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Abstract

In 3D human action recognition, limited supervised data
makes it challenging to fully tap into the modeling poten-
tial of powerful networks such as transformers. As a re-
sult, researchers have been actively investigating effective
self-supervised pre-training strategies. In this work, we
show that instead of following the prevalent pretext task
to perform masked self-component reconstruction in hu-
man joints, explicit contextual motion modeling is key to
the success of learning effective feature representation for
3D action recognition. Formally, we propose the Masked
Motion Prediction (MAMP) framework. To be specific,
the proposed MAMP takes as input the masked spatio-
temporal skeleton sequence and predicts the correspond-
ing temporal motion of the masked human joints. Con-
sidering the high temporal redundancy of the skeleton se-
quence, in our MAMP, the motion information also acts
as an empirical semantic richness prior that guide the
masking process, promoting better attention to semanti-
cally rich temporal regions. Extensive experiments on
NTU-60, NTU-120, and PKU-MMD datasets show that the
proposed MAMP pre-training substantially improves the
performance of the adopted vanilla transformer, achiev-
ing state-of-the-art results without bells and whistles. The
source code of our MAMP is available at https://
github.com/maoyunyao/MAMP.

1. Introduction

How to accurately recognize human actions has been a
long-standing challenge in computer vision. Recently, with
the advances in techniques of depth sensing and pose esti-
mation [3, 16, 54], skeleton-based 3D human action recog-
nition has become an emerging problem to the community,
which is of great significance in a series of applications such
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(b) Comparison of linear probing accuracy.

Figure 1. Illustration of (a) pre-training objective comparison be-
tween masked auto encoders (MAE) and our masked motion pre-
dictors (MAMP) and (b) performance comparison between the
typical MAE method, i.e., SkeletonMAE [53], and our MAMP
under the linear evaluation protocol.

as human-computer interaction, video surveillance, virtual
reality, efc. Despite the computation efficiency and back-
ground robustness of skeletons, existing supervised 3D ac-
tion recognition methods [5, 7, 14, 19, 24, 25, 32, 39, 42,
43, 60] heavily rely on well-annotated training sequences,
which are labor-intensive and time-consuming to acquire.
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Furthermore, limited supervision also leads to the overfit-
ting issue in general models, especially for transformers
that are with weak inductive bias and high model capac-
ity. These facts motivate the exploration of self-supervised
3D action representation learning.

In the literature, the prevalent pretext tasks originally de-
veloped for images have been adapted for 3D action repre-
sentation learning, such as colorization [58], reconstruction
[62, 46, 27], contrastive learning [23, 48, 49], etc. Among
them, contrastive learning once dominated 3D action repre-
sentation learning with its concise framework and promis-
ing performance. Nevertheless, as a global representation
learner, it still suffers from certain limitations, such as the
lack of explicit constraints for temporal context modeling
and the over-reliance on heuristic action data augmentations
[31], impeding its further exploration of 3D actions.

Recently, as transformers flourish in computer vision,
masked autoencoder (MAE) [17] has attracted a surge of
research interest for its exceptional performance. Given
that a 3D skeleton serves as an abstract representation of
human behaviors, there has been growing interest in ap-
plying the MAE concept to 3D action representation learn-
ing, to capture the underlying spatio-temporal dynamics of
skeleton sequences. Early attempts generally followed the
practice of images, employing masked self-reconstruction
of human joints as the pre-training pretext. Despite consid-
erable effort, we argue that the network is not effectively
directed to prioritize contextual motion modeling in such a
self-reconstruction objective, which is, however, crucial for
comprehending 3D actions as the appearance information
is greatly erased in human skeletons. How to better explore
the contextual motion clue in self-supervised 3D action rep-
resentation learning is a valid problem.

By consolidating this idea, we introduce Masked Motion
Prediction (MAMP), a simple yet effective framework to
address the problem of self-supervised 3D action represen-
tation learning. Specifically, the proposed MAMP takes
as input the masked spatio-temporal skeleton sequence and
turns to predict the corresponding temporal motion of the
masked human joints. In this way, the network is directly
encouraged for contextual motion modeling. Moreover,
given the observation that moments with significant motion
are often critical for human action understanding, in our
MAMP, the temporal motion is used not only as the pre-
training objective but also as an empirical semantic rich-
ness prior that effectively guiding the skeleton masking
process. Compared to the random version, the proposed
motion-aware masking strategy takes additional temporal
motion intensity as input. It first converts the input inten-
sity into a probability distribution and then utilizes the re-
parameterization technique for efficient probability-guided
masked token sampling. As a result, joints with significant
motion are masked with a higher probability, facilitating

better attention to semantically rich temporal regions.

As illustrated in Figure 1, compared to masked self-
reconstruction of human joints, masked motion prediction
acts as a more effective pretext task for 3D action repre-
sentation learning. It substantially alleviates the problem
that the transformers cannot fully unleash their modeling
potential for human actions due to the scarcity of annotated
3D skeletons. The adopted vanilla transformer sets a se-
ries of state-of-the-art records in 3D action recognition after
MAMP pre-training, without the need for bells and whistles
such as multi-stream ensembling. Specifically, compared to
training from scratch, our MAMP demonstrates significant
absolute performance improvements of 10.0% and 13.2%
on the challenging cross-subject protocol of NTU RGB+D
60 [38] and NTU RGB+D 120 [28] datasets, resulting in
top-1 accuracy of 93.1% and 90.0%, respectively. We hope
this simple yet effective framework will serve as a strong
baseline that facilitates future research on 3D action pre-
training and beyond.

Overall, we make the following three-fold contributions:

* We present masked motion prediction to learn 3D ac-
tion representation, which substantially alleviates the
insufficient contextual motion modeling issue in the
conventional masked self-reconstruction paradigm.

* We devise the motion-aware masking strategy, which
incorporates motion intensity as an empirical semantic
richness prior for adaptive joint masking.

* We conduct extensive experiments on three preva-
lent benchmarks to verify the effectiveness of our
method. Remarkably, with our proposed MAMP, the
vanilla transformer, for the first time, achieves the top-
performing record for 3D action recognition.

2. Related Work
2.1. Supervised 3D Action Recognition

How to better model the dynamic skeletons for super-
vised action recognition is an extensively studied problem.
In many early works, RNNs are favored for their excel-
lent sequential modeling capability, such as the hierarchical
RNN model proposed in [14] and the 2D Spatio-Temporal
LSTM in [30, 29]. In view of the great success of CNNs
[21, 18] in image understanding, some methods also try
to apply it to 3D action recognition. To cater for the in-
put format, [13] and [22] treat the skeleton sequence as a
three-channel (X, y, and z coordinates) pseudo-image, with
the number of frames and joints as height and width, re-
spectively. Considering the natural connections between
joints, ST-GCN [55] introduces the Graph Neural Networks
(GCNs) for skeleton modeling, where the convolution ker-
nels are elaborately designed according to the skeleton
topology. The astonishing performance of ST-GCN has led
the trend of GCN-based 3D action recognition, with numer-



ous subsequent improvements emerging in input streams
[51, 26, 40], kernel design [5, 61, 39, 32], etc.

Recent approaches [36, 35, 41] try to introduce the popu-
lar vision transformer into 3D action recognition. However,
under limited training data, vanilla transformers with weak
inductive bias cannot be fully trained. Therefore, many
customized designs are required in existing supervised at-
tempts, such as temporal convolution [36], graph convolu-
tion [35, 36], space-time separation [41], efc. In our ap-
proach, we demonstrate that pre-training with masked mo-
tion prediction is key to the success of transformers in 3D
action recognition. The proposed MAMP framework en-
dows the vanilla transformer with unrivaled performance.

2.2. Self-supervised 3D Action Recognition

Self-supervised representation learning aims to capture
the domain priors from unlabeled data so as to facilitate the
application of the model in downstream tasks. In 3D human
action recognition, many pretext tasks have been utilized to
explore the action context that resides in the skeleton se-
quence. Among them, LongT GAN [62] and P&C [46] try
to learn 3D action representation by autoencoder-based se-
quence reconstruction, where the decoder in P&C is further
weakened to promote the learning of the feature encoder.
In Colorization [58], the skeleton sequences are treated as
point clouds and action representation is learned by coloriz-
ing each joint based on its spatial and temporal orders.

Recently, many contrastive learning-based approaches
[27,48,23,49, 59, 34] have emerged, showing superior per-
formance compared to earlier works. To learn better 3D ac-
tion representation, they either try to dig helpful supervision
across different skeleton modalities [23, 34], or explore bet-
ter action data augmentation [49] and positive sample min-
ing strategies [59]. Nevertheless, as a global feature learner
originally designed for images, contrastive learning lacks
explicit constraints on the exploration of temporal motion
context, limiting its further development for 3D actions.

SkeletonMAE [53] first introduces the idea of MAE[17]
into transformer-based 3D action representation learning,
where the original joint coordinates of masked regions are
predicted. In our approach, we demonstrate that such a self-
reconstruction objective is sub-optimal for learning 3D ac-
tion representation. Therefore, we introduce the Masked
Motion Prediction (MAMP) framework for explicit contex-
tual motion modeling, resulting in significantly better per-
formance compared to raw skeleton reconstruction.

2.3. Masked Visual Prediction

With the development of vision transformers [4, 12, 50],
the masked prediction derived from the autoencoder [1]
has revived again. Similar to the BERT [11] pre-training
in NLP, the input tokens are randomly masked and corre-
sponding objectives are predicted, which can be the raw

pixels [17], HOG features [52], or token ids from offline
learned dVAEs [2]. Recently, there have also been attempts
[45, 57] to use optical flow or temporal difference of im-
ages as the auxiliary reconstruction objectives, but inferior
performance is observed when they are applied alone. This
is largely attributed to the high redundancy of the raw im-
ages, where the key foreground motion is difficult to be
pre-extracted accurately. In our approach, we employ the
idea of masked visual prediction for 3D action representa-
tion learning, with the temporal skeleton motion adopted
as the only reconstruction target. Different from images,
the explicit temporal correspondence of joints in the human
skeleton sequence enables the ready extraction of their ac-
curate motion context. Furthermore, we also incorporate
motion intensity as the semantic richness prior to guide the
masking process.

3. Our Method
3.1. Overview

Figure 2 illustrates the overall pipeline of our proposed
Masked Motion Prediction (MAMP) framework. It takes a
skeleton sequence S € RTs*V*Cs ag input, which is ran-
domly cropped from the original data and is resized to a
fixed temporal length Ts. V and Cj are the number of joints
and coordinate channels, respectively. The motion sequence
M € RT=*VXCs of the input is also extracted, which is de-
fined as the differential on temporal dimension (manually
padded for the first frame).

As in most vision transformers, the input joints are lin-
early mapped into joint embedding E € RTexV*Ce =~ Af.
ter that, the motion-aware masking strategy is applied to
mask most of the embedding features under the guidance
of temporal motion intensity. The remaining features are
processed by the encoder-decoder architecture, where the
transformer encoder learns representation from unmasked
joint embedding and the transformer decoder performs con-
textual modeling based on the learnable mask tokens and la-
tent representation from the transformer encoder. Different
from MAE [17] that reconstructs the original signal for rep-
resentation learning, in MAMP, a motion prediction head is
adopted, which takes decoded features as input and predicts
the temporal motion of the input skeleton sequence.

After the aforementioned pre-training, only the joint em-
bedding layer and the transformer encoder are reserved for
downstream applications.

3.2. Joint Embedding

In most transformer-based attempts [35, 41, 36], each
spatio-temporal skeleton joint is embedded separately, re-
sulting in a large number of input tokens. Considering the
temporal redundancy, in our approach, the input skeleton
sequence S € RT-*V*Cs i divided into temporally non-
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Figure 2. The overall pipeline of the proposed MAMP framework. Different from the self-reconstruction scheme adopted in previous works
[62, 53], our MAMP learns 3D action representation by predicting the corresponding motion sequence for masked joint input. Moreover,
motion information also acts as an empirical semantic richness prior that effectively guides the masking process, enabling more attention

to be applied to regions with significant temporal motion intensity.

overlapping segments S’ € R7Te*V*IxCs where [ is the
length of each segment and 7, = T5/l. In each segment,
joints with the same spatial position are embedded together:

FE = JointEmbed(S’) € RTexV*Ce (1)

where C. is the dimension of the embedding features. Com-
pared to the original skeleton sequence, the temporal resolu-
tion of the embedding F is reduced by a factor of [, resulting
in higher computational efficiency.

3.3. Motion Extraction

Different from RGB frames with heavy spatial redun-
dancy, the human skeleton sequence is highly semantic,
with explicit correspondence between neighboring frames.
Therefore, we can easily obtain its motion M € RT=xVxCs
by applying temporal difference on joint coordinates:

Mi,:_; = Si,:,: — Sifm,;,;, teEmm—+1,... Ty — 1, 2)
where stride m controls the step size of the motion. For
convenience, the motion sequence is padded to be consis-
tent with the length of the original input:

0, constant
Mm:mel,z,n Teplicate

MO:'m—l,:,: = { 3 (3)
where constant and replicate denote constant padding
(with zeros) and replicate padding for the first m frames
of the motion sequence, respectively.

3.4. Motion-Aware Masking

In the proposed approach, the motion information is used
not only as the reconstruction target during pre-training but
also as the empirical semantic richness prior that guiding
the masking of embedding features. Considering that the
skeleton sequence is segment-wise embedded with length [,

we extract the motion sequence M™% ¢ RTixV*Ci with
stride m = [ and replicate padding according to Eq. (2) and
Eq. (3), which is further reshaped into M’ € RTexVxIxCs
as is done for S’. Then, the motion intensity I, which indi-
cates the motion significance of each spatio-temporal seg-
ment, is computed as follows:

l
-y
i=0

Since human actions are composed of a series of tempo-
ral movements, we argue that the intensity of motion largely
reflects the semantic richness. Therefore in MAMP, the mo-
tion intensity is further converted into probability distribu-
tion with a temperature hyper-parameter 7:

C;
Z |M:,,:,'L',j| € RT&XV' (4)

Jj=0

m = Softmax(I/7), ®)

which indicates the probability that each embedding feature
is masked. In MAMP, the idea of gumble max is adapted
for efficient probability-guided mask index sampling:

g= 710g(7 IOgE), €e U[Oa I]TEXV7

mask

(6)
= Index-of-Top-K(logm + g),

idx
where U[0, 1] denotes uniform distribution between 0 and
1. The obtained idz™** indicates which joints are masked
and is used for unmasked token selection in Section 3.5.
Based on the above operations, the network is encouraged
to focus more on semantically rich regions, so as to learn
more discriminative 3D action representation.

3.5. Masked Motion Prediction

We follow the encoder-decoder design in MAE [17],
where the transformer encoder focuses on representation
learning, while the decoder is responsible for the implemen-
tation of the pre-training pretext.



Encoder: In the encoder, separate spatio-temporal posi-
tional embedding P? € R'*V*Ce and P! ¢ RTex1xCe
are first element-wise added (with broadcasting) to the in-
put joint embedding E:

E,=FE+ P’ + Pl (7

Then, the unmasked tokens in F, are selected according
to the idz™** extracted in Eq. (6) and are flattened to
Ej € RNwxCe where N, = T, x V x (1 — mask ratio) is
the number of unmasked tokens. After that, the latent rep-
resentation is extracted by L. vanilla transformer blocks:

Hy = E;j,
H| =MSA(LN(H;_1))+ H;_1, l€1,--- L,
H, = MLP(LN(H))) + H], lel,---, L.
H! =1N(Hp,),
where MSA, MLP, and LN denote multi-head self-attention,
multilayer perceptron, and layer norm, respectively.
Decoder: In the decoder, the learnable mask tokens are in-
serted into H}* according to the mask indices idx™k The
result is reshaped back to H, € RT<*V*C which is pro-
cessed by L, decoder layers for masked modeling:
Zy=H. + P; + P,
Z] =MSA(LN(Z;_1)) + Z1—1, l€1,-- Ly
Z; =MLP(LN(Z))) + Z], lel,-- Lg
Jg = LN(ZLd)7

®)

9

where P and P! are the spatial and temporal positional
embedding of the transformer decoder, respectively.
Motion Prediction: In our method, the reconstruction tar-
get is not the original skeletons, but the motion sequence
M'*eet pre-extracted according to Eq. (2) and Eq. (3),
which is normalized by its segment-wise mean and standard
deviation as in [17]. Therefore, given the decoded feature
Zy € RTexVxCa we additionally adopt a prediction head
to predict the temporal motion of masked human joints:

MP™ = Mot ionPredHead(Zy), (10)

where we empirically find that a simple fully connected
layer just works well. For masked human joints, we com-
pute the mean squared error (MSE) between the predicted
result MP™¢ and the reconstruction target )/t

1
L= g >

(4,5) €idamak
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4. Experiments

4.1. Datasets and Evaluation Protocols

NTU-RGB+D 60 [38]: NTU-RGB+D 60 (NTU-60) is a
large-scale dataset for human action recognition. It con-
tains 60 action categories performed by 40 different sub-
jects, with a total of 56,880 3D skeleton sequences. In this

paper, we adopt the evaluation protocols recommended by
the authors, namely cross-subject (X-sub) and cross-view
(X-view). The former, X-sub uses the action sequences per-
formed by half of the 40 subjects as training samples and
the rest as test samples. For X-view, the training samples
are action sequences captured by cameras 2 and 3, and the
test samples are those captured by camera 1.
NTU-RGB+D 120 [28]: NTU-RGB+D 120 (NTU120) is
an extended version of NTU-60, in which the number of
action categories is increased from 60 to 120, the number
of total skeleton sequences and subjects are also increased
to 114,480 and 106, respectively. Furthermore, the au-
thors also introduce a more challenging evaluation protocol
named cross-setup (X-set) to substitute for the original X-
view in NTU-60. Specifically, X-set divides sequences into
32 different setups based on the camera distance and back-
ground. Samples from half of these setups are used as the
training set and the remainder constitute the test set.
PKU-MMD [9]: Following [48], to perform 3D action
classification on PKU-MMD, we crop out action instances
based on temporal annotations and divide them into train-
ing and test sets according to the cross-subject protocol.
PKU-MMD contains two phases: PKU-MMD I (PKU-I)
and PKU-MMD II (PKU-II). In PKU-I, the number of sam-
ples in training and test sets are 18,841 and 2,704, respec-
tively. Due to the more noise introduced by the larger view
variation, PKU-II is more challenging, with 5,332 samples
for training and 1,613 for testing.

4.2. Experimental Setup

Network Architecture: In our MAMP framework, we
adopt a vanilla vision transformer [12] as the backbone net-
work, which consists of L, = 8 identical building blocks.
In each block, the embedding dimension is 256, the head
number of the multi-head self-attention module is 8, and the
hidden dimension of the feed-forward network is 1024. We
employ learnable spatio-temporal separated positional em-
bedding to the embedded inputs. The settings of the trans-
former decoder used during pre-training are consistent with
those of the backbone encoder except that the number of
layers L, is reduced to 5.

Data Processing Details: Given an original skeleton se-
quence, a contiguous segment is first randomly cropped
from it with a certain proportion p (p is sampled from [0.5,1]
during training and fixed to 0.9 during the test). After that,
the cropped segment is resized to a fixed length 7’ by bilin-
ear interpolation. 75 is set to 120 by default.

Pre-training Details: During pre-training, the masking ra-
tio of the input token is set to 90%. The target motion se-
quence M™E has stride m = 1 and is padded with zeros.
We adopt the AdamW [33] optimizer with a weight decay
of 0.05 and betas of (0.9, 0.95). We pre-train the network
for 400 epochs with a batch size of 128. The learning rate



Method Input stream NTU-60 NTU-120 PKU-MMD
X-sub X-view X-sub X-set Phase I Phase II

3s-SkeletonCLR [23] Joint+Motion+Bone 75.0 79.8 60.7 62.6 85.3 -

3s-CrosSCLR [23] Joint+Motion+Bone 71.8 834 67.9 66.7 84.9 21.2
3s-AimCLR [49] Joint+Motion+Bone 78.9 83.8 68.2 68.8 87.4 39.5
LongT GAN [62] Joint only 39.1 48.1 - - 67.7 26.0
P&C [46] Joint only 50.7 76.3 42.7 41.7 59.9 25.5
MS2L [27] Joint only 52.6 - - - 64.9 27.6
AS-CAL [37] Joint only 58.5 64.8 48.6 49.2 - -

ISC [48] Joint only 76.3 85.2 67.1 67.9 80.9 36.0
GL-Transformer [20] Joint only 76.3 83.8 66.0 68.7 - -

CPM [59] Joint only 78.7 84.9 68.7 69.6 88.8 48.3
CMD [34] Joint only 79.4 86.9 70.3 71.5 - 43.0
SkeletonMAE* [53] Joint only 74.8 77.7 72.5 73.5 82.8 36.1
MAMP (Ours) Joint only 84.9 89.1 78.6 79.1 92.2 53.8

Table 1. Performance comparison on the NTU-60, NTU-120, and PKU-MMD datasets under the linear evaluation protocol. * indicates the
re-implemented version under our framework, where improved performance is achieved.

NTU-60 NTU-120

Method Backbone Xosub Xoview Method Backbone Xosub  Xoset
CPM [59] ST-GCN 84.8 91.1 CPM [59] ST-GCN 784  78.9
CrosSCLR [23] 3s-ST-GCN 86.2 92.5 CrosSCLR [23] 3s-ST-GCN 80.5 804
AimCLR [49] 3s-ST-GCN 86.9 92.8 AimCLR [49] 3s-ST-GCN 80.1 80.9
CrosSCLR [23] STTFormer 84.6 90.5 CrosSCLR [23] STTFormer 750 779
AimCLR [49] STTFormer 83.9 90.4 AimCLR [49] STTFormer 746 772
SkeletonMAE [53] STTFormer 86.6 92.9 SkeletonMAE [53] STTFormer 76.8  79.1
Colorization [58] 3s-DGCNN 88.0 94.9 MCC [47] 2s-AGCN 81.3 833
MCC [47] 2s-AGCN 89.7 96.3 ViA [56] 2s-UINK 85.0 86.5
ViA [56] 2s-UINK 89.6 96.4 Hi-TRS [6] 3s-Transformer  85.3 87.4
Hi-TRS [6] 3s-Transformer 90.0 95.7 W/o pre-training Transformer 76.8  79.7
W/o pre-training Transformer 83.1 92.6 SkeletonMAE* [53]  Transformer 87.0 88.9
SkeletonMAE* [53]  Transformer 88.5 94.7 MAMP (Ours) Transformer 90.0 913
MAMP (Ours) Transformer 93.1 97.5

Table 2. Performance comparison on the NTU-60 dataset under
the fine-tuned evaluation protocol.

is linearly increased to le-3 from O in the first 20 warm-
up epochs and then decreased to Se-4 by the cosine decay
schedule. The experiments are conducted using the PyTorch
framework on four NVIDIA RTX 3090 GPUs.

4.3. Comparison with State-of-the-art Methods

Linear Evaluation Results: In linear evaluation protocol,
the pre-trained backbone is fixed and a post-attached linear
classifier is trained with supervision for 100 epochs with
a batch size of 256 and a learning rate of 0.1. The learn-
ing rate is decreased to O by the cosine decay schedule. As
shown in Table 1, the performance on three datasets are re-
ported, they are NTU-60, NTU-120, and PKU-MMD, re-
spectively. We include latest high-performance approaches
for comparison, e.g., GL-Transformer [20], CPM [59],
CMD [34], 3s-CrosSLR [23], and 3s-AimCLR [49]. As

Table 3. Performance comparison on the NTU-120 dataset under
the fine-tuned evaluation protocol.

NTU-60 NTU-120
Method X-sub X-view X-sub X-set
PoseC3D [15] 93.7 96.6 86.0 89.6
CTR-CGN [5] 92.4 96.8 88.9 90.6
InfoGCN [8] 93.0 97.1 89.8 91.2
MAMP (Ours) 93.1 97.5 90.0 91.3

Table 4. Performance comparison with fully-supervised methods
on the NTU-60 and NTU-120 datasets. Note that our MAMP does
not perform multi-stream ensembling during evaluation.

we can see, with the joint stream as the only input, our
proposed MAMP outperforms these methods on all the
datasets. Specifically, MAMP outperforms previous state-
of-the-art method CMD by 5.5% and 8.3% on the chal-
lenging NTU-60 x-sub and NTU-120 x-sub, respectively.
For a fair comparison, we also re-implement the Skeleton-



MAE [53] under the same settings as our approach (de-
note as SkeletonMAE*), where improved performance is
achieved. We can find that our MAMP significantly out-
performs SkeletonMAE* on all six subsets of the three
datasets, demonstrating the superiority of masked motion
prediction compared to the self-reconstruction of joints.

Fine-tuned Evaluation Results: In fine-tuned evaluation
protocol, an MLP head is attached to the pre-trained back-
bone and the whole network is fully fine-tuned for 100
epochs with a batch size of 48. The learning rate is lin-
early increased to 3e-4 from O in the first 5 warm-up epochs
and then decreased to le-5 by the cosine decay schedule.
We also adopt layer-wise Ir decay [10] following [2]. As
shown in Table 2 and Table 3, we evaluate the fine-tuned
performance on NTU-60 and NTU-120, respectively. The
vanilla transformer does not show satisfactory performance
when trained directly from scratch, which is under expecta-
tion as weakly biased transformers require a large amount of
training data to effectively prevent overfitting. After being
pre-trained with the proposed MAMP framework, the net-
work exhibits significant performance improvements rang-
ing from 5% to 13% on the four subsets of the NTU-60
and NTU-120 datasets. The final results exceed all previ-
ous methods, even those with multi-stream ensembling such
as Colorization [58], MCC [47], and ViA [56]. Moreover,
our MAMP also outperforms the re-implemented Skeleton-
MAE* by a considerable margin.

We also compare our MAMP with the top-performing
supervised methods like PoseC3D [15], CTR-GCN [5], and
InfoGCN [8] in Table 4. Results show that without ensem-
bling, MAMP outperforms most top-performing methods,
especially on the larger NTU-120 dataset.
Semi-supervised Evaluation Results: Following previous
works [23, 34, 48], in semi-supervised evaluation protocol,
the post-attached classification layer and the pre-trained en-
coder are fine-tuned together with only a small fraction of
the training set. Apart from that, we keep other training set-
tings consistent with the fine-tuned evaluation protocol. As
in [23, 49, 59], we report the performance on the NTU-60
dataset when using 1% and 10% of the training set. Note
that considering the randomness during training data selec-
tion, we report the average of five runs as the final results.
As shown in Table 5, our proposed MAMP significantly
outperforms previous works like 3s-AimCLR [49], CPM
[59], CMD [34], and SkeletonMAE* [53]. When using
only 1% of the training data, MAMP outperforms Skele-
tonMAE* by 11.6% and 14.0% in X-sub and X-view re-
spectively. Compared to training from scratch, MAMP pre-
training brings performance improvements of more than
15.5% on all subsets of NTU-60.

Transfer Learning Evaluation Results: In transfer learn-
ing evaluation protocol, the network is pre-trained on a
source dataset and then finetuned on a different target

NTU-60

Method X-sub X-view
(1%) (10%) (1%) (10%)
LongT GAN [62] 352 620 - -
MS2L [27] 33.1  65.1 - -
ASSL [44] - 64.3 - 69.8
ISC [48] 35.7 65.9 38.1 72.5

3s-CrosSCLR [23] 51.1 744 500 77.8
3s-Colorization [58] 48.3 71.7 52.5 78.9

CMD [34] 50.6 754 53.0 80.2
3s-Hi-TRS [6] 493 777 515 8l1.1
3s-AimCLR [49] 548 782 543 81.6
3s-CMD [34] 556 790 555 824
CPM [59] 567 73.0 575 771
W/o pre-training 388 70.8 404 76.0
SkeletonMAE* [53] 544  80.6 546 835
MAMP (Ours) 66.0 88.0 68.7 915

Table 5. Performance comparison on the NTU-60 dataset under
the semi-supervised evaluation protocol. We report the average of
five runs as the final performance.

To PKU-IT
Method NTU-60 NTU-120 PKU-
LongT GAN [62] 448 - 356
MS2L [27] 458 ; 44.1
ISC [48] 51.1 523 45.1
CMD [34] 56.0 57.0 -
SkeletonMAE* [53] 584 61.0 625
MAMP (Ours) 70.6 73.2 70.1

Table 6. Performance comparison on the PKU-II dataset under the
transfer learning evaluation protocol. The source datasets are the
NTU-60, NTU-120, and PKU-I datasets.

dataset. In this way, the generalizability of the learned rep-
resentation is verified. In this paper, the target dataset is
PKU-MMD II and the source datasets are NTU-60, NTU-
120, and PKU-MMD 1, respectively. Results in Table
6 show that, compared to previous methods, the repre-
sentation learned by our proposed MAMP framework ex-
hibits the best transferability, outperforming the reproduced
SkeletonMAE* [53] by 12.2%, 12.2%, and 7.6% on the
three source datasets, respectively.

4.4. Ablation Study

Superiority of Masked Motion Prediction: As shown in
Table 7, to verify the superiority of masked motion predic-
tion, we designed four different ablative experiments. Given
the joint and motion streams of the original data, all possi-
ble choices of the model input and reconstruction target are
traversed. We can find that our joint-to-motion prediction
significantly outperforms other strategies. Under the linear
evaluation protocol, our MAMP exceeds joint-to-joint pre-
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Figure 3. Pre-training loss plot. Compared
to masked self-reconstruction of joints in
SkeletonMAE, masked motion prediction
acts as a harder pre-training objective.

Figure 4. Ablation study on the mask-
ing ratio. The performance is evaluated on
the NTU-60 X-sub dataset under the linear
evaluation protocol.

Figure 5. Pre-training schedule of Skele-
tonMAE and our MAMP. The performance
is evaluated on the NTU-60 X-sub dataset
under the linear evaluation protocol.

Input Target NTU-60 NTU-120
Joint Joint 74.8 72.5
Motion 84.9 78.6
Motion Joipt 76.5 71.0
Motion 75.9 70.5

Table 7. Ablation study on the superiority of masked motion pre-
diction. The performance is evaluated on the NTU-60 X-sub and
NTU-120 X-sub datasets under the linear evaluation protocol.

Strategy NTU-60  NTU-120
Random masking 83.7 71.3
Motion-aware masking 84.9 78.6

Table 8. Ablation study on the mask sampling strategy. The per-
formance is evaluated on the NTU-60 X-sub and NTU-120 X-sub
datasets under the linear evaluation protocol.

diction (adopted by [53]) by 10.1% and 6.1% on NTU-60
and NTU-120, respectively. This suggests that predicting
dynamic motion from static skeletons during pre-training
facilitates better contextual modeling of 3D human actions.
We also visualize the pre-training loss in Figure 3. Un-
like the fast convergence of SkeletonMAE, masked motion
prediction serves as a much harder pre-training objective.
Mask Sampling Strategy: In our approach, we employ the
vanilla transformer as the backbone network, where embed-
ding features at any spatio-temporal location can be freely
masked as in MAE [17]. To verify the effectiveness of the
proposed motion-aware masking strategy, we compare its
performance with that of random masking in Table 8. As we
can see, our motion-aware masking strategy brings absolute
performance improvements of 1.2% and 1.3% on NTU-60
and NTU-120, respectively. This suggests that the motion
information, as an empirical semantic richness prior, can
effectively guide the skeleton masking process.
Segment Length: We evaluated the performance of the
learned representation under different segment lengths [
used in the joint embedding process. For a fair compari-
son, we resize the original input sequence to ensure that the

T.=T,/l T, | NTU-60 NTU-120
60 2 84.6 77.8
30 120 4 84.9 78.6
180 6 83.3 78.6
240 8 84.5 77.9

Table 9. Ablation study on the segment length [ used in the joint
embedding process. For a fair comparison, the input length 7% is
adjusted to ensure that the embedded features have a fixed length
Te. The performance is evaluated on the NTU-60 X-sub and NTU-
120 X-sub datasets under the linear evaluation protocol.

Ly NTU-60 NTU-120 Cys NTU-60 NTU-120

2 83.3 77.2 64 82.3 74.2
3 84.9 77.6 128 83.5 77.3
4 84.6 717.5 256 849 78.6
5 84.9 78.6 512 84.5 77.1
(a) Decoder depth. (b) Decoder width.

Table 10. Ablation study on the decoder design. The performance
is evaluated on the NTU-60 X-sub and NTU-120 X-sub datasets
under the linear evaluation protocol.

embedded features have a fixed length T, = T,/l = 30.
As shown in Table 9, a segment length of 4 brings the best
performance on both NTU-60 and NTU-120 datasets.
Decoder Design: We experimented with different num-
bers of layers and widths (feature dimensions) for the trans-
former decoder. As shown in Table 10 (a), our MAMP ex-
hibits the best performance on the NTU-60 and NTU-120
datasets when the number of decoder layers is 3 and 5, re-
spectively. The experimental results of the decoder width
are in Table 10 (b), where a width of 256 brings the best
performance. Overall, a decoder with 5 layers and a width
of 256 is adopted in our MAMP framework by default.
Masking Ratio: As shown in Figure 4, we experimented
with different masking ratios. Results on NTU-60 X-sub
show that either too large or too small masking ratios have
a negative impact on performance. We empirically found
that a masking ratio of 90% exhibits the best results.



Pre-training Schedule: We studied the influence of the
pre-training schedule length. As shown in Figure 5, both
SkeletonMAE and our MAMP exhibit higher performance
with longer pre-training schedules. It is worth mentioning
that our MAMP significantly outperforms SkeletonMAE
for all pre-training schedules with lengths ranging from 80
to 400 epochs, demonstrating the stability and superiority
of the proposed masked motion prediction strategy.

5. Conclusion

In this work, we present MAMP, a simple yet effective
framework for 3D action representation learning. We show
that compared to conventional masked self-reconstruction
of human joints, masked joint-to-motion prediction is
demonstrated to be more effective for contextual motion
modeling of 3D human actions. Given the high temporal
redundancy of the skeleton sequence, we further devise the
motion-aware masking strategy, which incorporates motion
intensity as the empirical semantic richness prior for adapta-
tive skeleton masking, facilitating better attention to seman-
tically rich temporal regions. We conduct extensive experi-
ments on three prevalent benchmarks under four evaluation
protocols. Results show that the proposed MAMP brings
remarkable performance improvements and sets a series of
new state-of-the-art records, unleashing the tremendous po-
tential of vanilla transformers for 3D action modeling.
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