixFormer.

4.2. MixSort Tracking

Based on the tracking-by-detection paradigm, the
pipeline of MixSort can be generalized as follows:

As shown in Figure 6, we first obtain detections using
an object detector. Then, we employ a motion model (e.g.,
Kalman Filter) to predict new locations of existing tracks.
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MixFormer

Fused Similarity Matrix

Figure 6. The pipeline of MixSort. We use motion model and
MixFormer to generate fused similarity matrix for association.

Based on the new locations and templates of tracks, we
compute a fused similarity matrix as described above and
use it to associate tracks and detections by the Hungarian
Algorithm. Finally, for matched tracks and detections, we
update the online templates. For unmatched tracks, we keep
them until the threshold is reached. For unmatched detec-
tions with confidence scores higher than the threshold, we
initialize new tracks.

4.3. Training and Inference

Training. We only consider the training of MixFormer
here since the detector remains the same as initial method
(e.g. ByteTrack). The original MixFormer is trained on SOT
datasets, so we first modify the format of ground truth of
MOT datasets, that is, converting the ground truth trajec-
tory of every single player into TrackingNet format [28].

For each ground-truth bounding box, we compute its
corresponding center location (cx, cy) in the low-resolution
heatmap. Following CornerNet [19], the ground-truth
heatmap response is generated using 2D Gaussian kernel:

hxy = exp(− (x− cx)2 + (y − cy)2

2σ2
) (2)

where σ is adaptive to the size of the bounding box. The
training loss is a pixel-wise logistic regression with focal
loss [23]:

L = −
∑
xy

{
(1− ĥxy)γ log(ĥxy) , hxy = 1;

(1− hxy)β(ĥxy)γ log(1− ĥxy) , otherwise.
(3)

where γ and β are hyper-parameters in focal loss, and we
set γ = 2, β = 4 following CornerNet.

Inference. For each track, we maintain only one template
for keeping a balance between accuracy and speed. When
a detection is matched to an existing track, we directly re-
place the original template to the new detection, if and only
if the ratio of its uncovered (i.e. overlapping with any de-
tected objects) area is larger than a certain threshold, so as
to reduce the impact of misleading representations.

5. Experiments and Analysis
5.1. Experiment Setup

Dataset Split. In benchmark experiments, we follow the
default split described in Sec. 3.2. In exploration study, we
split the original MOT17 training set into two sets, used for
training and validation respectively following CenterTrack.

Implementation Details. Following ByteTrack and OC-
SORT, we use YOLOX [13] as our detector. Using COCO-
pretrained model as the initialized weights, we first train the
model on CrowdHuman [32] for 80 epochs and then train on
SportsMOT for another 80 epochs. The remaining settings
are the same as that in ByteTrack.

For MixFormer, we initialize the backbone with the
model trained on VOT datasets and then fine-tune it on
SportsMOT for 300 epochs with learning rate initialized as
1e− 4 and decreased to 1e− 5 at epoch 200. The optimizer
is ADAM [17] with weight decay 10−4. The sizes of search
images and templates are 224×224 and 96×96 respectively.
The max sample interval is set to 10. For every tracking re-
sult, we apply linear interpolation as post-processing, with
maximum gap set to 20.

5.2. Benchmark Results

We evaluate several representative methods of three
kinds on our dataset. ByteTrack [44], OC-SORT [6]
and QDTrack [29] are trackers in tracking-by-detection
paradigm. CenterTrack [46] and FairMOT [45] perform
joint detection and tracking in one stage. TransTrack [34]
and GTR [47] are trackers based on Transformer. Most of
the current best multi-object tracking algorithms belong to
tracking-by-detection paradigm, however, due to the sepa-
ration of detection and tracking, the information cannot be
shared completely. Joint-detection-and-tracking paradigm
couples the two modules, with the goal of boosting the per-
formance of each. Transformer-based-tracking methods are
relatively new but have achieved great performance. De-
spite its huge potential, the model complexity and calcula-
tion cost are much higher, resulting in large memory and
long training time.

All training settings including the number of epochs and
change of learning rate are consistent with original pa-
pers. According to different default settings, we follow
the commonly used pretraining datasets, such as Crowd-
Human [32], COCO [24] and ImageNet [10], and apply
SportsMOT-train with or without other datasets for finetun-
ing for different methods. We compare the results in Tab. 3.

In sports scenes, the clear appearance and sparse den-
sity of objects allow current mature detection frameworks
to generate bounding boxes with high accuracy. However,
specialized detectors need to be trained for not detecting
audience and referees. The key challenges are fast speed
and motion blur, which forces us to pay more attention to
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Training Setup HOTA↑ IDF1↑ AssA↑ MOTA↑ DetA↑ LocA↑ IDs↓ Frag↓
CenterTrack [46] Train 62.7 60.0 48.0 90.8 82.1 90.8 10481 5750
FairMOT [45] Train 49.3 53.5 34.7 86.4 70.2 83.9 9928 21673
QDTrack [29] Train 60.4 62.3 47.2 90.1 77.5 88.0 6377 11850
TransTrack [34] Train 68.9 71.5 57.5 92.6 82.7 91.0 4992 9994
GTR [47] Train 54.5 55.8 45.9 67.9 64.8 89.0 9567 14525
ByteTrack [44] Train 62.8 69.8 51.2 94.1 77.1 85.6 3267 4499
OC-SORT [6] Train 71.9 72.2 59.8 94.5 86.4 92.4 3093 3474
ByteTrack Train+Val 64.1 71.4 52.3 95.9 78.5 85.7 3089 4216
OC-SORT Train+Val 73.7 74.0 61.5 96.5 88.5 92.7 2728 3144

MixSort-Byte Train+Val 65.7 (+1.6) 74.1 (+2.7) 54.8 (+2.5) 96.2 78.8 85.7 2472 4009
MixSort-OC Train+Val 74.1 (+0.4) 74.4 (+0.4) 62.0 (+0.5) 96.5 88.5 92.7 2781 3199

Table 3. Tracking performance of investigated algorithms on our proposed SportsMOT. The best results are shown in bold.

α 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

basketball 65.9 66.1 66.2 65.9 65.3 64.8 63.6 60.7 56.7 47.1 26.9
volleyball 76.0 76.8 76.5 76.4 76.5 76.9 76.4 75.5 73.7 69.1 40.9
football 71.9 72.4 72.3 72.4 72.5 72.8 73.2 72.9 72.6 71.4 65.7

Table 4. Comparison of the HOTA metric of basketball, volley
and football under different fusion parameters α on SportsMOT
test set. The models are trained on SportsMOT training set.

improve the association performance. Besides, The wide
range of HOTA and MOTA denotes SportsMOT is more
distinguishable among different kinds of algorithms.

Tracking-by-detection paradigm methods like ByteTrack
and OC-SORT outperform most of the methods in the ta-
ble. But their association performance is still not satisfac-
tory enough. Thus we propose MixSort that can be applied
to any trackers following this paradigm and achieve state-
of-the-art performance on SportsMOT. Besides, to further
validate the effectiveness of MixSort, we compare MixSort
with the state-of-the-art trackers on MOT17 validation set
and test set under the private detection protocol in Tab. 5.
Our MixSort-byte and MixSort-OC outperform these track-
ers in HOTA, IDF1 and AssA metrics.

5.3. Exploration Study

In this section, we perform extensive studies on the pro-
posed MixSort and SportsMOT.

Effectiveness of the proposed association module. We
evaluate the effectiveness of MixSort by applying it to two
state-of-the-art trackers, OC-SORT [6] and ByteTrack [44],
which follow the tracking-by-detection paradigm and use
YOLOX as their detector. The evaluation is conducted on
the SportsMOT test set, and the results are presented in
Tab. 3. Our experiments show that MixSort significantly
improves the performance of both trackers, with OC-SORT
achieving a 0.4 HOTA increase and ByteTrack achieving a
1.6 HOTA increase on SportsMOT. This demonstrates the
effectiveness of MixSort in enhancing the association.

Appearance-based vs. Motion-based association. We
have demonstrated that MixSort can improve association

performance. In this paragraph, we investigate the im-
pact of the fusion weight α on the ability of appearance
cues to aid in conventional motion-based association. We
evaluate OC-SORT with MixSort on the three categories
in the SportsMOT test set using α values ranging from
1 to 0 in Eq. (1). The results, presented in Tab. 4, re-
veal that pure motion-based association (α = 1) outper-
forms pure appearance-based association (α = 0) in all
categories, underscoring the significance of motion cues in
sports scenes. Moreover, fused association surpasses both
pure motion-based and appearance-based association, sug-
gesting that both motion and appearance cues should be
considered jointly for optimal results.

Our analysis of the three categories reveals that appear-
ance cues provide the most significant improvement for
football videos (+1.3), followed by volleyball (+0.9) and
basketball (+0.3). Combining this with Fig. 2, which indi-
cates that the adjacent IoU of football games is the smallest
(i.e., motion is fastest) among the three categories, we can
conclude that scenes with faster motion are more dependent
on appearance cues.

Analysis on different categories of SportsMOT. While
the three SportsMOT categories share some common char-
acteristics such as fast motion and similar appearance, they
also have distinct features due to the different types of
games. In this section, we analyze the results of our ex-
periments on the three categories.

We first use the best HOTA metric from Tab. 4 to repre-
sent the overall difficulty of a category. Based on this metric,
we find that basketball videos (66.17) are the most difficult,
followed by football (73.19), and finally volleyball (76.91).

Next, we consider the appearance-based association (i.e.
α = 0 in Tab. 4). We observe a notable gap between
the HOTA metrics of the three categories, where basketball
(26.94) has a much lower HOTA than volleyball (40.94) and
football (65.65). Similarly, basketball remains the most dif-
ficult in the motion-based association (i.e. α = 1 in Tab. 4),
while the volleyball becomes the easiest.

7



MOT17-test MOT17-val
HOTA↑ IDF1↑ AssA↑ MOTA↑ DetA↑ IDs↓ HOTA↑ IDF1↑ AssA↑ MOTA↑ DetA↑ IDs↓

QDTrack [29] 53.9 66.3 52.7 68.7 55.6 3378 - - - - - -
MOTR [43] 57.2 68.4 55.8 71.9 58.9 2115 - - - - - -
GTR [47] 59.1 71.5 57.0 75.3 61.6 2859 63.0 75.9 66.2 71.3 60.4 -
ByteTrack [44] 63.1 77.3 62.0 80.3 64.5 2196 - 79.7 - 76.7 - 159
OC-SORT [6] 63.2 77.5 63.4 78.0 63.2 1950 68.0 79.3 69.9 77.9 - -

MixSort-Byte 64.0 78.7 64.2 79.3 64.1 2235 69.4 81.1 71.3 79.9 68.2 155
MixSort-OC 63.4 77.8 63.2 78.9 63.8 1509 69.2 80.6 71.5 78.9 67.4 135

Table 5. Comparison of the state-of-the-art methods under the “private detector” protocol on MOT17-test set and MOT17-val set.

IoU Motion Mix. HOTA↑ IDF1↑ AssA↑ MOTA↑ IDs↓
X 71.5 71.2 58.1 95.9 4329

X 64.2 63.9 48.7 91.1 25947
X X 64.1 71.4 52.3 95.9 3089
X X 73.8 74.4 61.6 96.6 3203
X X X 65.7 74.1 54.8 96.1 2469

Table 6. Results of the ablation experiment on SportsMOT test
set. IoU means computing IoU between detections and the last
location of existing tracks for association, while Motion means
using Kalman filter to predict the location of tracks. The models
are trained on SportsMOT training and validation set.

We believe that the differences in difficulty arise from
several factors, including the size of the game court and
the degree of physical confrontation among players. For
instance, basketball scenes are played on smaller courts and
involve more physical contact between players than football
scenes. This can lead to more occlusion and blur in basket-
ball videos, making the association task more challenging
than in football scenes.

Ablation study on MixSort. We ablate important com-
ponents of our tracker (MixSort based on ByteTrack)
including IoU, Motion (Kalman Filter) and MixSort on
SportsMOT test set. The results are presented in Tab. 6.
Surprisingly, we found that simple IoU without using mo-
tion prediction outperformed IoU with motion prediction by
a large margin (from 64.1 HOTA to 71.5 HOTA), indicating
that the Kalman filter, which assumes linear motion models,
performed poorly on SportsMOT, where the motion patterns
are far more complex than in previous datasets.

Furthermore, we observed that MixSort played a cru-
cial role in boosting the performance of the tracker signif-
icantly. By fusing the IoU and MixSort cues, our method
achieved the best performance of 73.8 HOTA compared to
71.5 HOTA of simple IoU in our experiments.

Comparison with SoccerNet. We conducted experi-
ments to compare SoccerNet that focuses only on soccer
scenes with SportsMOT. Results shown in Tab. 7 suggest
that SportsMOT is a challenging dataset with varying levels
of difficulty across different sports categories. Specifically,
basketball is proved to be the most difficult with the low-
est HOTA of 60.8, while volleyball and football are rela-
tively easier. MixSort obtains higher HOTA on SportsMOT

HOTA↑ IDF1↑ AssA↑ MOTA↑ DetA↑

SportsMOT

overall 65.7 74.1 54.8 96.1 78.8
basketball 60.8 67.8 46.8 97.3 79.1
volleyball 72.5 87.0 66.8 96.5 78.7
football 66.4 73.6 56.3 94.9 78.5

SoccerNet 62.9 73.9 55.5 87.8 71.5

Table 7. Results of MixSort-Byte on SportsMOT and SoccerNet
test set. The models are trained on SportsMOT training and val-
idation set and SoccerNet training set respectively and the hyper-
parameters are the same.

HOTA↑ IDF1↑ AssA↑ MOTA↑ DetA↑
ByteTrack 47.1 51.9 31.5 88.2 70.5

MixSort-Byte 46.7 53.0 31.9 85.8 68.6

Table 8. Comparison of ByteTrack and MixSort-Byte on Dance-
Track validation set. For MixSort-Byte, the fuse parameter α is
0.9, which results in the highest HOTA among {0.6, 0.7, 0.8, 0.9,
0.95}. The models are trained on DanceTrack training set.

than on SoccerNet. This is mainly because all the ele-
ments on the court are to be tracked in SoccerNet, lead-
ing to more false detections and much lower DetA (71.5 vs
78.8). However, it still obtains higher AssA on SoccerNet
than on SportsMOT, in spite of the more false detections,
which demonstrates that SportsMOT yields challenging as-
sociation and is valuable for tracking in sports.

Comparison with DanceTrack. We evaluate MixSort-
Byte on the DanceTrack validation set and compare the re-
sults with that of ByteTrack as shown in Tab. 8. Unlike
the results on SportsMOT where MixSort brings significant
improvement, on DanceTrack the original ByteTrack per-
forms better instead, with HOTA, MOTA and DetA metrics
all higher than MixSort-Byte. This indicates that appear-
ances in our proposed dataset SportsMOT are similar yet
distinguishable, while those in DanceTrack are much harder
to distinguish. Therefore SportsMOT highlights both the
motion-based and appearance-based associations.

Comparison Between MixSort and ReID models. To
verify the effectiveness of the proposed MixSort with intro-
ducing a MixFormer-like model to model appearance asso-
ciation cues, we take experiments as in Table 9. We use the
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HOTA↑ IDF1↑ AssA↑ MOTA↑ DetA↑
ByteTrack 64.1 71.4 52.3 95.9 78.5

ByteTrack+ReID 64.8 72.2 53.4 96.1 78.8
MixSort-Byte 65.7 74.1 54.8 96.1 78.8

Table 9. Comparison of ByteTrack, ByteTrack with ReID model
and MixSort-Byte on SportsMOT test set. The ReID model is the
same as in DeepSORT [4] and finetuned on SportsMOT. The mod-
els are trained on SportsMOT training set and the best results are
shown in bold.

same ReID model as in DeepSORT and finetune it on our
SportsMOT. We can see that, the HOTA, IDF1 and AssA of
ByteTrack with ReID model are higher than that of orig-
inal ByteTrack without ReID model, which demonstrate
the importance of appearance-based association on the pro-
posed SportsMOT. Moreover, the proposed MixSort-Byte
imporves ByteTrack with ReID model by 0.9, 1.9 and 1.4
on HOTA, IDF1 and AssA respectively. This proves the su-
periority of MixSort’s appearance model over the original
ReID model, since it can extract more extensive and dis-
criminative representations, and also allows more effective
offline learning.

6. Conclusion
In this paper, we have introduced SportsMOT, a

large-scale multi-object tracking dataset in sports scenes.
SportsMOT is characterized with two key properties: 1)
fast and variable-speed motion and 2) similar yet distin-
guishable appearance. We have empirically investigated
several prevailing MOT trackers on the SportsMOT dataset.
We have also proposed a new MOT framework MixSort,
introducing a MixFormer-like association module. Hope-
fully, SportsMOT can provide a platform for facilitating
both sports analysis and multi-object tracking.
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