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Fig-1: demo

Audio input

Effect range: 6s ~ 8s
A person does a cartwheel.

Effect range : 16s ~ 18s
A person does a spin.Text input

Dance output

Figure 1: Generated 3D dance examples conditioned music and text with our method. Given an audio input and text input
with a specific starting time and duration, our method is able to generate a sequence of dance motions that fit the music and
text instruction. The character is from Mixamo [1].

Abstract

We propose a novel task for generating 3D dance move-
ments that simultaneously incorporate both text and mu-
sic modalities. Unlike existing works that generate dance
movements using a single modality such as music, our goal
is to produce richer dance movements guided by the instruc-
tive information provided by the text. However, the lack
of paired motion data with both music and text modalities
limits the ability to generate dance movements that inte-
grate both. To alleviate this challenge, we propose to uti-
lize a 3D human motion VQ-VAE to project the motions of
the two datasets into a latent space consisting of quantized
vectors, which effectively mix the motion tokens from the
two datasets with different distributions for training. Ad-
ditionally, we propose a cross-modal transformer to inte-
grate text instructions into motion generation architecture
for generating 3D dance movements without degrading the
performance of music-conditioned dance generation. To
better evaluate the quality of the generated motion, we in-
troduce two novel metrics, namely Motion Prediction Dis-
tance (MPD) and Freezing Score (FS), to measure the co-
herence and freezing percentage of the generated motion.
Extensive experiments show that our approach can gener-
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ate realistic and coherent dance movements conditioned on
both text and music while maintaining comparable perfor-
mance with the two single modalities. Code is available at
https://garfield-kh.github.io/TM2D/.

1. Introduction

The music-conditioned dance generation has become a
topic of great interest in recent years. The ability to gen-
erate dance movements that are synchronized with music
has numerous applications, such as behavior understanding,
simulation, and benefiting the community of dancers and
musicians [26, 9, 30, 47]. Although music has been used
as a guidance to generate dance movements, another impor-
tant modality cue, text (or language), which provides richer
actions and more flexible motion guidance, and is studied
in other tasks such as image classification [41], detection
[16], segmentation [53], and text-driven image generation
[45], has not been fully explored in dance generation. To
this end, we first propose a novel task for generating 3D
dance movements that simultaneously incorporate both text
and music modalities, enabling the generated human to per-
form rich dancing movements in accordance with the music
and text.

Designing a system pipeline for this bimodality driven
3D dance generation task is non-trivial. There exist two
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significant challenges to be considered: i) the existing
datasets only cater to either music-driven (music2dance)
[49, 5, 60, 30] or text-driven (text2motion) [39, 17] hu-
man motion generation, and no paired 3D dance generation
dataset exists that takes into account both music and text.
While building a new large-scale paired 3D dance dataset
based on music and text is possible, it is time-consuming
with fully annotated 3D human motion [30]; ii) the inte-
gration of text into music-conditioned dance generation re-
quires a suitable architecture. However, existing methods
that use music as a driving force to generate dance move-
ments might result in temporal-freezing frames or fail to
generalize to in-the-wild scenarios [30, 47]. Therefore, sim-
ple integration of text into the existing music-conditioned
architecture might pose a risk of degraded dance generation
quality in our new task.

To address the first challenge, we take advantage of ex-
isting music-dance and text-motion datasets for this new
task. However, directly mixing motions from these two
datasets would result in inferior performance since the mo-
tions from these two datasets are in completely different
motion spaces. To overcome this, we propose to utilize a
VQ-VAE architecture to project the motions into a consis-
tent and shared latent space. In particular, we build up a
shared codebook for all the motions from the training set,
and motions from both datasets are now represented as dis-
crete tokens that are implicitly constrained to fall into a
shared latent space. For the second challenge, we propose
to utilize a cross-modal transformer architecture that for-
mulates both music2dance and text2motion as sequence-to-
sequence translation tasks. This architecture directly trans-
lates audio and text features into motion tokens and enables
bimodality driven ability by introducing a fusion strategy in
the latent space with a shared motion decoder for both tasks.
With the shared decoder, audio and text information can be
efficiently fused during inference. Our entire cross-modal
transformer architecture is both effective and efficient, al-
lowing for the integration of text instructions to generate
coherent 3D dance motions, as illustrated in Figure 1.

To better evaluate the coherence of generated dance in
our task, we propose a new evaluation metric, Motion Pre-
diction Distance (MPD), which measures the distance be-
tween the predicted motion and the ground truth at the time
of integrating text, thereby providing a more accurate eval-
uation of the coherence of frames. Additionally, we in-
troduce a Freezing Score (FS) that quantifies the percent-
age of temporal freezing frames in dance generation, which
is a common problem in music-conditioned dance gener-
ation. To better evaluate the performance of our method
in real-world scenarios, we also collect some in-the-wild
music data for evaluation. Our method successfully per-
forms dance generation based on both text and music while
maintaining comparable performance on the single modal-

ity tasks (music2dance, text2motion) compared to other
state-of-the-art methods.

In summary, our contributions are as follows: i) We pro-
pose an interesting task of utilizing both music and text for
3D dance generation and propose a pipeline named TM2D
(Text-Music to Dance) for this task. ii) Rather than collect-
ing a new training set, we effectively combine the existing
music2dance and text2motion datasets and employ a VQ-
VAE framework to encode motions from all training sets
to a shared feature space. iii) We propose a cross-modal
transformer as well as a bimodal feature fusion strategy to
encode both audio and text features, which is both effec-
tive and efficient. iv) We propose two new metrics, MPD
and FS, which efficiently reflect the quality of generated
motion. v) We successfully generate realistic and coher-
ent dance based on both music and text instructions while
maintaining comparable performance on the single modal-
ity tasks (music2dance, text2motion).

2. Related Work
2.1. Music to Dance

Music2Dance is typically divided into 2D and 3D dance
generation and has been explored for many years. Re-
cent methods model 3D dance generation from the per-
spective of network architecture. For instance, Lee et
al. [27] explore the convolutional neural network in ca-
sual dilated setting. Lee et al. [26] propose a dance unit
with Variational Auto-Encoder (VAE). Ren et al. [44] em-
ploy recurrent neural network (RNN) and the graph con-
volution network is introduced in [12]. As for the 3D
dance generation, [57, 3, 25] implement convolutional neu-
ral network, [48, 14] apply adversarial learning in generated
dance. [5, 49, 54, 61, 24] implement Long short-term mem-
ory (LSTM), and [9] implement motion graph with learned
music/dance embedding through matching approach [10].
More recently, transformer has been applied in dance gen-
eration [29, 30, 47, 28]. However, the previous methods
usually produce temporal freezing frames when generating
the long sequences, or are difficult to generalize to in-the-
wild music, thereby not satisfiable when directly used for
bimodal driven 3D dance generation. In this paper, we de-
sign a cross modal transformer which is effective and effi-
cient to integrate text instruction to generate the 3D dance.

2.2. Text to Motion

In addition to music-driven motion generation, text
is also utilized as instructions to generate motions.
Text2motion can be categorized into action label based mo-
tion generation and language description based motion gen-
eration. The action label based methods [19, 37] gener-
ate motion conditioned on action labels. Action2Motion
[19] implement a GRU-VAE to iteratively generate the next
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Figure 2: Our proposed pipeline for music-text conditioned 3D dance generation. Three stages from left to right: 3D human
motion VQ-VAE, training stage of the cross-modal transformer, and inference stage of our pipeline. In the first stage, a
VQ-VAE is trained with both motions from music2dance and text2motion data, which is then used to tokenize all motions.
In the second stage, a dual path cross-modal transformer is employed for sequence2sequence translation tasks (i.e., audio to
motion tokens, text to motion tokens), with a shared motion decoder. In the third stage, given audio and text inputs, the audio
and text encoders first extract the corresponding features, which are then fused (late fusion) in the motion decoder to generate
dance condition on both music and text.

frame based on the action label and previous frames. AC-
TOR [37] implements a transformer-VAE to encode and de-
code the whole pose sequence in one-shot. Since the action
label based methods are restricted in a small set of action la-
bels, language description based methods are proposed for
more flexible motion generation. [40, 32, 2, 17, 18] formu-
late the text-to-motion task as a machine translation prob-
lem, others [55, 4, 13, 38] learns a joint embedding space
of text and motion. Among them, [40, 32, 2, 55, 4, 13] use
RNN encoder-decoder to learn the mapping between text
and motion. [18, 17] use transformer encoder with RNN
decoder, and TM2T [18] further introduces motion to text
as an inverse alignment for text to motion. TEMOS [38] and
TEACH [6] use transformer for both encoder and decoder
for one-shot generation. Different from these text2motion
methods, we focus on how to integrate two modalities (i.e.,
music and text) together for 3D dance generation.

3. Method

3.1. System Pipeline

The overall pipeline is shown in Figure 2, which consists
of three stages. The first stage employs a 3D human motion

VQ-VAE to encode both the motions of the music2dance
and text2motion datasets to a shared codebook encoded by
multiple vectors such that each dance motion can be repre-
sented as a discrete motion token. After that, the combina-
tions of music, text, and motion token are fed into a cross-
modal transformer for training, which effectively learn how
to predict a sequential motion tokens according to the pre-
vious those as well as music and text. In the third stage, a
random starting motion token is generated and inputted to
the cross-modal transformer with the given music and text
for the sequential motion token prediction, which will be
decoded by the pre-trained 3D human motion VQ-VAE in
the first stage to generate 3D dance.

3.2. 3D Human Motion VQ-VAE

Since there are no paired 3D dance motions conditioned
on both music and text, we try to tackle our task with the
existing music2dance and text2motion datasets. Instead of
directly mixing the motions from both datasets for training,
we employ a VQ-VAE to project the motions into a con-
sistent and shared latent space, which is represented with a
codebook, as illustrated in Figure 2. To be specific, given a
3D human motion M ∈ RT×dm , where T is the time length
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and dm is the dimension of the human motion, an encoder of
VQ-VAE that consists of several 1-D convolutional layers
projects M to a latent vector z ∈ RT ′×d, where T ′ = T

t and
t is the time interval for downsampling and d is the dimen-
sion of the latent vector. A learnable codebook e ∈ RK×d

describes all latent variable features of the whole dataset,
where K and d are the length and dimension of the code-
book, respectively. A quantized latent vector zq ∈ RT ′×d

will record the closest vector from codebook e as follows

zq,i = argmin
ej∈e

∥zi − ej∥ ∈ Rd, (1)

and the motion token tm ∈ RT ′×1 stores the index of the
closest vector

tm,i = argmin
j

∥zi − ej∥ ∈ R1. (2)

The quantized zq will be decoded with stacked convolu-
tional layers to reconstruct the human motion M̂ , and tm
will be used in the training stage of the cross-modal trans-
former.

For the training of 3D human motion VQ-VAE, we fol-
low the strategy in [51] and the total loss contains a recon-
struction loss for human motion regression, a codebook loss
for the dictionary learning, and a commitment loss to stabi-
lize the training process:

Lvq = ∥M̂ −M∥1 + ∥sg[e]− eq∥22 +β∥e− sg[eq]∥22, (3)

where sg[·] is ‘stop gradient’ and β is the factor term to ad-
just the weight of the commitment loss. A straight-through
estimator is also employed to pass the gradient from the de-
coder to the encoder in back-propagation.

As we will show in Sec. 4, the motion tokens from both
datasets encoded by 3D human motion VQ-VAE fall almost
in the shared latent space, which shows the feasibility of
using the separate music-conditioned and text-conditioned
motion datasets for music-text conditioned 3D dance gen-
eration task.

3.3. Cross-modal Transformer

The cross-modal transformer contains an audio encoder,
a text encoder, and a motion decoder. Since we use two
separate datasets for our task, the cross-modal transformer
is divided into two branches, where one for music2dance
and the other for text2motion. It takes the audio feature, the
text feature, and the motion token tm encoded by 3D human
motion VQ-VAE as inputs, and performs the sequence-to-
sequence translation task to generate the future motion to-
kens.
Attention. Attention is introduced in Transformer [52] for
natural language processing, and then applied to many do-
mains [31, 8, 21, 42, 11, 56, 33, 58, 43] A L-layer trans-
former typically consists of L transformer blocks, which

contains a multi-head self-attention (MSA) and a feed for-
ward network (FFN). Given the input x ∈ RN×c, where
N is the sequence length and c is the dimension of the in-
put, the transformer block first maps it to keys K ∈ RN×c,
queries Q ∈ RN×c, values V ∈ RN×c with the linear pro-
jections, and then a self-attention operation is performed by

Attention(Q,K, V ) = Softmax(
QKT

√
c

)V. (4)

The output is followed by a normalization layer and a FFN.
Audio encoder. Given a sequence of music, the audio en-
coder first extracts the raw audio features following Bai-
lando [47], where a public audio processing toolbox, Li-
brosa [23], is employed to obtain the mel frequency cep-
stral coefficients (MFCC), MFCC delta, constant-Q chro-
magram, tempogram and onset strength. After that, an em-
bedded layer followed by several transformer blocks con-
taining self-attention operation e.g., Eq. (4), is used to gen-
erate the processed audio features fa ∈ RT ′×d.
Text encoder. Given a text instruction, we first extract the
text token with a GloVe [36], and then an embedded layer
followed by several transformer blocks is performed to ob-
tain a processed text feature ft ∈ Rn×d, where n is the
length of the text feature.
Motion decoder. Motion decoder takes the motion tokens
encoded by the 3D human motion VQ-VAE as inputs and
outputs the future motion tokens, which has the same spirit
as the sequence-to-sequence translation task. Since the in-
formation after time t is unknown at moment t, a masked
MSA is first employed to interact with motions at differ-
ent times. The mask has the shape of a simple upper tri-
angular matrix and is performed in Eq. (4). For the mo-
ment t, only the motions before moment t are able to per-
form self-attention operations. Motion decoder also maps
the extracted audio feature fa and text feature ft via audio
encoder and text encoder to K and Q, to perform cross-
modal attention with motion tokens. To enable the music-
text conditional dance generation, (i.e., feature fusion, we
apply shared parameters), we use the motion decoder with
shared parameters for model efficiency, as shown in Figure
2.

3.4. Details of Music-text Fusion

The detailed architecture is listed in Figure 3. Given
the audio feature and text feature, the motion decoder first
processes the past motion tokens with a self-attention layer
followed by addition, normalization, a cross-attention with
audio and text features separately, addition, normalization,
and a feed-forward layer are performed. Such a procedure
is repeated L (L = 6) times to build a typical L-layer trans-
former. Then we adopt a late fusion strategy to perform a
weighted sum of features of audio and text at a specific time
(i.e., effect range). The weight curve is shown in Figure 3,
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Figure 3: Details of music-text feature fusion: Given the
audio and text features from the encoder, the decoder pro-
cesses them separately in the early layers. Then the audio-
text fusion layer is applied by the weighted sum at the effect
range with weight cure. Finally, a linear projection layer
and a softmax operation are applied to predict the music-
text conditioned motion tokens.

where we slightly increase the weight of the text feature by
a half cosine curve until a peak value of 0.8 at the beginning
(20% time of effect range), and decrease it by a half cosine
curve at the end (20% time of effect range). The weight
of audio feature Waudio is 1 - Wtext to ensure the feature
keeps the same scale. With the fused feature, a linear pro-
jection layer and a softmax operation are applied to predict
the music-text conditioned motion tokens, which are then
decoded by the decoder of human motion VQ-VAE to ob-
tain the music-text conditioned 3D dance sequences.

3.5. Training and Inference

Training. To train the 3D human motion VQ-VAE, we crop
64 frames with a sliding window from the original motion
sequences as inputs, i.e., T = 64, for both music2dance and
text2motion datasets. We use a three-layer encoder and de-
coder so that the time interval of downsampling t is 8. We
randomly sample motions from both datasets and employ
the Adam optimizer with a batch size of 128 and a learning
rate of 1e−4 to optimizer our 3D human motion VQ-VAE.

To train the cross-modal transformer, we split two
branches into two streams to train the music2dance and
text2motion tasks on both datasets. For the music2dance
task, we use the same frequency as the motion token to sam-
ple the music vector so that the music feature has the same
time length as the motion token. We perform the sequence
to sequence translation with the motion decoder to obtain
the prediction of motion tokens conditioned by the music
input. As for the text2motion task, since the text and motion
token have different lengths, we use a maximum text length

of 84 for text2motion translation with a padding strategy.
We employ 6 self-attention layers for the audio encoder, text
encoder, and motion decoder with the hidden dimension of
512 and 8 heads. The cross entropy loss is adopted for both
music2dance and text2motion tasks

Lcls = − 1

m

m−1∑
i=0

C−1∑
j=0

yij log ŷij , (5)

where ŷ is the prediction of motion token and y is the
ground-truth. m is the length of motion tokens and C is
the number of classes of motion tokens, i.e., the length of
codebook of 3D human motion VQ-VAE. Both tasks are si-
multaneously optimized with a batch size of 64 and a learn-
ing rate of 1e−4.
Inference. Our aim is to generate 3D dance with music-text
integration. Therefore, at the inference stage, we first fuse
the music feature and text feature extracted by the audio en-
coder and text encoder with a weighted sum. Specifically,
given an audio feature with a time length of T ′ and a text
feature with the length of n, we first feed them into the mo-
tion decoder for future motion token prediction. Then we
adopt the late fusion strategy to have a weighted sum of the
generated motion tokens from both audio and text features
at the duration of the integrated text, followed by a linear
projection layer and a softmax operation, to obtain the com-
bined motion tokens. Finally, the combined motion tokens
are decoded into a 3D dance sequence after going through
the decoder of our 3D human motion VQ-VAE model.

4. Experiments
4.1. Experimental Settings

Datasets. Since there are no paired 3D dance motions con-
ditioned on both music and text for our task, we combine the
existing music2dance and text2motion datasets. For the mu-
sic2dance dataset, we employ the AIST++ dataset [30]. For
the text2motion dataset, we employ the HumanML3D [17]
dataset. Additionally, we also collect a new in-the-wild
music dataset to evaluate the generalization ability of our
method, which contains 82 wild music clips from Youtube.
The total of 53 minutes duration (8x larger size than the
AIST++ test set) and various styles and content of music,
which faithfully lies out of the distribution of AIST++ (ex-
plained in supplementary material). The evaluation on our
dataset better reflects the generalization ability of the mod-
els in real-world scenarios.
Baselines. Since we are the first to propose this bimodal-
ity driven 3D dance generation task, there are no existing
methods for comparisons. We implement a traditional mo-
tion editing algorithm, slerp [46], which aligns the last gen-
erated frame of the dance with the first frame of the mo-
tion by text with a transition window of 10 frames, and
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applies spherical interpolation of quaternion to fill in the
transition in between. To validate the effectiveness of our
method on music2dance task, we compare our method to
the previous music2dance works [29, 60, 22, 30, 47]. To
validate the effectiveness of our method on text2motion
task, we compare our method to the previous text2motion
works [32, 4, 7, 13, 50, 26, 18].
Evaluation metrics. We adopt the same evaluation settings
as suggested by FACT [30] and Bailando [47] to evaluate
the dance generation quality, including Fréchet Inception
Distances (FID) [20], Diversity, and Beat Align Score. For
the text2motion quality, we adopt the same evaluation set-
tings as suggested by TM2T [18], including R-precision,
Multimodal-Dist, FID, Diversity, and MultiModality.

In addition, we also propose two new evaluation metrics,
Motion Prediction Distance (MPD) and Freezing Score.
The former reflects the coherence of frames at the time of
integrating text, and the latter reacts to the percentage of
temporal freezing frames in the generated dance. For the
Freezing Score, we introduce the Percentage of Freezing
Frame (PFF) and AUCf , where the PFF is defined by mea-
suring the percentage of frozen frames with two criteria: 1)
the maximum joint velocity blew a threshold (0.015m/s).
2) its duration exceeds a certain period (3s). The AUCf is
defined by area under curve of PFF in the threshold range
from 0 to 0.03. As for MPD, it is defined as

MPD = min
i

∥fi(Mt0→t1)−Mt1→t2∥2, (6)

where M is the dance motions, f is a motion prediction
model, fi(Mt0→t1) is the i-th predicted possible future mo-
tion, and t0, t1, and t2 are the timestamps. It means that
the model predicts various potential possible motion from
t1 to t2 with the motion from t0 to t1. If this distance is
small (i.e., the generated dance Mt1→t2 lays in the possible
future), then the generated dance motion Mt1→t2 is more
coherent at the time of integrating text. We adopt the mo-
tion prediction model DLow [59] in this evaluation metric
as it is designed for diverse potential furture motion predic-
tion.
Perceptual Evaluation. Besides the above metric measur-
ing, we also conduct extensive user studies on Amazon Me-
chanical Turk (AMT) to perceptually evaluate the visual ef-
fects of our generated 3D dance results. Particularly, given
each pair of dance movements sampled from our method
and others with the same music clip, we request 3 dis-
tinct users on AMT to present their preference regarding the
music-dance alignment, motion realism, and mobility. We
further set the bar of involved users that only the ones with
Master recognition who also have finished more than 1,000
tasks with over 98% approve rate are considered. Overall,
there are 55 users employed in our user studies that come
from various regions, ages, races and gender. The results of
the user study are more representative to show the effect of

the generated dance in practice.

4.2. Evaluation on Music-text Conditioned Dance
Generation

We validate the results of music-text conditioned dance
generation on the test set of AIST++ and our dataset, as il-
lustrated in Table 2. Here we mainly evaluate the coherence
of generated dance with MPD metric at the time where mu-
sic meets text, i.e., the time point where text starts to take
effect. We measure the coherence of pure music2dance gen-
eration as a baseline named a2d to reflect the influence of
with/without text instruction. We use the past 25 motion
frames to predict the future 30 frames, and calculate the
MPD from future frame (ft) = 10 to ft = 30, respectively.
Our method consistently outperforms slerp [46] and a2d
baseline in both datsets, and gains a similar result compared
to the ground-truth shown in Table 2, which verifies the nat-
uralness of our generated motion. More importantly, user
study experiments show that our method generates more re-
alistic 3D dance compared to dance generation only con-
ditioned music, and 70.0% Win rate even compared to the
ground-truth shown in Table 2. The results of our user study
indicate that the music-text conditioned dance generation
received high ratings from participants, highlighting the im-
portance of considering audience preferences in evaluating
dance quality.

4.3. Evaluation on Music Conditioned Dance Gen-
eration

To validate the effectiveness of our architecture, we
quantitatively compare our method with state-of-the-art
those for music conditioned 3D dance generation. The re-
sults on the test set of AIST++ are shown in Table 1. We can
find that our method outperforms the previous ones in terms
of motion diversity (Divk and Divg), while the performance
of the motion quality (FIDg) and beat align score is inferior
under the condition that we do not use seed motion from
ground-truth compared with FACT [30] and Bailando [47].

The existing evaluation metrics are not sufficient to re-
flect the quality of generated dance in practice, which mo-
tivates us to propose a PFF and AUCf to evaluate the per-
centage of freezing frames. It is worth noting that our archi-
tecture outperforms FACT [30] and Bailando [47] in terms
of PFF and AUCf , which shows that our method rarely
generates frozen frames. Meanwhile, Li et al. [29] and
DanceNet [60] also gain nearly zero freezing in PFF and
AUCf . The reason is that the generated dances of Li et
al. [29] are highly jittery making its velocity variation ex-
tremely high, which is also reported in [30, 47], and leads
to the non-freezing issue. And for DanceNet [60], it gen-
erates dance in a repeat motion pattern, nearly zero freez-
ing but with low diversity. Furthermore, the results of user
study show that the generated 3D dance is more visually re-
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Data Method
Motion Quality Motion Diversity Freezing

Beat Align Score ↑ User Study

FIDk ↓ FID†
g ↓ Divk ↑ Div†

g ↑ PFF↓ AUCf ↓ Our Method Wins

AIST
++

Ground-truth 17.10 10.60 8.19 7.45 0.00 0.00 0.2374 41.9%

Li et al. [29] 86.43 43.46 6.85∗ 3.32 0.00 0.00 0.1607 98.3%
DanceNet [60] 69.18 25.49 2.86 2.85 0.00 0.98 0.1430 87.2%
DanceRevolution [22] 73.42 25.92 3.52 4.87 11.01 12.22 0.1950 70.5%
FACT [30] 35.35 22.11 5.94 6.18 25.29 21.59 0.2209 83.3%
Bailando [47] 28.16 9.62 7.83 6.34 14.91 13.25 0.2332 65.0%

ours (only dance data) 23.94 9.53 7.69 4.53 0.00 0.00 0.2127 -
ours 19.01 20.09 9.45 6.36 0.00 0.00 0.2049 –

Wild
Audio

FACT [30] 70.36 20.23 7.33 6.34 32.64 27.21 0.2211 89.6%
Bailando [47] 50.56 22.55 3.80 6.04 17.55 14.14 0.2166 70.8%

ours (only dance data) 43.85 13.08 8.52 4.76 0.78 0.76 0.1998 –
ours 27.65 20.34 7.88 5.27 0.12 0.11 0.2290 –

Table 1: Music Conditioned Dance Generation: quantitative results on AIST++ and Wild Audio test set. The best and runner-
up values are bold and underlined, respectively. Among compared methods, “Li et al.”, DanceNet and FACT are multiplexing
the same results of AIST++ benchmark [29], while DanceRevolution [22] is followed from Bailando [47]. † FIDk and DIVk

are fetched from [30] while FIDg and DIVg are fetched from [47].

Data Method
Motion Prediction Distance User Study

ft=10 ft=20 ft=30 Our Method Wins

AIST
++

GT 0.048 0.072 0.088 70.0%

a2d 0.052 0.084 0.108 66.6%
slerp [46] 0.088 0.122 0.135 73.3%

ours 0.049 0.080 0.102 -

Wild
Audio

a2d 0.052 0.088 0.113 60.0%
slerp [46] 0.104 0.148 0.171 70.0%

ours 0.048 0.079 0.107 -

Table 2: Music-text conditioned Dance Generation: quanti-
tative results on AIST++ and wild audio test set. The best
and runner-up values are bold and underlined, respectively.

alistic compared to other methods. Even in comparison to
the ground truth, 41.9% of our generated dance is voted as
the better in average. We also report the result trained with
dance-only data, which shows comparable performance.

In addition to the evaluation on the test set of AIST++,
we also show the experimental results on our in-the-wild
dataset in Table 1. Our method outperforms FACT [30] and
Bailando [47] in almost all metrics except for FIDg Divg .
We can observe that both FACT [30] and Bailando [47]
shows a large performance drop in terms of FIDk, while
ours maintain a small change. This is because FACT [30]
and Bailando [47] requires seed motion, however, there is
no ground-truth for in-the-wild scenario. With random sam-
pled seed motion or token, their methods are not adapted

well for the in-the-wild scenarios. One can also notice
that there exists freezing in our method on the in-the-wild
dataset but the percentage of frozen frames is zero on the
test set of AIST++, which results from the different dis-
tributions of AIST++ and our dataset. It also shows that
our dataset is more challenging. We also report the result
trained with dance-only data, which shows the advantage of
our mix-training strategy in the wild scenario.

4.4. Evaluation on Text Conditioned Motion Gen-
eration.

We evaluate our text2motion approach in two different
scenarios: inference with text only (t2m), and inference
with text and music feature fusion. Table 3 shows the re-
sults. In the text-only setting, our approach achieves com-
parable performance with TM2T baseline(T) [18], which
demonstrates that the mixed data/tasks training does not af-
fect the quality of text2motion generation. We then apply
our late fusion method by randomly sampling a music clip
(from the whole AIST++ test set) and a text (from the whole
t2m test set), and evaluate the generated dance clips follow-
ing the same protocol as TM2T [18]. As Table 3 indicates,
the text-dance consistency remains acceptable with a late
fusion ratio of 0.8. For more details on the relation between
the late fusion rate and text2motion result, please refer to
the supplementary material.

4.5. Qualitative Results

We also show the qualitative results of our method for
music-text conditioned 3D dance generation in Figure 4,
Figure 5 and Figure 6. Specifically, Figure 4 shows the gen-
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Methods R Precision↑ FID↓MM Dist↓Diversity→MModality↑

Real motions 0.511 0.002 2.974 9.503 -

Seq2Seq [32] 0.180 11.75 5.529 6.223 -
Language2Pose [4] 0.246 11.02 5.296 7.676 -
Text2Gesture [7] 0.165 5.012 6.030 6.409 -
Hier [13] 0.301 6.532 5.012 8.332 -
MoCoGAN [50] 0.037 94.41 9.643 0.462 0.019
Dance2Music [26] 0.033 66.98 8.116 0.725 0.043
TM2T baseline(T) [18] 0.351 1.669 4.046 9.632 4.352
TM2T [18] 0.424 1.501 3.467 8.589 2.424

TM2D (t2m) 0.319 1.021 4.098 9.513 4.139
TM2D (LFR 0.8) 0.300 1.105 4.307 8.887 4.443

Table 3: The evaluation of text2motion on the Hu-
manML3D dataset, where the results are averaged from 20
runs.

erated 3D dance with the same music sequence but with
different text instructions. Figure 5 shows the generated 3D
dance with the same text instruction but with a different start
time. Figure 6 shows the generated 3D dance with the same
text instruction but with different durations. As one can see,
our approach maintains plausible visual results according to
the text instructions for all three cases, which confirms that
our approach is more flexible.

4.6. The Impact of Mixed Data

We employ two datasets (AIST++ and HumanML3D)
to train our 3D human motion VQ-VAE so that the mo-
tion tokens drop in the same latent space. To empirically
show this point, we conduct experiments to count the num-
ber of shared motion tokens. For a trained 3D human
motion VQ-VAE with AIST++ and HumanML3D, there
are 855 vectors and 912 vectors from codebook used to
construct the motion token in AIST++ and HumanML3D.
The total number of vectors contained in the codebook is
1024. among them, 846 vectors (98.9% in AIST++ and
92.8% in HumanML3D) are shared to generate the motion
tokens, which shows the feasibility of using the separate
music-conditioned and text-conditioned motion datasets for
music-text conditioned 3D dance generation task. We fur-
ther verify the latent space of the motions by VQ-VAE,
and we perform t-SNE visualizations of the raw motion
distribution (before VQ-VAE) and feature distribution en-
coded by VQ-VAE (after VQ-VAE) from a2d motion and
t2m motion in Figure 7. Two motion datasets are mixed
successfully, which provides the potential integration of bi-
modality dance generation. Refer to the supplementary ma-
terials for more details.

4.7. Model Efficiency

We also show the efficiency of our architecture in Table
4. In the inference stage, the complete model parameters
and the inference time for 1s music are compared. Our ar-
chitecture requires only about half model parameters and

Fig-3: Same music, diff act

Figure 4: Same music, different actions. These two gen-
erated dance share the same music and effect range (from
6s to 8s), with different text instructions: “A person does
a cartwheel” (top), “A person is spinning with arms spread
out” (bottom).

Fig-4: Same act, different start time

Figure 5: Same action, different start time points. These
two generated dance share the same music and text instruc-
tion (“A person jumps up and down”) but different effect
ranges: from 6 to 8s (top), from 7 to 9s (bottom).

Fig-5: Same act, different duration

Figure 6: Same action, different durations. These two
generated dance share the same music and text instruction
(“A person is keeping jumping”) and action start time point
(i.e., 6s) but different effect duration: 2s (top), 3s (bottom,
i.e., jumped twice).

inference time compared to Bailando [47], which attributes
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(a) Before VQ-VAE (b) After VQ-VAE

Figure 7: The t-SNE visualizations of motions before and
after VQ-VAE (orange: motions in AIST++, blue: motions
in HumanML3D).

Method Parameters Inference time

FACT [30] 120M 8.300s/(1s music)
Bailando [47] 152M 0.236s/(1s music)

ours 72M 0.143s/(1s music)

Table 4: Comparisons of parameters and inference time.

that we do not need to encode separate features for the upper
and lower half body. Compared to FACT [30], our archi-
tectures significantly reduce the inference time. The main
reason is that FACT employs two transformers for the mu-
sic, dance motion, and a cross-modal transformer, but we
formulate it as the standard sequence-to-sequence transla-
tion task with one transformer only, which establishes the
advantage of our architecture.

5. Conclusion
In this paper, a novel task that simultaneously integrates

both music and text instruction for 3D dance generation is
proposed. Due to the lack of the paired 3D dance motions
conditioned on both music and text, we resort to two ex-
isting datasets, i.e., music2dance and text2motion, to per-
form this task and employ a 3D human motion VQ-VAE to
project the motions of the two datasets into a shared latent
space so that the two datasets with different distributions
can be effectively mixed for training. Moreover, we also
propose a cross-modal transformer architecture to gener-
ate 3D dance without degrading the performance of music-
conditioned dance generation. Two new evaluation metrics,
MPD and FS, are proposed to reflect the quality of gener-
ated motion. Extensive experiments show that our method
can generate dance motion that matches both music and text
in a realistic and coherent way while maintaining compara-
ble performance on two single modalities.
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APPENDIX:
Abstract

This supplementary material provides more details on the
following aspects of our study: i) The dataset we used;
ii) The evaluation metrics we employed; iii) The impact
of mixed data for shared motion token space; iv) The col-
lected data distribution; v) The effect of music-text fusion
weight; vi) The reason why our dance has less freeze issue;
vii) More visualizations of our results.

A. Detail of Dataset

For the music2dance dataset, we employ the AIST++
dataset [30], which contains 30 subjects and 10 dance gen-
res. There are 992 pieces of 3D human pose sequence, of
which 952 are used for training and the rest are used for
evaluation.

For the text2motion dataset, we employ the Hu-
manML3D [17] dataset, which is a large-scale 3D human
motion dataset that covers a broad range of human actions
such as locomotion, sports, and dancing. It consists of
14,616 motions and 44,970 text descriptions. Each motion
clip comes with at least 3 descriptions. For the joint training
of both datasets, we sample the motions with 60 frames per
second (FPS) to keep the time consistency with the AIST++
dataset, resulting in duration ranges from 2 to 10 seconds.

To evaluate the generalization ability of our method, we
also collected a new dataset of music clips from YouTube
that are not included in AIST++. This dataset consists of
82 clips with a total duration of 53 minutes, which is eight
times larger than the AIST++ test set. The clips cover var-
ious styles and content of music, which are out of the dis-
tribution of AIST++. In detail, our data are popular music
collected from YouTube, which covers a variety of styles
such as Glitch hop, Electro house, rock, future bass, indie
pop, and R&B. By contrast, AIST++ uses pure dance mu-
sic from Old School (Break, Pop, Lock, and Waack) and
New School (Middle Hip-hop, LA-style Hip-hop, House,
Krump, Street Jazz, and Ballet Jazz) genres. Additionally,
we selected in-the-wild music based on popularity, such as
”Faded,” ”Beat It,” ”Coincidence,” ”Baby,” ”Poker Face,”
”Despacito,” ”Panama,” ”Love Story,” and others, with mil-
lions of plays. Furthermore, we provide a t-SNE feature
distribution diagram (Figure 11) to demonstrate the diver-
sity and distinctiveness of our dataset compared to AIST++.

B. Evaluation Metrics

We follow FACT [30] and Bailando [47] to quantitatively
measure the quality of generated dances, the diversity of
motions and the beat alignment of the music and the gener-
ated motions. In concrete, for the dance quality, we calcu-
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Figure 8: FIDk and FIDg with difference batches in Exper-
iment A.

late the Fréchet Inception Distances (FID) [20] between the
generated 3D dance and all motions of the AIST++ dataset
on kinetic features [35] (denoted as ‘k’) and geometric fea-
tures [34] (denoted as ‘g’) extracted by [15] to measure the
quality of generated dances. We also follow [30] to cal-
culate the average feature distance of generated motion to
measure the diversity of motions. The average distance be-
tween the music beat and its closest dance beat is defined as
the Beat Align Score as follows

1

|Bm|
∑

bm∈Bm

exp

{
−minbd∈Bd ∥bd − bm∥2

2σ2

}
, (7)

where Bd and Bm are the dance beats and music beats, re-
spectively. σ is a normalized parameter that we set to be
σ = 3 in our experiments.

For the text2motion quality, we follow the same set-
ting suggested by TM2T [18]: R-precision and Multimodal-
Dist quantify the relevancy between the generated motions
and the input prompts; FID computes the distance be-
tween the generated and ground truth distributions (in la-
tent space); Diversity evaluates the variation of the gener-
ated motions; and MultiModality estimates the variance for
a single prompt

We also introduce two new evaluation metrics: Percent-
age of Freezing Frame (PFF) and Motion Prediction Dis-
tance (MPD). PFF measures the degree of freezing in the
generated dance, while MPD assesses the coherence of
frames when text is integrated.

C. The Impact of Mixed Data
As mentioned in the main text, a direct combination

of the music2dance (AIST++ [30]) and text2motion (Hu-
manML3D [17]) in the motion space might be sub-optimal
for training because the motions from these two datasets
fall in completely different spaces. In contrast, we project
the motions into a consistent and shared latent space with
a human motion VQ-VAE architecture. To show the effec-
tiveness of the proposed method quantitatively, we design
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Figure 9: Shared tokens (latent space) with a human motion VQ-VAE architecture in Experiment B.
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Figure 10: Token used histogram, histogram are normalized
by the total frame from each dataset.

two experiments as follows.

• Experiment A: we random sample 100 batches of data
(same size as AIST++ test set) from both datasets, and
measure the FID between the random batch and the
whole dance data.

• Experiment B: we sample 30% of the original data
from both datasets and train them with a human mo-
tion VQ-VAE of different downsample rates (4, 8, 16,
32).

In experiment A, Figure 8 shows the distribution of FID
results from both datasets. From Figure 8, we can observe
that there is a distinct difference between the two datasets
on geometric feature, and a small overlap in kinetic feature.

In experiment B, from the Figure 9, we have the follow-
ing three findings: i) Figure 9 (a) and Figure 9 (b) show that
the tokens used of each dataset will be increasing with the
training epoch. ii) In Figure 9 (c), the shared token num-
ber is also increasing together with it from both dataset. iii)
The lower the downsample rate, the higher the used token
number and shared token number, with smaller reconstruc-
tion loss (val loss). Consider that the lower the downsample

AIST++
WILD

Figure 11: audio-t-SNE of datasets (orange: AIST++, blue:
our dataset)).

rate, the longer the tokenized sequence for transformer in
the second step of our pipeline. We choose downsample
rate of 8, (a relatively small val loss, rich shared token num-
ber, and relatively short tokenized sequence length).

From Figure 10, we can see that both datasets almost
share one codebook when motions are encoded with a VQ-
VAE. Specifically, the total number of vectors contained
in the codebook is 1024, 855 vectors and 912 vectors of
which are used to construct the motions in AIST++ and Hu-
manML3D, respectively. 846 vectors (98.9% in AIST++
and 92.8% in HumanML3D) are shared to generate the mo-
tion tokens, which is much better than the feature distance
from Figure 8.

D. The Analysis of the Collected Dataset

To verify the domain gap between source music and wild
music, We sample the music features extracted by the Li-
brosa (used in framework training) and plot a t-SNE in Fig-
ure 11. Two music datasets lay on two different distribu-
tions with a few overlaps, which shows the generalization
ability of our method. The inferior results in Table 1 (main
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text) compared with our mix training show that mix gains
better generalization performance.

E. The Fusion Weight and Text2motion Results
We further explore the effect of late fusion rate (LFR), as

shown in Fig 12, with the increasing of LFR, the MM dis-
tance and Top 1 precision get worse. To balance the feature
content, we choose late fusion rate of 0.8.
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Figure 12: The effect of LFR with t2m resulst.

train AIST++ mix data

test AIST++ wild AIST++ wild

1 4.08 / 4.08 3.76 / 3.40 5.67 / 4.88 1.21 / 0.87
10 1.31 / 1.38 0.61 / 0.63 2.58 / 2.10 0.10 / 0.12
100 0.00 / 0.00 0.78 / 0.75 0.00 / 0.00 0.12 / 0.11

Table 5: PFF/AUCf with topk=1, 10, 100.

F. Analysis of the Freeze Improvement.
Since our method gains better results in freeze issues, we

hypothesize the improvement is brought by both the archi-
tecture design and mixed training method. We report the
PFF in Table 5. In architecture, we sample tokens from the
top-k tokens with the highest probability, instead of choos-
ing the one with maximum probability as Bailando [47],
which reduces the PFF. With extra HumanML3D data, the
share motion decoder learns more motion sequence statics.
Thus the PFF further improved. Thus both architecture and
extra data mix training improve the PFF (AUC same).

G. More Visualizations of Our Results
We also show more visualizations of our results in the at-

tached ‘demo.mp4’ file, which contains the following con-
tents.

• Comparisons with other music2dance methods in
AIST++ test set and our in-the-wild dataset.

• Our results with the same music, different actions /
time / durations.

• Comparisons with Slerp [46] for music-text condi-
tioned dance generation.

From these videos, we can find that our results outper-
form other methods and are more realistic.
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