arXiv:2310.00608v1 [cs.CV] 1 Oct 2023

Skip-Plan: Procedure Planning in Instructional Videos
via Condensed Action Space Learning

Zhiheng Li', Wenjia Geng?, Muheng Li', Lei Chen?®, Yansong Tang?; Jiwen Lu'*, Jie Zhou'*
! Department of Automation, Tsinghua University
2 Shenzhen International Graduate School, Tsinghua University
3 Beijing University of Science and Technology
4 Beijing National Research Center for Information Science and Technology
{lizhihan21@, gengwj22@,1i-mh20@}mails.tsinghua.edu.cn, chenlei2022@ustb.edu.cn,

{tang.yansong@sz.,lujiwen@, jzhou@}tsinghua.edu.cn

Abstract

In this paper, we propose Skip-Plan, a condensed action
space learning method for procedure planning in instruc-
tional videos. Current procedure planning methods all stick
to the state-action pair prediction at every timestep and gen-
erate actions adjacently. Although it coincides with human
intuition, such a methodology consistently struggles with
high-dimensional state supervision and error accumulation
on action sequences. In this work, we abstract the pro-
cedure planning problem as a mathematical chain model.
By skipping uncertain nodes and edges in action chains,
we transfer long and complex sequence functions into short
but reliable ones in two ways. First, we skip all the inter-
mediate state supervision and only focus on action predic-
tions. Second, we decompose relatively long chains into
multiple short sub-chains by skipping unreliable intermedi-
ate actions. By this means, our model explores all sorts of
reliable sub-relations within an action sequence in the con-
densed action space. Extensive experiments show Skip-Plan
achieves state-of-the-art performance on the CrossTask and
COIN benchmarks for procedure planning.

1. Introduction

Given the initial and goal visual observations which are
curated from instructional videos [44, 37], the task of pro-
cedure planning is to predict a sequence of actions to reach
the indicated goal [7], as illustrated in Figure 1(a). This is
an emerging research direction in the field of video under-
standing. Procedure planning has worldwide applications
and assists humans with instruction-following tasks, such
as cooking, assembling furniture, electronics repair, etc.
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Figure 1. Comparisons of the conventional paradigm and our
proposed Skip-Plan in procedure planning. (a) Problem defi-
nition: given the initial and goal visual observations (vs¢qrt and
Vgoal), procedure planning is to answer an action sequence to
reach the indicated goal with a pre-defined time horizon 7". (b)
Conventional paradigm predicts a state-action pair {5, .} at ev-
ery timestep ¢, and repeat it step-by-step. (c) Our Skip-Plan
skips state supervision and extracts multiple sub-chains by skip-
ping most intermediate actions. The final action sequence is ac-
cumulated from all predicted sub-chains. Skip-Plan significantly
reduces the overall compound error, indicated by the shallower
darkness of the chevron arrows.



In the past few years, various approaches have been pro-
posed to solve the procedure planning problem. Most ex-
isting methods utilize an autoregressive model with visual
state supervision to generate actions one by one [7, 4, 36].
Another type of work [41] solves it in a non-autoregressive
way with language state supervision. The difficulties of pro-
cedure planning have been widely discussed in the previ-
ous works. For instance, the sequential orders in procedure
planning can be altered but still sensible (e.g., switching the
order of ‘pour water’ and ‘pour alcohol’ does not matter in
many cases), and the visual states are unstructured and high-
dimensional. Thus, we can conclude the following limita-
tions from the existing works. (a) State supervision: the
major difficulty in procedure planning is state supervision.
Visual images are high-dimensional and complex, with ex-
tra misleading information such as background, illumina-
tion, viewing point, etc. (b) Step-by-step predictions: the
conventional paradigm in procedure planning predicts one
state-action pair at every timestep, and repeats it step-by-
step, as illustrated in Figure 1(b). Even though the pro-
posed non-autoregressive model generates whole action se-
quences in batches [4 1], it can be still regarded as a step-by-
step method because the model neglects the links between
non-adjacent actions. From Figure 1(b), we can see while
predicting an action sequence with a time horizon of 4, the
conventional model is equivalently predicting a sequence
with a length of 7 (4 action nodes, 3 state nodes). More
frequent predictions tend to accumulate a larger compound
error along the chain, which lowers the prediction accuracy.

To overcome these limitations, we propose Skip-Plan, a
condensed action space learning method that solves the pro-
cedure planning problem through the lens of mathematics,
aiming to reduce compound error along action chains. As
we have discussed above, existing methods struggle with
high-dimensional and complex state supervision. Thus, the
compound error along the action chain is increased due to
large errors in state predictions. This motivates us to skip
all the state nodes in our Skip-Plan framework and only
model sequence relations in the condensed action space,
as demonstrated in Figure 1(c). Without the presence of
state supervision, a lower compound error results in better
performance in Skip-Plan. Although the dependencies be-
tween high-level actions without state supervision are very
abstract, the algorithm of our Skip-Plan is highly mathemat-
ically sensible in the Markov chain model.

Another convention in procedure planning is we should
learn sequential relations between adjacent actions. The
Markov chain model inspires us to decouple relatively long
chains into multiple short sub-chains, because the com-
pound error can be reduced with shorter chain lengths. The
problem here is how to decouple these long chains, be-
cause there are various choices of sub-chains with differ-
ent lengths and we should always choose the most reliable

ones under any condition. Given the initial and goal frames
as concrete inputs, it is apparent the reliabilities of the ini-
tial and final actions are the highest, and the intermediate
actions are more likely to be predicted wrong. Therefore,
our Skip-Plan decomposes long chains by ‘skipping’ some
unreliable intermediate actions, and each sub-chain in our
model is composed of the initial action, one unique inter-
mediate action, and the final action. One example for a
chain length of 4 is shown in Figure 1(c). In this way, the
reliable sub-relations between non-adjacent actions can be
well explored by the network. To model the discriminative
relations of all sub-chains, we propose sub-chain decoders,
where each decoder only learns one sub-chain by the spe-
cific loss design. The final action sequence is aggregated
from all sub-chain predictions by a sub-chain accumulator.

In summary, our contributions are threefold. (a) Unlike
the previous methods which put sophisticated designs on
state supervision, Skip-Plan skips unreliable state predic-
tions to boost the model performance in procedure plan-
ning. (b) In contrast to the existing methods which only
focus on the links between adjacent actions, we decompose
long chains into multiple reliable sub-chains by skipping
some intermediate actions, and propose sub-chain decoders
to learn their discriminative relations. (c) Extensive ex-
periments show Skip-Plan achieves state-of-the-art perfor-
mance on the CrossTask [44] and COIN [37] benchmarks
for procedure planning.

2. Related Work

Procedure Planning. Procedure planning in instructional
videos was first introduced by Chang et al. [7]. Recently,
various methods have been conducted to solve this task.
Chang et al. [7] propose a dual dynamic network to con-
jugate the relationships between states and actions. Sun et
al. [36] utilize a GPT network to generate actions and states
one by one. Bi et al. [4] use the model-based reinforcement
learning with time-invariant context information to predict
state-action pairs autoregressively. Different from the pre-
vious autoregressive methods with visual state supervision,
Zhao et al. [41] use a non-autoregressive transformer de-
coder to generate action sequences with language state su-
pervision. Unlike previous works, Skip-Plan generates ac-
tions non-adjacently without any state supervision.
Instructional Videos Analysis. Instructional videos are
used for learning human behaviours because they are visual
representations of human actions. Based on instructional
videos, various action-related tasks have been proposed,
such as action segmentation[21, 22, 13, 14, 28, 31], step
localization[39, 11,43, 33, 26], procedure segmentation[42,
, 3, 5], video summarization/captioning[8, 35, 29, 34,
, 18], etc. Different from these action tasks in instruc-
tional videos, we investigate procedure planning, a goal-
conditioned problem that plans a sequence of actions given



the initial and goal visual observations.

Predictive Uncertainty on Sequence Relations. All types
of questions that we are interested in can be modeled as
a sequence model, such as images [25] and languages [9].
Currently, Transformer [38] is the most effective network
to model sequence relations, and our model is based on
the transformer decoder with a learnable query input[40, 6].
However, sequence relations are always distorted by predic-
tive uncertainty[ 12, 27, 17, 30, 20], and the sources of pre-
dictive uncertainty can be various, including model uncer-
tainty, data uncertainty, etc[2, 10, 15, 23, 32]. In this work,
we pay particular attention to data uncertainty, in which the
uncertainty directly stems from the data. Data uncertainty is
caused by information loss when we measure a data distri-
bution in a space with incorrect dimensions (e.g., we must
lose depth information if we measure a three-dimensional
object in a two-dimensional space). Therefore, we often
avoid high-dimensional data for lower data uncertainty.

3. Methods
3.1. Problem Formulation

We follow the definition of procedure planning proposed
by Chang ef al. [7]. Here, we denote the action and the
state at timestep ¢ as a; and s; respectively. Given the ini-
tial visual observation vs:,,+ and the goal visual observa-
tion v4041, the model generates a sequence of actions aq.7
to reach the indicated goal. In this work, we introduce a
novel formulation for the procedure planning task:

T—1
plavrlvs,vg) = [ plaslar, ar)p(ar, arlvs, vg), (1)
t=2

where v, and v, short for “vsiars” and ‘vgoq;’. We de-
note p(a1:7|Vstart, Vgoar) as the conditional probability dis-
tribution of the action sequence given the initial visual
observation vgq,; and the goal visual observation vggqi,
p(a¢]ar, ar) as the conditional probability distribution of
intermediate actions (2 < ¢t < T —1) given the initial action
a; and the final action ar, and p(a1, ar|Vstart, Vgoat ) as the
conditional probability distribution of the initial action a;
and the final action a7 given the initial visual observation
Vstart and the goal visual observation vg,4;. Equation 1 re-
veals the uniqueness of our Skip-Plan method: First, we do
not rely on any intermediate state supervision s; for action
generations. Second, every intermediate action prediction
a; (2 <t < T —1) only depends on the initial action a;
and the final action ar. Thus, Skip-Plan does not focus on
sequential relations between adjacent actions but predicts
action sequences non-adjacently without state supervision.

3.2. Action Predictions without State Supervision

Information does not always help in the decision-making
process. Sometimes ambiguous information can even lead

to sub-optimal results, and plausible plans can be only made
based on reliable information. In procedure planning, two
types of supervision can be utilized, including actions a;
and visual states s;. Even though they can be directly gen-
erated from each other, the intrinsic properties of these two
supervisions are largely different. We evaluate them from
the perspectives of the value of information and predictive
uncertainty. Visual state supervision is well known to be
high-dimensional. In addition to the factor of action class,
various factors such as background, viewing point, illumi-
nation, etc. can be involved in visual states. Thus, useful in-
formation in visual state supervision for action predictions
is overwhelmed by many irrelevant factors. In contrast, ac-
tion labels are the most condensed supervision, without be-
ing interrupted by any factors. From this point, we argue
the value of information offered by state supervision is ex-
tremely low because the portion of information, which is
relevant to action predictions, is too small. On the other
hand, when models generate high-dimensional predictions
such as visual images, large predictive errors are more likely
to occur. Thus, the predictive uncertainty of intermediate vi-
sual states is significantly higher than the one of condensed
action predictions. Combining the effects of the value of
information and the predictive uncertainty, we argue the ex-
istence of visual state supervision hurts the predictive ac-
curacy of sequential actions. Even though we can use the
weak language state supervision to reduce some irrelevant
dimensions, it is still too high-dimensional compared to
condensed action labels. Therefore, we ‘skip’ intermediate
state supervision in our Skip-Plan framework. The overall
compound error along an action chain is significantly re-
duced without the predictive errors introduced by states.

Getting rid of intermediate state supervision does not
mean all sorts of visual information are useless. In pro-
cedure planning, the initial visual observation vg,,; and
the goal visual observation vy, are vital because action
sequences are constrained by them. These visual observa-
tions are in the form of frame features in seconds. Inspired
by the image analysis above, we argue the visual input in-
formation is underutilized by the previous works, especially
along the time dimension. In the Skip-Plan framework, we
take a shared multi-layer perceptrons (MLP) network in the
Visual Input Module to learn the time information, where
the MLP network is three-layered with ReLU activations.
This simple method can boost the model performance by a
large margin, especially for short sequences (1" = 3).

3.3. Decomposition of Long Chains

Long chains are not favored when a compound error is
accumulating. Thus, decomposing long chains into short
ones is a natural way to better model performance. Through
the lens of mathematics, the only design philosophy here
is that we should extract most reliable sub-chains from the
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Figure 2. Our Skip-Plan architecture. The shared MLP network in the Visual Input Module extracts the initial and final information
from the initial and goal observations (Vstart and vgoq:) and attaches them to the first and last dimensions of every learnable query
input. A number of T' — 2 query inputs are separately passed to each decoder in the Sub-chain Decoder Module. In each decoder, the
input is processed by the self-attention block and then by the cross-attention block, where the cross-attention block is augmented by a
learnable memory M;. The sub-chain decoders are separated. The nth decoder outputs the sub-chain {d1, d¢, ar} witht = n + 1. The
predicted sub-chains are supervised by two loss supervision. In Individual Sub-chain Supervision, the predicted sub-chains are supervised
by the corresponding ground-truth sub-chains. In Complete Chain Supervision, the predicted sub-chains are aggregated by the Sub-chain

Accumulator to generate the complete action chain, which is supervised by the complete ground-truth action chain.

original long chain. Following this principle, we ought to
find there is so much flexibility in the decoupling method:
We can choose sub-chains with any lengths, and actions in
the sub-chains are not necessary to be adjacent.

The reliability of a sub-chain can be determined by the
uncertainty of predictions. According to the uncertainty
analysis, the reliabilities of the initial and final actions are
the highest because they are the closest actions to the initial
and goal visual inputs. Since the compound error is accu-
mulated from two ends of the chain, the reliability of action
predictions is decreasing while approaching the middle of
the chain. Consequently, we remove all the edges between
adjacent intermediate actions, and each individual interme-
diate action only connects to the reliable initial and final ac-
tions. This design just coincides with the term p(at|a1, ar)
with 2 <t < T —1in Equation 1. In this way, we generate
a quantity of 7" — 2 sub-chains from an action chain with a
time horizon of 7T'. The set of sub-chains is given by:

{(a17a27aT)) (a17a37aT)a (X3} (alyaT—lyaT)}' (2)

Each sub-chain has a length of 3, with the order of the ini-
tial action, one unique intermediate action, and the final ac-
tion. This decoupling method works well for relatively long
chains (17" > 3).

Given multiple short sub-chains, we design a com-
patible network to model all their sub-relations. Since
these sub-chains are parallel and independent to each other,
we propose the Sub-chain Decoder Module, where each
transformer decoder only models one discriminative rela-
tion of one sub-chain. Every transformer decoder is non-
autoregressive with two types of inputs: a learnable query

with the initial and goal visual features, and a learnable
memory component. The novelty here is each decoder only
learns one sub-relation, with a unique loss only correspond-
ing to the three actions of that sub-chain. The query input,
parameters, and memory component of every decoder are
separated from other decoders’. Therefore, the number of
decoders in the Sub-chain Decoder Module is equal to the
number of sub-chains (T — 2) extracted from the original
chain. The final sequence generation is aggregated from all
the sub-chain predictions through the Sub-chain Accumula-
tor, which is an MLP network. In this way, our Skip-Plan
network can model all sorts of discriminative sub-relations
within the original action sequence.

3.4. Training

Loss is an essential component to discriminate sub-chain
decoders. Instead of conventional cross-entropy loss, we
use the focal loss to supervise our sub-chain decoders. The
focal loss F'L is formulated as[24]:

T

FL=— Z ar (1 —ay)" log a, 3)

t=1

where we denote a; as the ground-truth one-hot labels, a; as
the predicted probability distribution of the action sequence,
and v as the gamma value of focal loss. The focal loss is
equivalent to the cross-entropy loss when v = 0. The model
training is benefited from the use of focal loss because the
data distribution in procedure planning is imbalanced. In
this work, we define F'L (a1, a;, ar) as the focal loss for the
sub-chain with a length of 3, where the sub-chain is com-
posed of the initial action a4, the action at timestep ¢ a;, and



the final action ap. We present the focal loss of the whole
action sequence as F'L(ay.7).

Loss of Individual Sub-chains. As we have discussed be-
fore, the loss of each decoder only corresponds to the ac-
tions within that sub-chain. Therefore, the individual loss of
the nth decoder is defined as F'L(a1, at, ar) witht = n+1,
and the loss from all sub-chain decoders can be written as:

T-1

Ly = ZFL(al,at,aT). )

t=2

Loss of Complete Chain. After aggregating all sub-chains
by the Sub-chain Accumulator, the sequence output with
a length of T is supervised by the focal loss of the whole
action sequence:

,CT = FL(G,LT)‘ (5)

Overall Loss. Therefore, the total loss is defined as the sum
of the loss from all sub-chains and the complete chain loss,
which can be written as:

L=LNn+Lp. (6)

In this way, our model can explore all sorts of discriminative
but reliable sub-relations within an action sequence, while
guaranteeing the final sequence generation is optimal.

3.5. Implementation Details

For each decoder, the query input length is 7" 4 1, and
the memory size is 128. The numbers of decoder layers,
decoder heads, and decoder dimensions are set to be 1, 16,
and 1024 respectively. All MLP networks are three-layered
with ReLU activations. In the Visual Input Module, our
shared MLP network on the time dimension of input frame
features has the shape [3 — 6 — 1]. All action classifiers
in the Sub-chain Decoder Module are the same MLP net-
works with the shape [1024 — 512 — n,|, where n, is the
number of action classes. The Sub-chain Accumulator is an
MLP network with the shape [T'(T—2) — 3T (T—2) — T.
Models are optimized for 500 epochs with stochastic gradi-
ent descent. The initial learning rate is 0.02 and decays by
10 at every 50 epochs after 100 epochs. Experiments are
conducted on a single GeForce RTX 3090 GPU. We also
test our model using the Mindspore [1].

4. Experiments
4.1. Evaluation Protocols

Datasets. We evaluate our model on two real-world in-
structional video datasets: CrossTask[44] and COIN[37].
CrossTask contains 2763 videos with a duration of 213
hours. It consists of 18 different tasks with 7.4 steps per
task. The COIN dataset spans 12 different domains related

to our daily life. It contains 11,827 videos with 3.9 steps
per video. The COIN dataset is challenging due to the di-
versity of its tasks and action labels (180 tasks and 779 ac-
tion labels). We curate a set of plans by the sliding window
approach, and adopt the standard 70%/30% to create our
train/test splits. The division is done on the generated sam-
ples rather than the original video. The data pre-processing
procedure in our work is identical to the most widely used
protocol in the previous procedure planning works (e.g.,
DDN [7], Ext-GAIL [4], and the main protocol in P31V
[41]) for fair comparisons.

Metrics. Following the previous works, we used three met-
rics to comprehensively evaluate model performance. For
each action sequence: (a) mean Intersection over Union
(mloU) regards the predicted and ground-truth action se-
quences as two sets, and measure the overlap between these
sets. The mloU metric only indicates whether desired ac-
tions exist in the predicted action set, agnostic to the order
of actions. (b) mean Accuracy (mAcc) evaluates the cor-
rectness of the predicted action at every timestep, termed as
percentages. Thus, mAcc counts the order of actions, and
is more strict than mloU. (c) Success Rate (SR) evaluates
the correctness of the whole action sequence. A predicted
sequence is successful only if it matches the ground-truth
sequence. The success rate is the proportion of successful
samples over all samples, which is more strict than mAcc.
Training Scheme on Each Dataset. We specify an appro-
priate gamma value on each dataset to maximize model per-
formance. Through experiments, we find the gamma values
of 1.5 and 0 are the best parameters for the CrossTask and
COIN datasets respectively. This is reasonable because the
data distribution in the COIN dataset is more balanced due
to a large quantity of action labels in diverse tasks.

4.2, Evaluating Procedure Planning

Short-horizon Prediction. We compare the model perfor-
mance of the short-horizon predictions (T" = 3/4) in Table
1. As illustrated in Table 1, Skip-Plan significantly outper-
forms the previous state-of-the-art model at all metrics for
T = 3. In the CrossTask dataset, our SR and mAcc re-
sults surpass the results of the second best approach (e.g.,
P3IV[41]) by 6% and 11%. Our method also outperforms
P3IV[41] by 8% on SR and 25% on mAcc in the COIN
dataset. Such incredible improvements strongly prove Skip-
Plan without state supervision suppresses predictive uncer-
tainty effectively, and our module design on the visual input
extracts initial and goal visual information thoroughly. For
T = 4, Skip-Plan achieves large gains of around 5%, 24%,
and 7% in SR, mAcc and mloU respectively in the COIN
dataset. For the CrossTask dataset, the mAcc and mloU of
our Skip-Plan model are the best and the SR is the second
best. Particularly, our mAcc is higher than P3IV’s[41] by
11.48%. The methods of no state supervision and decou-



Table 1. Metric results on CrossTask and COIN for short-horizon predictions (I" € {3,4}). The *v” and ’X” in the column State Supervision
denote with and without state supervision respectively. The best and second best metric results are coloured in red and blue respectively.

Horizons Models State Supervision CrossTask COIN

SR mAcc mloU SR mAcc mloU
DDNJ[7] v 12.18 31.29 4748 1390 20.19 64.78

Plate[30] v 16.00 36.17 6591 - - -

T=3 Ext-GAIL[4] v 21.27 4946 61.70 - - -
P3IV[41] v 2334 4996 73.89 1540 21.67 76.31
Skip-Plan X 28.85 61.18 7498 23.65 47.12 78.44
DDNJ[7] v 597 27.10 4846 11.13 17.71 68.06

Plate[30] Ve 14.00 35.29 55.36 - - -

T=4 Ext-GAIL[4] Ve 16.41 43.05 60.93 - - -
P3IV[41] v 13.40 44.16 7001 11.32 18.85 70.53
Skip-Plan X 15.56 55.64 7030 16.04 43.19 77.07

Table 2. Metric results for long-horizon predictions (T' € {5,6})
on CrossTask and COIN.

Datasets Horizons Models SR mAcc mloU
DDN][7] 3.10 - -
T=5 P3IV[41] 7.21 - -

CrossTask Skip-Plan 8.55 52.05 69.09
DDNI[7] 1.20 - -
T=6 P3IV[41] 4.40 - -

Skip-Plan 5.12 47.34 66.11

T=5 P3IV[41] 427 10.81 68.81

COIN Skip-Plan 9.90 38.99 76.93

T=6 P3IV[41] 4.17 897 67.72

- Skip-Plan 6.61 33.63 73.68

pling long chains both drive Skip-Plan to succeed at T' = 4.

Long-horizon Prediction. We further evaluate Skip-Plan
on long-horizon predictions (' = 5/6). In the COIN
dataset, our Skip-Plan performs extraordinarily well on the
metric of mAcc, with remarkable improvements of 28% and
25% for T = 5/6, compared to the second best model
P3IV[41]. As for the metrics of SR and mloU, Skip-Plan
exceeds P3IV[41] by 6% and 8% at T' = 5, and 2% and
6% at T' = 6 respectively. The outstanding performance we
presented above further validates the success of the decou-
pling approach. Our Skip-Plan also achieved the best re-
sults on SR in the CrossTask dataset, surpassing P3IV[41]
by 1.34% and 0.72% at T = 5/6. For the long-horizon
predictions, we argue mAcc and mloU are more reliable
metrics to measure the effectiveness of a model. SR is in-
terrupted by a large variance, because data samples become
insufficient with a large time horizon.

4.3. Prerequisite Experiments

In this section, we carried out several prerequisite ex-
periments for the long-chain decoupling method. They can
validate some statements that we have made in Section 3.3.
These experiments are foundational because they proved
the prerequisite conditions for the decoupling approach to
work. Thus, we name them as the prerequisite experiments.

Error Rate Distribution along a Predicted Chain. We
tend to remove the edges between unreliable nodes and only
connect one unreliable node to other reliable ones. In this
way, we can filter out most reliable sub-chains from the
original long chain. Here, we measure the reliability of
each node in terms of the error rate distribution along the
non-autoregressively predicted chain. The error rate dis-
tributions along the predicted chains with T = 3/4/5/6
are illustrated in Figure 3. It is clear the reliabilities of the
first and final action nodes are the highest and the model
is more likely to make wrong predictions while approach-
ing the middle of the chain. It is not hard to understand
this phenomenon: a higher error rate occurs at intermediate
action predictions because they are further away from the
initial and goal visual observations. This empirical finding
motivates us to remove the edges between unreliable inter-
mediate actions and only connect each intermediate action
to the reliable initial and final action nodes.

Reliability of Standalone Sub-chains. In addition to the
reliability of each node, we further study the reliability of
the sub-chains that we have decoupled from the original
long chain. For a clearer explanation, we take a chain with
a length of 5 as an example (e.g., {a1, a2, a3, aq,as5}), and
only study the reliability of the sub-chain {a;, a3, as}. We
consider two cases: First, we just model the relation of the
whole chain and only investigate the prediction result of that
sub-chain contained in the long chain. In other words, we
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Table 3. Reliability of standalone sub-chains vs sub-chains con-
tained within the original long chain.

Table 4. Ablation experiments on CrossTask.

Sub-chain  Loss Type SR mAcc mloU
(ar. a9, a3) Long 2252 5828 71.87
152,55 Short 22.68 5873 72.40
(a1, a3, 05) Long 13.73 5674 71.78
153, 5 Short 1629 5991 73.07
(01,00, 05) Long 1250 56.58 71.23
154 5 Short 13.25 57.61 71.72

formulate the loss function along the whole sequence (in-
volving {a1, as, as, aq, as}), and only compute the metric
results over the sub-chain {a;,as,as}. The second case
is we only model the relation of the standalone sub-chain
and check its prediction result. Equivalently, we model the
loss function just involving {a1, a3, as }, and still computes
the metric results of the sub-chain {a1, a3, as }. The metric
results of these two cases are presented in Table 3, where
we denote ‘Long’ as the first case and denote ‘Short’ as the
second case due to the length difference in loss. We spot
the metric results of standalone sub-chains (‘Short’) are al-
ways better than the ones contained within the whole action
chain (‘Long’). This empirical finding also happens in the
cases of T' = 4 and T' = 6. As we stated at the beginning
of this section, such experimental results are foundational:
The method of decoupling long chains can be only work-
able when standalone sub-chains can result in better metric
results compared to the sub-chains contained within their
original long chain. In this way, we experimentally prove
the reliability of standalone sub-chains is better under any
condition. It constructs the prerequisite condition to guar-
antee our decoupling method is workable.

4.4. Ablation Study

We present comprehensive ablation experiments to il-
lustrate the effectiveness of different components in our

| SR mAcc mloU
(a) With and Without State Supervision at T’ = 3
Language 26.28 58.98 71.82
None 28.85 61.18 74.98
(b) Types of layers on the Time of Input Frames at 7' = 3
Average Pooling 24.40 56.41 70.87
Linear 24.40 56.69 71.24
Conv 26.56 59.60 74.15
MLP 28.85 61.18 74.98
(c) Without and With Decoupling at 7" = 4
w/o Decoupling 12.72 53.18 69.13
Decoupling 15.56 55.64 70.30
(d) Without and With Decoupling at 7" = 5
w/o Decoupling 4.97 48.71 65.29
Decoupling 8.55 52.05 69.09
(e) Without and With Decoupling at T' = 6
w/o Decoupling 2.62 44.08 62.07
Decoupling 5.12 47.34 66.11
(f) Gamma Values of Focal Loss at T' = 4
v=0 13.84 54.67 69.74
v=1.0 15.08 54.58 70.09
vy=1.5 15.56 55.64 70.30
v =20 14.80 54.99 70.20

Skip-Plan. All ablation experiments are carried out on the
CrossTask dataset, illustrated in Table 4.

With and Without State Supervision. We consider 7' = 3
to compare the metric results with and without intermediate
state supervision. The model with intermediate state super-
vision is done by adding weak language state supervision,
which is identical to the one proposed by P3IV[41]. The
weak language state supervision in P3IV[41] is the most ef-
fective state supervision among all the previous works. In
Table 4(a), we can see the model without state supervision
outperforms the model with language state supervision in
all metrics. It confirms the existence of intermediate state
nodes does not provide much valuable information but in-
troduces undesired noise into the chain.

Types of Layers on the Time of Input Frames. Our
model achieves significant improvements by applying a
small MLP network on the time dimension of visual input
frames. Here, we explore the effects of various types of lay-
ers on the time information, including average pooling, a
single linear layer, 1D convolution, and our proposed MLP,
as shown in Table 4(b). All the previous works overlooked
the significance of initial and goal visual inputs. They used
the averaging pooling operation, which performs the worst
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Figure 4. Case study on CrossTask: our Skip-Plan predicts all
actions correctly, whereas P3IV[41] fails on the last three pre-
dictions. The outlines of correct and incorrect predictions are
coloured in green and red respectively.

among all types of layers. We take 7" = 3 as an example to
compare different layers, and indicate the MLP network in
our Skip-Plan framework performs the best.
Decomposition of Long Chains. We compare the per-
formance without and with the decoupling approach at all
long T, ranging from 4 to 6. Complete ablation experiments
demonstrate the decoupling approach in our Skip-Plan can
robustly improve all the metric results at any condition.
Focal Loss with Gamma Values We compare the exper-
imental results with different gamma values of focal loss.
We find the gamma value of 1.5 works best to overcome the
imbalanced data distribution in the CrossTask dataset.

4.5. Case Study

Skip-Plan and the Baseline. We compare our Skip-Plan
with the previous state-of-the-art P3IV[4 1] in real cases, il-
lustrated in Figure 4. Given the initial and goal visual obser-
vations, P3IV[4 1] only predicts the first action correctly and
fails to get the other actions at 7" = 4. In contrast, Skip-Plan
extracts the initial and goal visual information thoroughly,
so Skip-Plan predicts the final action correctly. Benefiting
from the decoupling method, our Skip-Plan makes the cor-
rect predictions on the second and third actions.

Effects of Different Components in Skip-Plan. We in-
vestigate the effects of various components in Skip-Plan on
model performance by real samples, which are illustrated
in Figure 5. Here, the components for comparisons in-
clude the types of layers on the time dimension of visual in-
put frames, state supervision, and the decoupling approach.
For the types of layers on the time dimension of visual in-
put frames, we compare the average pooling layer with our
shared MLP network, both without state supervision and
decoupling. As shown in Figure 5(b), the average pool-
ing layer makes wrong predictions on all actions. How-
ever, the model with the shared MLP network predicts the
first and last actions correctly, as illustrated in Figure 5(c).
This is because the MLP network can extract the time infor-
mation from the initial and goal visual observations more
thoroughly than the average pooling layer. We further sim-
ulate the shared MLP network without decoupling but with
language state supervision[4 1] in Figure 5(d). Comparing

Put Bread Flip Remove Bread
Melt Butter H In Pan Bread H From Pan

(a) Ground Truth

Pour Mixture Flip Flip Take Pancake
Into Pan Pancake Pancake From Pan

(b) Average Pooling

Dip Bread Put Bread | | Remove Bread

(c) MLP

Ustart Dip Bread Put Bread | | Remove Bread
Melt Butt p brea
el Butter In Mixture In Pan From Pan

(d) MLP with State Supervision

PutBread | | Flip |  Remove Bread
In Pan Bread From Pan

(e) MLP with Decoupling

Melt Butter —

Figure 5. Case study on Skip-Plan components at 7' = 4: (a)
ground truth; (b) average pooling: average pooling layer on the
time dimension of visual input frames without decoupling and
state supervision; (c) MLP: shared MLP network on the time di-
mension of visual input frames without decoupling and state su-
pervision; (d) MLP with state supervision: shared MLP network
with state supervision but without decoupling; (¢) MLP with de-
coupling: shared MLP network with decoupling but without state
supervision. The outlines of correct and incorrect action predic-
tions are coloured in green and red respectively.

Figure 5(d) with Figure 5(c), we notice the addition of state
supervision cannot correct the predictions of the second and
the third actions, because the state supervision does not
reduce the compound error. In contrast, the shared MLP
network without state supervision but with decoupling can
lower the compound error effectively, resulting in correct
predictions of all actions, as demonstrated in Figure 5(e).

5. Conclusion

In this paper, we propose Skip-Plan, a condensed action
space learning method for the procedure planning task. Our
Skip-Plan solves the procedure planning problem mathe-
matically in two novel ways. First, Skip-Plan skips the in-
termediate state supervision and only focuses on action re-
lations. Second, Skip-Plan decomposes long action chains
into multiple reliable sub-chains by skipping most uncertain
intermediate actions. In these ways, our Skip-Plan model
explores all sorts of sub-relations within an action chain and
generates actions non-adjacently only in the condensed ac-
tion space. Extensive experiments show the superior perfor-
mance of our Skip-Plan method on two instructional video
datasets. Skip-Plan has the potential to inspire the research
field of procedure planning, since most of them heavily rely
on state observations and adjacent actions at all times.
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Supplemental

We provide additional information and experimental re-
sults in the supplemental material. In Section A, we present
the analysis of the error rate distributions on the action
chains predicted by different works. It illustrates the be-
haviour of error accumulation with concrete experimental
evidence. Then, we detail the network architecture and loss
design at 7' = 3 in Section B. We further demonstrate the
robustness and delicacy of our decoupling approach through
experiments in Section C.

A. Comparisons of Error Rate Distributions

Error rate analysis is crucial because it reveals how er-
rors are accumulated along action chains. In this section,
we compare the error rate distributions along the chains at
T = 4 predicted by different works, including PlaTe[36],
P3IV[41], and our Skip-Plan, as illustrated in Figure 6.
Here, the error rate at a timestep ¢ is defined as the num-
ber of wrong action predictions at the timestep ¢ divided by
the total number of actions at this position, and the relative
node position is calculated by (¢t — 1)/(T" — 1). The error
rate distribution is the distribution of the error rates at all
timesteps (e.g., the relative node position ranges from 0 to
1). We can summarize two important points from Figure
6. First, we spot the error rate distribution of PlaTe[36] is
significantly different from the ones of P3IV[41] and Skip-
Plan. The error rate distribution of PlaTe[36] keeps ris-
ing until the last action of the chain, but the distributions
of P3IV[41] and our Skip-Plan are increasing and then de-
creasing, reaching a maximum at the middle of the chains.
This discrepancy is caused by the network type. PlaTe[30]
is an autoregressive network and generates actions one by
one. Thus, it accumulates errors continuously from left to
right. In contrast to PlaTe[36], P3IV[4 1] and our Skip-Plan
utilize non-autoregressive transformer decoders to generate
whole action sequences in batches. This type of network ac-
cumulates the error from two ends of the chain, and the error
rate peaks at the middle of the chain. Overall, the average
error rate of the non-autoregressive models is lower than the
one of the autoregressive models, because the chain length
for the error accumulation in the non-autoregressive mod-
els is reduced to half compared to the length of the autore-
gressive models. Second, benefiting from the shared MLP
network in the Visual Input Module, the error rates of the
first and last actions in our Skip-Plan are the lowest among
these works. The decoupling approach without state super-
vision in Skip-Plan further reduces the compounding error
at intermediate actions. Both of them drive our Skip-Plan
network to achieve the lowest error rates at all timesteps.
Consequently, our Skip-Plan achieves state-of-the-art per-
formance on the CrossTask and COIN benchmarks in pro-
cedure planning.
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Figure 6. Error rate distributions along the chains predicted by
PlaTe[36], P3IV[41], and Skip-Plan at 7" = 4.

B. Network Architecture and Loss for T=3

Our Skip-Plan architecture at T = 3 is slightly different
from Figure 2. For T' = 3, the network architecture is com-
posed of the Visual Input Module, the Decoder Module, and
the Supervision Module, where the Decoder Module and
the Supervision Module just correspond to the Sub-chain
Decoder Module and the Sub-chain Accumulation Module
in Figure 2 respectively. As illustrated in Figure 7, there is
only one decoder in the Decoder Module, which directly
outputs the complete chain {a1,as,a3}. Without gener-
ating sub-chains, no individual sub-chain supervision and
sub-chain accumulator are present in the Supervision Mod-
ule. Therefore, we only have the complete chain supervi-
sion, and the loss for T" = 3 is defined as:

L = FL(CLl:T). (7)

C. Reliability of Standalone Sub-chains

To prove our decoupling approach can extract reliable
sub-chains at any condition, we further compare the relia-
bility of standalone sub-chains with the reliability of these
sub-chains contained within the complete chain at T' = 4/6.
As illustrated in Table 5, the metric results of ‘Short’ are
consistently better than the ‘Long’ results for all sub-chains
at any length. Consequently, our decoupling method can
robustly better the prediction results for all long 7.

To demonstrate the delicacy of our decoupling method,
we try a different decoupling strategy and show how it
fails. For example, we choose the sub-chain {a1,as, a3}
at T = 4/5/6. This sub-chain has the same length as our
decoupled sub-chains, but is composed of one reliable ini-
tial action and two unreliable intermediate actions, where
the actions are all adjacent. In this way, we find the relia-
bility of standalone sub-chains is lower than the one of the
sub-chains contained within the original long chains at all
long 7', illustrated in Table 6. Thus, this type of decou-
pling approach cannot improve prediction accuracy. The
failure of this decoupling method is caused by losing the re-

Table 5. Reliability of standalone sub-chains vs sub-chains con-
tained within original long chains at T = 4/6. It validates our
decoupling approach can robustly improve the metric results for
all long T'.

Horizon | Sub-chain Loss Type SR mAcc mloU

(a1, a9, 01} Long 1577 57.58 71.05
152, %4 Short  17.13 59.16 72.18

T=4
(ar, a3, a1} Long 1539 5734 72.29

183, B4 Short  16.88 58.93 73.06

(ar. a3, a6} Long  20.87 55.73 69.71
12,76 Short  23.34 58.85 71.87

(a1, 0. a0} Long  15.83 52.76 67.38

T—6 1, @3, 56 Short  19.81 56.57 70.55

( ,  Long 1875 54.89 69.10
1,84, s Short  18.95 5521 70.06

(ay. a5, a0} Long  21.07 5596 70.82
1 &5, 56 Short  22.48 57.81 72.12

Table 6. To demonstrate the delicacy of our decoupling method,
we try a different decoupling approach and show how it fails. We
compare the reliability of the standalone sub-chain {a1, a2, az} vs
the sub-chain {a1, a2, as} contained within the original long chain
at T = 4/5/6. Without the reliable constraint of the last action,
the metric results of *Short’ are worse than the *Long’ results at all
long T.

Horizon Loss Type SR mAcc mloU
T4 Long 16.65 49.30 67.16
N Short 1591 4820 65.93
T—5 Long 13.10 45.67 64.46
o Short 12.82  45.13  62.78
T—6 Long 11.64 44.32 62.29

Short 1144 4330 61.50

liable constraint of the last action. This simple experiment
demonstrates our decoupling design is very delicate, robust,
and effective.
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Figure 7. Our Skip-Plan architecture at T=3. The network architecture at 7" = 3 is slightly different from Figure 2. It is composed
of the Visual Input Module, the Decoder Module, and the Supervision Module, where the Decoder Module and the Supervision Module
correspond to the Sub-chain Decoder Module and the Sub-chain Accumulation Module in Figure 2. There is only one decoder in the
Decoder Module, which directly outputs the complete chain {a1, az, a3 }. Without generating sub-chains, there is only one complete chain
supervision in the Supervision Module.



