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Abstract

Point-spread-function (PSF) engineering is a powerful
computational imaging techniques wherein a custom phase
mask is integrated into an optical system to encode addi-
tional information into captured images. Used in combi-
nation with deep learning, such systems now offer state-
of-the-art performance at monocular depth estimation, ex-
tended depth-of-field imaging, lensless imaging, and other
tasks. Inspired by recent advances in spatial light modula-
tor (SLM) technology, this paper answers a natural ques-
tion: Can one encode additional information and achieve
superior performance by changing a phase mask dynam-
ically over time? We first prove that the set of PSFs de-
scribed by static phase masks is non-convex and that, as
a result, time-averaged PSFs generated by dynamic phase
masks are fundamentally more expressive. We then demon-
strate, in simulation, that time-averaged dynamic (TiDy)
phase masks can offer substantially improved monocular
depth estimation and extended depth-of-field imaging per-
formance.

1. Introduction
Extracting depth information from an image is a critical

task across a range of applications including autonomous
driving [26, 30], robotics [21, 31], microscopy [7, 18], and
augmented reality [28, 14]. To this end, researchers have
developed engineered phase masks and apertures which
serve to encode depth information into an image [12, 23].
To optimize these phase masks, recent works have exploited
deep learning: By simultaneously optimizing a phase mask
and a reconstruction algorithm “end-to-end learning” is able
to dramatically improve system performance [29, 24].

*These authors contributed equally to this work

Figure 1. Time-averaged Dynamic PSFs Top: Phase mask se-
quence that was optimized to perform simultaneous extended
depth-of-field imaging and monocular depth estimation. Middle:
Proposed TiDy PSFs at specific depths. Bottom left: Depth esti-
mation and all-in-focus imaging performance improve as one aver-
ages over more phase masks. Bottom right: Depth-encoded image
and reconstructed depth map.

Most existing works have focused on learning or opti-
mizing a single phase mask for passive depth perception.
We conjecture that this restriction leaves much room for
improvement. Perhaps by using an SLM to introduce a se-
quence of phase masks over time, one could do much better.

Supporting this idea is the fact, which we prove in The-
orem 2, that the set of PSFs described by a single phase
mask is non-convex. This implies that time-averaged PSFs,
which span the convex hull of this set, can be significantly
more expressive. In this work, we exploit the PSF non-
convexity by developing a multi-phase mask end-to-end op-
timization approach for learning a sequence of phase masks
whose PSFs are averaged over time.

This work’s central contributions are as follows:

• We prove the set of PSFs generated by a single phase
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mask, is non-convex. Thus, dynamic phase-masks of-
fer a fundamentally larger design space.

• We extend the end-to-end learning optics and algo-
rithm design framework to design a dynamic set of
phase masks.

• We demonstrate, in simulation, that time-averaged
PSFs can achieve superior monocular depth estimation
and extended depth-of-field imaging performance.

2. Background
Image Formation Model. One can simulate the forma-
tion of an an image in a camera by discretizing an RGB
image by depth, convolving each depth with it’s the cor-
responding PSF, and compositing the outputs to form the
signal on the sensor. This process can be represented by the
equation

I =

D∑

d=1

Od (L ∗ hd) , (1)

where L represents all-in-focus image, {1, · · · , D} repre-
sent a set of discrete depth layers, Od is the occlusion mask
at depth d, and the set {h1, · · · , hD} represent the depth-
dependent PSF, i.e., the cameras response to point sources
at various depths [9]. Other works assume no depth dis-
continuities [24] or add additional computation to improve
blurring at depth boundaries [10]. Our model is similar to
those used in [29, 3].

PSF Formation Model. A PSF hd can be formed as a
function of distance d and phase modulation φM caused by
height variation on a phase mask.

hd = |F [A exp(iφDF (d) + iφM )]|2 (2)

where φDF (d) is the defocus aberration due to the distance
d between the focus point and the depth plane. Note that
because this PSF depends on depth, it can be used to
encode depth information into I [8].

The key idea behind PSF-engineering and end-to-end
learning is that one can use the aforementioned relation-
ships to encode additional information into a captured im-
age I by selecting a particularly effective mask φM .

3. Related Work
3.1. Computational Optics for Depth Tasks

Optics based approaches for depth estimation use sen-
sors and optical setups to encode and recover depth infor-
mation. Modern methods have used the depth-dependent

blur caused by an aperture to estimate the depth of pixels in
an image. These approaches compare the blur at different
ranges to the expected blur caused by an aperture focused at
a fixed distance [25]. Groups improved on this idea by im-
plementing coded apertures, retaining more high frequency
information about the scene to disambiguate depths [12].
Similar to depth estimation tasks, static phase masks have
been used to produce tailored PSFs more invariant to depth,
allowing for extended depth-of-field imaging [6]. How-
ever, these optically driven approaches have been passed
in performance by modern deep neural networks, allowing
for joint optimization of optical elements and neural recon-
struction networks.

3.2. Deep Optics

Many methods have engineered phase masks with spe-
cific depth qualities. By maximizing Fisher information
for depth, the coded image theoretically will have the most
amount of depth cues as possible [22] and by minimizing
Fisher information, one may achieve an extended depth-
of-field image [6]. Deep learning techniques can be used
to jointly train the optical parameters and neural network
based estimation methods. The idea is that one can “code”
an image to retain additional information about a scene,
and then use a deep neural network to produce reconstruc-
tions. By using a differentiable model for light propagation,
back-propagation can be used to update phase mask values
simultaneously with neural network parameters. This ap-
proach was demonstrated for extended depth-of-field imag-
ing [24, 10, 13], depth estimation [29, 3, 10], and hologra-
phy [5, 4]. While these previous approaches successfully
improved performance, they focused on enhancing a single
phase mask. We build on these works by simultaneously
optimizing multiple phase masks, which allows us to search
over a larger space of PSFs.

4. Theory

Micro-ElectroMechanical SLMs offer high framerates
but have limited phase precision due to heavy quantization
[1]. As [4] noted, intensity averaging of multiple frames can
improve quality by increasing effective precision to over-
come quantization. Our key insight is that even as SLM
technology improves, intensity averaging yields a more ex-
pressive design space than a single phase mask. This is sup-
ported by the claim that the set of PSFs that can be gener-
ated by a single phase mask is non-convex. We provide a
rigorous proof for the claim as follows.

Definition 1. A ∈ {0, 1}N×N is some valid aperture with
a non-zero region S such that there exists lines L1 and L2

where S can be contained between them, and L1 ‖ L2 and
u = S ∩ L1 and v = S ∩ L2 are single points (Figure 2).
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Figure 2. Example aperture that satisfies constraints on A. The
aperture is fitted between parallel lines L1 and L2, which only
intersect the aperture at one point each. Common aperture shapes
fit into these constraints.

This definition of A supports most commonly used aper-
tures including but not limited to circles, squares, and n-
sided regular polygons. See supplement for proof for all
shapes.

Definition 2. Let TA(N) be the set of N ×N matrices in
TN×N with non-zero supportA, i.e. the matrix is supported
only where A = 1, where T is the complex unit circle.

The PSF induced by a phase mask M can be modeled as
the squared magnitude of the Fourier transform of the pupil
function f [29].

Definition 3. Let f : RN×N → TA(N) be defined by

f(M) = A� exp(iD + icM) (3)

where � denotes entry-wise multiplication, and D ∈
RN×N and c ∈ R − {0} (the reals except for 0) are fixed
constants.

Definition 4. Let g : TA(N)→ RN×N be defined by

g(X) =
|F(X)| � |F(X)|
‖F(X)‖2F

(4)

where F denotes the discrete Fourier Transform with suffi-
cient zero-padding, | · | denotes entry-wise absolute value,
and ‖ · ‖F denotes the Frobenius norm.

Lemma 1. From fourier optics theory [8], any single phase
mask’s PSF at a specific depth can be written as

PSF = g ◦ f.

Theorem 2. The range of PSF is not a convex set.

Proof. f is clearly surjective, so it suffices to argue the
range of g is not convex. Assume by way of contra-
diction that the range of g is convex. Then, for all
X(1), . . . , X(k) ∈ TA(N) there exists Y ∈ TA(N) such
that g(Y ) = 1

k

∑k
i=1 g(X

(i)). By Parseval’s Theorem,

‖F(X)‖2F = N2‖X‖2F = N2
N∑

i=0

N∑

j=0

Ai,j (5)

so the condition is

|F(Y )| � |F(Y )| = 1

k

k∑

i=1

|F(X(i))| � |F(X(i))| (6)

or equivalently

F(Y )�F(Y ) =
1

k

k∑

i=1

F(X(i))�F(X(i)). (7)

Then the cross-correlation theorem reduces it to

F(Y ? Y ) =
1

k

k∑

i=1

F(X(i) ? X(i)) (8)

where ? denotes cross-correlation. Because the Fourier
Transform is linear we finally have

Y ? Y =
1

k

k∑

i=1

X(i) ? X(i). (9)

Therefore, the convexity of the range of g is equivalent to
the convexity of the set {X ? X : X ∈ TA(N)}. We will
show the set’s projection onto a particular coordinate is not
convex.

(X ?X)s,r =
N∑

i=0

N∑

j=0

Xi,jXi+s,j+r (10)

where we adopt the convention that Xs,r = 0 when s, r >
N or s, r < 0. Take the points u and v from the definition
of A (1). Also observe that correlation can be represented
geometrically as shifting X over X . In this representation,
notice that as the shift (s, r) approaches v−u, the non-zero
overlap between X and X shifted by (s, r) approaches 1 by
construction. That is, when L1 is shifted to overlap L2, u
and v will be the only non-zero overlaps between the shifted
and original non-zero points (Figure 3). No other non-zero
points can overlap above or below L2 by definition of S.
Therefore, (X ?X)v−u becomes

XuXv +

N2−1∑

i=1

0. (11)
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Figure 3. Geometric interpretation of correlation (X ?X)v−u.
The figure represents the correlation step when the shift is v − u.
Notice that only u and v overlap once the shift is applied.

Because XuXv ∈ T, (X ? X)v−u ∈ T which is a non-
convex set. Therefore, the set of correlation’s of values on
the complex unit circle masked byA is also not convex, and
so is PSF .

Time-averaged PSFs span the convex hull of the set of
static-mask PSFs, meaning there exists some PSFs achiev-
able only through intensity averaging PSFs from a sequence
of phase masks. This implies multi-phase mask learning
may reach a better minimum.

5. Multi-Phase Mask Optimization
5.1. Optical Forward Model

Similar to PhaseCam3D [29], we model light propaga-
tion using Fourier optics theory [8]. In contrast to previous
work, we compute the forward model (1) for multiple phase
masks, producing a stack of output images, which when av-
eraged form our coded image. This coded image simulates
the recorded signal from imaging a scene using a sequence
of phase masks in a single exposure (Figure 4).

5.2. Specialized Networks

For the monocular depth estimation task, we use the Mi-
DaS Small network [20]. This is a well known convolu-
tional monocular depth estimation network designed to take
in natural images and output relative depth maps. The net-
work is trained end-to-end with the phase masks. A mean-
squared error (MSE) loss term is defined in terms of the
depth reconstruction prediction, D̂ and the ground truth
depth map D,

LDepth =
1

N
‖D − D̂‖22 (12)

where N is the number of pixels. This process allows for
the simultaneous optimization of the phase masks as well as
fine tuning MiDaS to reconstruct from our coded images.

For the extended depth-of-field task, we use an Attention
U-Net [17] to reconstruct all-in-focus images. The network
is optimized jointly with the phase mask sequence. To learn
a reconstruction Î to be similar to the all-in-focus ground
truth image I , we define the loss term using MSE error

LAiF =
1

N
‖I − Î‖22 (13)

where N is the number of pixels.

5.3. Joint Task Optimization

We also present an alternative to the specialized net-
works: a single network jointly trained for monocular depth
estimation and extended depth-of-field using a sequence of
phase masks. This network has a basic Attention U-Net ar-
chitecture outputting 4 channels representing depth maps as
well as all-in-focus images. Similar to prior works, we use
a combined loss function, adding a coefficient to weight the
losses for each individual task:

Ltotal = λDepthLDepth + λAiFLAiF . (14)

6. Experiments
6.1. Training Details

We use the FlyingThings3D from Scene Flow
Datasets [15], which uses synthetic data generation to
obtain all-in-focus RGB images and disparity maps. We
use the cropped 278 × 278 all-in-focus images from [29].
In total, we use 5077 training patches and 419 test patches.

Both the optical layer and reconstruction networks are
differentiable, so the phase mask sequence and neural net-
work can be optimized through back-propagation. Each
part is implemented in PyTorch. During training, we use
the Adam [11] optimizer with parameters β1 = 0.99 and
β2 = 0.999. The learning rate for the phase masks is 10−8

and for the reconstruction network it is 10−4, and the batch
size was 32. Finally, training and testing were performed on
NVIDIA Quadro P6000 GPUs.

We parameterize 23 × 23 phase masks pixel-wise as
[13] found pixel-wise parameterization to produce the best
overall performance. The monocular depth estimation task
uses a the MiDaS Small architecture pretrained weights for
monocular depth estimation downloadable from PyTorch
[20]. The extended depth-of-field task pretrains an Atten-
tion U-Net with a fixed Fresnel lens for 300 epochs. For the
joint task, we set λDepth = λAiF = 1 to balance overall
performance, and we pretrain the Attention U-Net for 300
epochs with a fixed Fresnel lens. In simulation, the red,
blue, and green channels are approximated by discretized
wavelengths, 610 nm, 530 nm, and 470 nm respectively.
Additionally, the depth range is discretized into 21 bins on
the interval [−20, 20], which is larger than previous works.
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Figure 4. Multi-phase mask forward model overview. A sequence of phase masks are used to generate a sequence of depth-dependent
PSFs. These PSFs are convolved with depth masked clean images to simulate depth dependent convolution. The images produced by each
phase mask are averaged to create a coded image which is fed into an attention U-Net. The reconstruction loss is back-propagated end-to-
end through the network and the optical model to design phase masks and algorithms capable of performing monocular depth estimation
and extended depth-of-field simultaneously.

6.2. Evaluation Details

For ablation studies on our method, we used the testing
split of the FlyingThings3D set for both monocular depth
estimation and extended depth-of-field imaging [15]. For
comparisons to existing work, we also tested our monocu-
lar depth estimation network on the labeled NYU Depth v2
set [16]. The ground truth depth maps were translated to
layered masks for the clean images by bucketing the depth
values into 21 bins, allowing us to convolve each depth in
an image with the required PSF. We use root mean squared
error (RMSE) between ground truth and estimated depth
maps for depth estimation and RMSE between ground truth
and reconstructed all-in-focus images for extended depth-
of-field imaging. We also use peak signal-to-noise ratio
(PSNR) and structural similarity index [27] (SSIM) for ex-
tended depth-of-field imaging.

6.3. Ablation Studies

6.3.1 Effect of Phase Mask Sequence Length

For both all-in-focus imaging and depth estimation, we vary
the phase mask count that the end-to-end system is trained
with to gauge the benefits of using multiple phase masks.
The forward model and initial phase masks were held stan-
dard while the phase mask count was varied. The resulting
networks were evaluated at convergence. For the extended
depth-of-field task, the masks were all initialized with ran-
dom noise uniform from 0 to 1.2×10−6. For the depth esti-
mation task, the masks were initialized with the Fisher mask
with added Gaussian noise parameterized by a 5.35× 10−7

mean and 3.05× 10−7 standard deviation.
End-to-end optimization on each task with a specialized

network yielded improved performance as the phase mask
count increased, visualized in Figure 5. This result implies
that sequences of phase masks are successful in making the
PSF space more expressive. Additionally, even for the more
complex joint task, learning a system that can produce both

Figure 5. RMSE for specialized tasks for each phase mask se-
quence length. RMSE decreases with respect to phase mask se-
quence length for both specialized extended depth-of-field imag-
ing and monocular depth estimation tasks. 0 phase masks refers to
a reconstruction neural network with a fixed Fresnel lens.

all-in-focus images and depth maps, error decreases with
phase mask count until a plateau, visualized in Figure 6.

6.3.2 All-in-focus without Reconstruction Networks

A phase mask generating a PSF of the unit impulse function
at every depth would be ideal for extended depth-of-field as
each depth is in focus. If possible, this phase mask would
not require any digital processing. We optimize phase mask
sequences of varying lengths to produce an averaged PSF
close to the unit impulse function for all depths. For each se-
quence length, phase masks are optimized using MSE loss
between the unit impulse function and the averaged PSF at
each depth until convergence. We ran 1000 trials of random
phase mask initialization for each length. Observe that a
side-effect of longer phase masks is training stability. The
range of RMSE between the simulated capture image and
ground truth all-in-focus image decreases as the sequence
length increases (Figure 7). This indicates training longer
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Figure 6. RMSE for joint optimization of monocular depth
estimation and extended depth-of-field imaging for each phase
mask sequence length. RMSE decreases with respect to phase
mask sequence length for this complex joint task, demonstrating
the benefit of multi-phase mask learning. 0 phase masks refers to
a reconstruction neural network with a fixed Fresnel lens.

Figure 7. All-in-focus imaging RMSE distribution for each
phase mask length without a reconstruction network. The best
RMSE for each phase mask count has low correlation with re-
spect to phase mask sequence length, but the variance of RMSE
decreases.

sequences is more resilient to initialization.

6.3.3 Phase Mask Initialization for Depth Perception

Deep optics for depth perception can be very dependent on
the initialization of optical parameters before training [29].
To find the extent of the effect of mask initialization on per-
formance, we varied the the initial phase masks while keep-
ing number of masks, the optical model, and duration of
training fixed. We trained for 200 epochs. We tested four
initializations of sequences of 5 phase masks as shown in
Figure 8. The first was uniformly distributed noise from 0
to 1.2×10−6. The second was the first mask in the sequence
set to a Fisher mask while the rest are uniform noise. The
third is setting each mask to a rotation of the Fisher mask
and adding Gaussian noise parameterized by a 5.35× 10−7

mean and 3.05×10−7 standard deviation to 4 masks. Lastly,

Figure 8. Visualization of phase mask initializations. Each row
represents a different initial phase mask sequence.

Initialization RMSE↓
1 Fisher + All noise 0.0329
1 Fisher + Fisher w/ Noise 0.0271
All noise 0.0254
3 Fisher + Fisher w/ Noise 0.0207

Table 1. Quantitative evaluation of phase mask initializations.
Four sequence initializations are evaluated on the monocular depth
estimation task. Ultimately, 3 Fisher masks and 2 noisy Fisher
masks have the best performance after training.

we set each mask to a rotation of the Fisher mask and added
noise to only the last two masks in the sequence. Of the
four initializations, it is clear that the 3 Fisher masks and 2
Fisher masks with noise performed the best (Table 1).

6.3.4 Modeling State Switching in SLMs

Our optical forward model assumes an SLM can swap be-
tween two phase patterns instantly. In practice, however,
some light will be captured during the intermediate states
between phase patterns. These phase patterns, in the worst
case, could be random phase patterns, effectively adding
noise to our coded images. We model these intermediate
states by averaging output images produced by phase masks
and the randomized phase patterns weighted by the time that
they are displayed for. We model the total exposure time as
100ms, with various durations of switching times from 1 to
16ms per swap. We evaluate our joint optimized network
on these new, more noisy, coded images without any ad-
ditional training (Figure 12). Observe that because the 5
phase mask system includes more swaps, performance de-
grades faster than fewer phase mask systems. However, for
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Figure 9. Qualitative results of a specialized network on ex-
tended depth-of-field imaging. Both 1 and 5 phase mask sys-
tems are evaluated on FlyingThings3D. Error is computed pixel
wise between the ground truth all-in-focus image and the recon-
structed output and is boosted by a factor of 3. Notice that the 5
phase mask system introduces minimal error.

short switching times, 5 phase masks still out performs the
others without needing any fine tuning.

7. Results
We compare our time averaged dynamic PSF method

to the state-of-the-art methods for both extended depth-of-
field imaging and monocular depth estimation. The relevant
works we compare to are as follows:

1. PhaseCam3D [29] used a 23 × 23 phase mask based
on 55 Zernike coefficients. The phase mask parame-
ters were then end-to-end optimized with a U-Net re-
construction network to perform depth estimation.

2. Chang et al. [3] used a singlet lens introducing chro-
matic aberrations with radially symmetric PSFs. Sim-
ilar to [29], the lens parameters were also then end-to-
end optimized.

3. Ikoma et al. [10] used a radially symmetric diffractive
optical element (DOE). The blurred image was precon-
ditioned with an approximate inverse of the PSF depth
dependent blur. The RGB image stack was fed into
a U-Net to produce both an all-in-focus image and a

Figure 10. Qualitative results of a specialized networks on
monocular depth estimation. Performance using the five phase
mask method outperforms one phase mask on both datasets.

Figure 11. Qualitative results of a joint optimized system for
extended depth-of-field imagining and monocular depth esti-
mation. Both one and five phase mask networks are evaluated
on the FlyingThings3D datasets. Notice that five masks has fewer
artifacts than a single mask.

depth map. The DOE and U-Net parameters were op-
timized in an end-to-end fashion.
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Figure 12. Effect of switching time on joint system perfor-
mance. Reconstruction error across phase mask counts as a func-
tion of switching time with 100ms overall exposure. Performance
of the jointly optimized system degrades as the switching time be-
tween phase masks increases, as expected. Our system still per-
forms well when the time spent switching is less than 25% of the
overall exposure.

4. Liu et al. [13] used various phase mask parameteriza-
tions with the same U-Net architecture as [10]. One
method used pixel-wise height maps (PW) and the
other introduced orbital angular momentum (OAM).

5. Sitzmann et al. [24] implements a single DOE based
on Zernike coefficients, and solves the Tikhonov-
regularized least-squares problem to reconstruct an all-
in-focus image.

6. MiDaS [19] and ZoeDepth [2] are state of the art single
shot monocular depth estimation methods with all-in-
focus images as inputs.

Because both [10] and [13] simultaneously learn all-in-
focus images and depth maps, when comparing against our
specialized methods, we take their best performing weight-
ing of each task.

Individual Tasks. For monocular depth estimation, our
specialized method using a sequence of 5 phase masks
trained for 300 epochs outperforms prior work on FlyingTh-
ings3D (Table 2). Additionally, our approach performs
significantly better and achieves lower error than previous
methods on NYUv2 without any additional fine tuning. For
extended depth-of-field, our specialized method using a se-
quence of 5 phase masks out performs prior work on Fly-
ingThings3D (Table 3). This demonstrates the benefit of
multi-phase mask learning on computational imaging tasks.

Multi-Objective Optimization. We also evaluate our
method against other joint all-in-focus and depth map learn-
ing approaches. This problem is challenging because good
depth cues to produce depth maps is antithetical to produc-
ing an all-in-focus image. Our combined 5 phase mask

Method FlyingThings3D NYUv2
PhaseCam3D [29] 0.521 0.382
Chang et al. [3] 0.490 0.433
Ikoma et al. [10] 0.184 -
MiDaS [19] - 0.357
ZoeDepth [2] - 0.277
TiDy (1) 0.026 0.259
TiDy (5) 0.019 0.175

Table 2. RMSE comparison of monocular depth estimation
methods. We present quantitative results on two datasets to com-
pare to state of the art optical and single shot monocular depth
estimation methods. Our methods performs best with our 5 phase
mask system achieving the lowest error on both datasets.

Method RMSE↓ PSNR↑ SSIM↑
Liu et al. [13] - 29.80 -
Ikoma et al. [10] 0.1327 31.88 0.905
Sitzmann et al. [24] - 32.44 -
TiDy (1) 0.0148 37.33 0.968
TiDy (5) 0.0092 41.11 0.989

Table 3. Comparison of extended depth-of-field imaging meth-
ods. We present quantitative results on FlyingThings3D to com-
pare to state-of-the-art. Our methods performs best with our 5
phase mask system achieving the best PSNR.

All-in-focus Depth
Method PSNR↑ RMSE↓
Ikoma et al. [10] 31.88 0.191
Liu et al. [13] - PW 29.80 0.056
Liu et al. [13] - OAMt 25.86 0.053
TiDy (1) 31.20 0.052
TiDy (5) 34.79 0.034

Table 4. Comparison of multi-objective optimization of ex-
tended depth-of-field imaging and depth estimation methods.
We compare quantitative results on FlyingThings3D to the state-
of-the-art. Our methods performs best with our 5 phase mask sys-
tem achieving the best balance between objectives.

trained for 300 epochs approach outperforms prior jointly
trained approaches (Table 4).

8. Limitations

While we were successful in learning dynamic phase
masks to improve state-of-the-art performance on imag-
ing tasks, our method still carries some limitations. First,
our optical model assumes perfect switching between phase
masks during training. While evaluation with non-zero
switching times showed little degradation of performance,
accounting for state switching while training could pro-
duce phase masks that are more performant. Our optical
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model also simulates depths as layered masks over an im-
age, which does not account for blending at depth bound-
aries. Additionally, our method assumes that scenes are
static for the duration of a single exposure. Lastly, though
their prices are falling, SLMs are still quite expensive and
bulky.

9. Conclusion
This work is founded upon the insight that the set of

PSFs that can be described by a single phase mask is non-
convex and that, as a result, time-averaged PSFs are fun-
damentally more expressive. We demonstrate that one can
learn a sequence of phase masks that, when one dynam-
ically switches between them over time, can substantially
improve computational imaging performance across a range
of tasks, including depth estimation and all-in-focus imag-
ing. Our work unlocks an exciting new direction for PSF
engineering and computational imaging system design.
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[19] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 2020. 8
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Abstract

This supplement includes a more general proof that the
set of PSFs described by a single phase mask is non-convex.
It also includes an extended discussion of the benefits a
single-shot time-averaged systems has over a multi-shot
burst imaging system.

1. Generalized Proof of PSF Non-convexity

This proof, similar to the one included in the main paper,
will simplify the convexity of the PSF set to the convexity of
cross-correlation. We generalize the result for any aperture
by showing there always exists a shift such that the overlap
of any set of points and their shifts is a single element.

Definition 1. Let D = {v ∈ R2 : ∥v∥ = 1} be the set of all
unit vector directions.

Definition 2. Let setmax and setmin be defined by,

setmax(S, v) = {x ∈ S : x · v = max
x∈S

x · v} (1)

setmin(S, v) = {x ∈ S : x · v = min
x∈S

x · v}. (2)

setmax produces the set of all points in S that are furthest
in direction v, and setmin similarly produces the set of all
points that are furthest in the opposite direction of v.

Lemma 1. For all finite non-empty sets of points S, there
exists some shift δ such that card(S ∩ (S + δ)) = 1 where
S+δ = {x+δ : x ∈ S}, and card(·) denotes the cardinally
of a set. That is, there exists some shift such that S and S
shifted overlap at exactly one point.

Proof. Consider the set of all directions without a unique
maximizer,

V = {v ∈ D : card(setmax(S, v)) > 1}. (3)

Notice that for all v ∈ V , we can treat v as a normal vector
to the line formed by points in setmax(S, v) (Figure 1). V
is the set of normal vectors whose corresponding line inter-
sects multiple points of S. We can upper bound card(V) as
the number of unique lines that intersect two points in S.

card(V) ≤ card({−→xy : x, y ∈ S}) < ∞ (4)

Therefore, V is a finite set (whereas D, the set of all unit
vectors, is clearly an infinite set). Then, there always ex-
ists some u such that u ∈ D and u ̸∈ V . Because u ̸∈ V ,
card(setmax(S, u)) = 1, the direction u has a unique max-
imizer. Let m be the single element of setmax(S, u), and
choose δ ∈ (m− setmin(S, u)). δ is the difference between
u’s unique maximizer and one of u’s minimizers. Observe
that setmax(S, u) and setmin(S, u) define the extents of S
in the direction u (Figure 2). Therefore, when applying the
shift δ, only the furthest point in S in direction u and −u
will overlap (Figure 3). Let T include all points from S ex-
cept m. Then, T and T +δ are disjoint by definition. There-
fore, S ∩ (S + δ) = {m}, which is a single element.

The following is similar to the proof included in the main
paper; however, we relax the condition on A to be any arbi-
trary aperture. Therefore, this proof of PSF non-convexity
produces a more general result.

Definition 3. Let TA(N) be the set of N ×N matrices in
TN×N with non-zero support A, i.e. the matrix is supported
only where A = 1, where T is the complex unit circle.
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Figure 1: Example of vectors in V . Observe that each vector
v1, v2, v3 is perpendicular to a side.

Figure 2: Example of S and a valid direction u. Observe
that there is only one point furthest in direction u, but can
be multiple points furthest in the opposite direction −u.

The PSF induced by a phase mask M can be modeled as
the squared magnitude of the Fourier transform of the pupil
function f [2].

Definition 4. Let f : RN×N → TA(N) be defined by

f(M) = A⊙ exp(iD + icM) (5)

where ⊙ denotes entry-wise multiplication, D ∈ RN×N

and c ∈ R−{0} (the reals except for 0) are fixed constants,
and A ∈ {0, 1}N×N is the aperture.

Figure 3: Example of overlap between S and S + δ.

Definition 5. Let g : TA(N) → RN×N be defined by

g(X) =
|F(X)| ⊙ |F(X)|

∥F(X)∥2F
(6)

where F denotes the discrete Fourier Transform with suffi-
cient zero-padding, | · | denotes entry-wise absolute value,
and ∥ · ∥F denotes the Frobenius norm.

Lemma 2. From fourier optics theory [1], any single phase
mask’s PSF at a specific depth can be written as

PSF = g ◦ f.

Theorem 3. The range of PSF is not a convex set.

Proof. f is clearly surjective, so it suffices to argue the
range of g is not convex. Assume by way of contra-
diction that the range of g is convex. Then, for all
X(1), . . . , X(k) ∈ TA(N) there exists Y ∈ TA(N) such
that g(Y ) = 1

k

∑k
i=1 g(X

(i)). By Parseval’s Theorem,

∥F(X)∥2F = N2∥X∥2F = N2
N∑

i=0

N∑

j=0

Ai,j (7)

so the condition is

|F(Y )| ⊙ |F(Y )| = 1

k

k∑

i=1

|F(X(i))| ⊙ |F(X(i))| (8)

or equivalently

F(Y )⊙F(Y ) =
1

k

k∑

i=1

F(X(i))⊙F(X(i)). (9)

Then the cross-correlation theorem reduces it to

F(Y ⋆ Y ) =
1

k

k∑

i=1

F(X(i) ⋆ X(i)) (10)
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where ⋆ denotes cross-correlation. Because the Fourier
Transform is linear we finally have

Y ⋆ Y =
1

k

k∑

i=1

X(i) ⋆ X(i). (11)

Therefore, the convexity of the range of g is equivalent to
the convexity of the set {X ⋆ X : X ∈ TA(N)}. We will
show the set’s projection onto a particular coordinate is not
convex.

(X ⋆X)s,r =

N∑

i=0

N∑

j=0

Xi,jXi+s,j+r (12)

where we adopt the convention that Xs,r = 0 when s, r >
N or s, r < 0. Observe that cross-correlation can be rep-
resented geometrically as shifting X over X . Let S be the
set of coordinates with non-zero entries in X . Applying
Lemma 1 to S shows that X and X will overlap at exactly
one point. Select points v, u ∈ S such that v− u = δ, then,

(X ⋆X)δ = XuXv +
N2−1∑

i=1

0. (13)

Because XuXv ∈ T, (X ⋆X)δ ∈ T which is a non-convex
set. Therefore, the set of correlation’s of values on the com-
plex unit circle masked by A is also not convex. Conse-
quently, the range of PSF is not a convex set.

2. Discussion: Time Averaging Compared to
Multi-Shot Sequences

Our optical model images a static scene through multi-
ple phase masks which we switch between over the course
of single exposure (Figure 4a). A natural question, then, is
why limit ourselves to a single exposure. Why not capture
a burst of images, each with a different phase mask (Fig-
ure 4b)?

While it is true that superimposing the outputs of multi-
ple PSFs creates challenges in disambiguating outputs from
phase masks, it also offers several benefits. First, because
we only capture a single frame, our system uses less mem-
ory due to less I/O required. Second, imaging in a single
exposure is more light efficient. Over a fixed time interval,
a single exposure allows you to capture the entirety of the
light from the scene. Multi-shot, alternatively, would miss
photons during readout between shots.
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