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Abstract

Diffusion models have become a popular approach for
image generation and reconstruction due to their numer-
ous advantages. However, most diffusion-based inverse
problem-solving methods only deal with 2D images, and
even recently published 3D methods do not fully exploit the
3D distribution prior. To address this, we propose a novel
approach using two perpendicular pre-trained 2D diffusion
models to solve the 3D inverse problem. By modeling the
3D data distribution as a product of 2D distributions sliced
in different directions, our method effectively addresses the
curse of dimensionality. Our experimental results demon-
strate that our method is highly effective for 3D medical
image reconstruction tasks, including MRI Z-axis super-
resolution, compressed sensing MRI, and sparse-view CT.
Our method can generate high-quality voxel volumes suit-
able for medical applications. The code is available at
https://github.com/hyn2028/tpdm

1. Introduction

The diffusion probabilistic model (DPM) uses neural
networks to learn the gradient of the log probability distri-
bution, V 10g pata (), also known as the score function.
Sampling is done by either using Langevin dynamics [38]
or solving the reverse stochastic differential equation (SDE)
using the learned score function [40].

DPM has emerged as a leading generative model in the
image field since its introduction [37, 15, 40], surpassing
other models like GAN in achieving state-of-the-art perfor-
mance [ 10, 30]. The confluence of the diffusion model with
conditioning training is a noteworthy synergy, constituting
a foundational framework within the domain of text-guided
image generation [30, 32, 29]. Furthermore, its versatile
applicability extends to novel realms like brain vision de-
coding [3, 41]. It is also being explored as a generative
model in other various areas such as audio [28, 22, 18],
video [2, 36, 26], radiance field [27, 35], and graph [43, 17].

“These authors contributed equally to this work

Despite the slow sampling speed due to sequential sam-
pling over multiple time steps, diffusion models offer sig-
nificant advantages over other generative models, includ-
ing sampling-time scalability. The pre-trained score func-
tion model can be used for conditional sampling without
retraining, thanks to Bayes’ theorem [10, 16]. This condi-
tional sampling-based inverse problem-solving method can
be interpreted as posterior sampling with diffusion gener-
ative priors. Thus, it effectively avoids bias and regres-
sion to the mean phenomena from the supervised likeli-
hood optimization methods. In due course, the paradigm
of diffusion-based inverse problem-solving methodology
[40, 20, 7, 5, 4, 39, 6, 45] has risen to the forefront as a
state-of-the-art technique within the realm of study.

Most contemporary diffusion-based inverse problem-
solving methods are focused on 2D applications. However,
a recent method called DiffusionMBIR [6] has been pro-
posed to address 3D inverse problems in medical imaging.
In DiffusionMBIR, the diffusion model trained on the pri-
mary XY-plane is used as the prior, and the generative prior
is augmented with a model-based prior, namely total varia-
tion (TV), to enforce smoothness to the adjacent slices (Z-
axis). While this approach has been effective for various
tasks, it still has limitations because it does not fully learn
the 3D prior distribution of the data. More specifically, the
TV prior only imposes local dependencies that are derived
from finite difference operators, whereas the true 3D prior
should model global dependencies.

To overcome this limitation, we propose a new method
called Two Perpendicular 2D Diffusion Models (TPDM) for
3D generation. TPDM fully leverages the 3D generative
prior by modeling the 3D data distribution with a prod-
uct distribution of 2D constituents, without relying on a
model-based prior. This approach allows TPDM to effec-
tively learn the 3D prior using only two 2D diffusion mod-
els: the primary model that operates on the XY-plane and
an auxiliary model that learns the YZ-plane. Unlike the
previous DiffusionMBIR approach, TPDM can model the
global dependencies of the 3D structure, and it eliminates
the need for sub-optimization schemes required to impose
the TV constraint. It is worth mentioning that, unlike Diffu-
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Figure 1. (Left) A visualization of our proposed method. (Right) We display the results of solving the 3D inverse problem using the
proposed method, with MR-ZSR and CS-MRI techniques shown in the center and right panels, respectively. The first row shows the
measurements, the second row displays the output from our proposed method, and the third row presents the ground truth. In the MR-
ZSR approach, the slice thickness was improved from Smm to Imm using super-resolution techniques. In the CS-MRI approach, Poisson

sub-sampling was used to accelerate the process by a factor of 48.

sionMBIR which is designed specifically for inverse prob-
lem solving, TDPM is a fully general 3D generative model,
which can be used both for conditional and unconditional
sampling.

In this paper, TPDM has been tested in various 3D med-
ical imaging reconstruction problems such as MRI Z-axis
(i.e. vertical axis) super-resolution (MR-ZSR), compressed
sensing MRI (CS-MRI), and sparse view CT (SV-CT) and
has produced the state-of-the-art results compared to ex-
isting methods. Especially, to the best of our knowledge,
we have achieved the first successful attempt at a diffu-
sion model-based MR-ZSR both technically and clinically
(Fig. 2). We also demonstrated that TPDM can generate
a very high-quality, complete 3D voxels volume as a pure
generative model (Fig. 7). Our contributions can be sum-
marized as follows.

1. We developed a novel, simple, yet effective method to
solve the 3D volume inverse problem with two perpen-
dicular 2D diffusion models as a 3D prior, in a fully
unsupervised manner, without the need for re-training.

2. We applied it to various medical imaging reconstruc-
tion problems and achieved the best-known perfor-
mance. In particular, TPDM succeeded in the first at-
tempt at a diffusion model-based MR-ZSR.

3. Finally, we demonstrated that TPDM can also function
as a 3D generative model, generating high-quality 3D
voxel volumes.

2. Background
2.1. Score-based diffusion models

The diffusion model [37, 15, 40] is a model family that
defines a process that noises the original data gradually,
called a forward process, and expresses the generation pro-
cess by performing the learned reverse process of this nois-
ing process. Among them, the score-based diffusion model
introduced by Song et al. [40] defines the forward process
through the following Itd stochastic differential equation
(SDE). Throughout the diffusion process, the data x can
be represented by x(t) = x;, with continuous time index
t € [0,1]. ®o ~ Pdata is the raw data distribution, and
x1 ~ Py is the predefined prior distribution.

de = f(x,t)dt + g(t)dw, (1)

where the function f : R x R — R¢ is the drift function,
and the function g : R — R is the diffusion coefficient. w
is the standard Wiener process, also called Brownian mo-
tion. The reverse-time SDE of Eq. (1) can be expressed as
follows [1, 40]:

dx = [f(,t) — g(t)*Va, log p(z,)]dt + g(t)dw  (2)

where  is also the standard Wiener process.

In order to solve the reverse-time SDE for the genera-
tion process, a time-dependent score function V, log p(x:)
is required, which can be obtained by training the neural



network-based score function estimator sg through the de-
noising score matching (DSM) objective [44, 40]

Va, log p(xi|zo)||3]  (3)

Setting f(x,t) = 0 and g(t) = 4/ dlo>®)] (f)] with the pos-

itive time-dependent increasing noise scale function o (t),
we achieve the so-called variance exploding SDE (VE-
SDE). The sampling process of VE-SDE can be effectively
solved by replacing the score function with the score net-
work which is trained by the DSM objective.

IIltL)irllEgMch,:,;0 [lse(z(t),t) —

2.2. Diffusion posterior sampling

Diffusion posterior sampling (DPS) is one of the state-
of-the-art methods to solve the general noisy inverse prob-
lem introduced by Chung et al. [5] by using the diffusion
model as a prior. Consider a general forward model of the
inverse problem can be defined as:

y = A(zo

)+ mn, y,necR" xzecR? 4)

where A is the forward measurement function and n is the
measurement noise. To solve the inverse problem using the
diffusion prior, we can use Bayes’ rule to obtain

Va, logp(xi|y) = Vg, logp(x;) + V, log p(y|:)
~ sg+(x¢,t) + Vg, logp(ylz:). (5)

Nonetheless, since there is no explicit relationship between
x; and y, we cannot use (5) directly. To circumvent this
problem, [5] proposes an approximation with a theoretically
guaranteed upper bound on the approximation error

Va, logp(yla:) ~ Vg, log p(y|&o(x)), (6)

where
&o(z;) = Elxo|ay] = 2 + 0% (1) Vg, logp(x) (1)

is the Tweedie denoised estimate [11, 21]. Accordingly,
when the measurement noise is Gaussian, one can use:

AV, [|A(Zo () — y|2.
(8)

3. Two Perpendicular 2D Diffusion Model
3.1. Modeling data distribution

Vaz, logp(x:i|y) ~ so=(x4,1) —

To overcome the drawbacks of DiffusionMBIR, here we
describe our method of applying priors that is closer to the
actual 3D distribution than DiffusionMBIR. Our simple yet
effective solution is, by modeling the 3D data distribution as
the product distribution, to additionally use an auxiliary dif-
fusion model trained on 2D slices in different directions of

the volume, in addition to the primary 2D diffusion model
to solve the inverse problem (Fig. 1). This allows us to ef-
fectively drive a diffusion model in high dimensional space,
much like the utilization of factorization methods in diverse
deep learning scenarios for efficiency [33, 13, 12].

Specifically, our proposal is to model the data distribu-
tion as the product distribution given by

po.g(x) = a4 (x)*qy ()% /2 ©)
= [0 (@ 1) e (@) - 0P (@1 a)] 10
X [q((;)(w[l,:,:])Qé,a) (®(2,:,9) - qé,a) (za,-.0))° /2,

where Z is an appropriate normalizing partition function,
(p )( ) is the distribution modeled by the primary model

parameterlzed with 6, and q(a)( ) is the distribution mod-
eled by the auxiliary model parameterized with ¢, for x €
R xd2xds Moreover, «, 3 induces weighting between the
two distributions according to the importance. We further
assume that both qép ) and q‘(;) can be decomposed into in-
dependent 2D (slice) distributions.

Accordingly, when performing unconditional sampling
from the prior distribution pg (), we can directly use

Vaz, logp(x:) = aVy, log q(m (xt)+ BV, log q("')(a:t)
= azgi1vmf, log q(p) (wt,[:,:,i] )+ﬁzg;1vmf log q(a) (wt,[i,:,:])
~ oS, 5P (@ o) + BDE 832 (2 i), (1)

where x; ;. .} and @y |. . ;) denote the ¢ and j-th z- and 2-
slice of x;, respectively, and

8 P(® )] = S(Th[:0) (12)
%P ($ Jese ,1]) [otherwise] — 0
3D (mt [L:,.]) li,0,:] = (mt [i,:,:]) (13)
SD( Lt [4,:,: ]) [otherwise] — 0

which used the trained 2D score estimator s(-) due to our
2D slice independence assumption. However, care must
be taken since simply using this approximation would be
compute-heavy, as one would have to evaluate two forward
passes per each iteration. In this regard, we propose a sim-
ple fix to this problem by using alternating updates
ngg(xt,[:,:,i])a with P = a/(a + B) (14)
32 (xr i), withP=B/(a+p)

where PP denotes the probability of each step to be per-
formed. (14) can be implemented in regularly structured
intervals or in a stochastic fashion, which we discuss in de-
tail in Section 3.2.



Finally, in order to solve the inverse problem, we can
leverage the following result:

Ve, log p(x:|y) ~ aVs, log ¢ (z;)

(@) . (15)
+ vat Iqu N (mt) + th Ing(y|x0($t))v

where is simplified similar to unconditional sampling in
(14) as

Esg?(ﬂ;‘t’[:,:’i]) + ’thmf, 10gp(y|a§0(a:t)), withP = a/(a + B)
with P = B/(a + B)

Esig(xt,[i,:,:])v

(16)

where 7y, is the step size that also absorbs the weighting
factor induced by a and 3.

3.2. Solving 3D reconstruction problem with TPDM

Training of TPDM is performed by training the primary
and auxiliary 2D diffusion model (for the algorithm, see
Appendix A.1). The primary 2D diffusion model sg- se-
lects an appropriate plane when solving the inverse problem
and is trained with sliced images of 3D volumes into the
corresponding plane. For example, in the case of CS-MRI
and SV-CT, it is the axial plane, and in the case of MR-ZSR,
it is the sagittal or coronal plane. An auxiliary 2D diffusion
model s~ is trained by selecting one of the two remaining
planes of the volumes.

In order to solve the inverse problem, conditional sam-
pling is performed alternately using the trained TPDM for
each step of one time-step denoising (Algorithm 1). While
the algorithms are presented individually for clarity, they
can be batched for computational efficiency. In each de-
noising step, we use the primary diffusion model sg« to
constrain the consistency of measurements y and sample an
image using the DPS [5]. The hyperparameter A\ controls
the strength of the measurement consistency. The auxiliary
diffusion model s~ is used to correct inconsistencies in the
batch direction caused by the primary diffusion model. We
adjust the contribution of the two models using the integer
hyperparameter /K (for non-integer values of K, see Ap-
pendix A.2). For example, if K'=4, the primary model and
the auxiliary model contribute to image generation at a ratio
of 3:1, respectively.

4. Methods

In this paper, we investigate various applications of
TPDM, which include medical domain inverse problems
such as 1) MRI Z-axis (vertical axis) super-resolution (MR-
ZSR), 2) compressed sensing MRI (CS-MRI), and 3) sparse
view CT (SV-CT). In addition to solving the 3D inverse
problem that applies conditioned sampling of the diffusion
model, 4) TPDM is also used to generate unconditioned
high-fidelity 3D voxels volumes in Brain MRI.

Algorithm 1 Solving 3D Inverse Problem with TPDM
Require: Y e Ndixdoxds = A(.) . Nhxd _y Ndixdy
So*, S¢*’ {UZ}(l), Na Ka )\

Xn ~N(0,021) € Nt xd2xds
foriin N —1:0do
t &
X, + torch.empty_like(X n)
if mod (i, K) # 0 then
for jin1:ds do
€T < Xi+1[:7 Z,j]
y < Y[, 7]
o+ x + 07 - sp-(x,1)
' <+ step_2D_DPM(x, sg+, 04, t)
x ' — A\Va||A(2o) — yll3
Xi[: 5 4] 2"

end for
else
for jin1:d; do
€T < Xi-i—l[j; 5 Z]
x’ < step 2D DPM(x, S+, 0y, t)
X’L[]? 5 :] —
end for
end if
end for
return X
4.1. Dataset

The MR-ZSR, CS-MRY], and the 3D volume voxel gener-
ation task used our IRB-approved in-house brain MRI im-
age dataset (i.e. BMR—-ZSR~1mm and BMR-Z SR~ 5mm). For
detailed information, see Appendix B.1. All volumes are
in the shape of a 256x256x256 cube and standard 3T T1-
weighted images. BMR—-ZSR-1mm, which is used for train-
ing and retrospective evaluation, has a 1mm slice thickness.
923 volumes (236,288 2D images) were used as a training
dataset, and 1 volume was used as a test dataset with the ret-
rospective slice thickness degradation or the CS-MRI sub-
sampling simulation. BMR—ZSR~-5mm, which is a prospec-
tive dataset acquired at a slice thickness of 5mm, was used
for the prospective clinical evaluation of MR-ZSR.

SV-CT task used the public CT dataset provided in
the AAPM 2016 CT low-dose grand challenge [25]. The
dataset consists of a total of 10 volumes of contrast-
enhanced abdominal CT. To make the volume a 256 x 256 x
256 cube, we resized the X'Y-plane to 256 x 256 and cropped
the common part in the Z-direction to make the length 256
(i.e. LDCT-CUBE Dataset). One of the 10 volumes was
used as the test dataset with the retrospective measurement
simulation, and the remaining 9 were used as the training
dataset. The data we used for training was only 2304 2D im-



ages so that we can demonstrate reliable performance even
when the training data was small.

4.2. Measurement model for inverse problems

MR-ZSR. The goal of this task is to perform super-
resolution of a Smm slice thickness MRI image to 1mm
slice resolution for quantitative brain MR analysis such as
cortical thickness measurement. Considering the slice se-
lection process of MRI, the forward measurement kernel
can be modeled by combining adjacent voxels in the Z-axis
direction with averaging operation. For example, for Smm
to Imm slice super-resolution, the forward model is an op-
eration of degrading a 1mm slice image by grouping 5 ad-
jacent XY-plane along the Z-axis direction and averaging
each group to get a Smm slice image. Here, we defined the
number of pixels in the Z-axis direction of a group to be
merged as merge size (M).

We used the forward kernel just presented when creating
the retrospective degraded MRI dataset (Imm — 2, Smm).
We also used a slightly different forward measurement
kernel used in the DPS step when solving the inverse
problem MR-ZSR. The kernel is similar to the averaging
process, but when averaging, divide by v/M instead of
dividing by M, which is inspired by Song et al. [40] and
Chung et al. [7]’s diffusion model-based image colorization
method.

CS-MRI and SV-CT. The forward measurement kernel for
compressive sensing MRI (CS-MRI) involves applying a
2D subsampling mask to each slice of the image after trans-
forming it into a k-space using a 2D Fourier transform. The
resulting measurement y is given in the k-space domain. In
the case of sparse view CT (SV-CT), the forward measure-
ment kernel is determined by the sparse view CT acquisition
scenario, where angular projection views are subsampled at
a sparse set of angles. The measurements are given in sino-
gram space.

4.3. DPM training and sampling

Both the MRI model and the CT model were trained and
inferred under the common model setup and algorithms.
The 2D image diffusion model constituting the TPDM used
ncsnpp [40] using VE-SDE which is scheduled by a geo-
metric sequence 0(=0.01 to 01=378. All inputs were nor-
malized between 0 to 1. In the MR-ZSR problem, the YZ-
plane (coronal) was used for the primary model and the XY-
plane (axial) was used for the auxiliary model. In all other
problems, the XY-plane (axial) was used for the primary
model and the YZ plane (coronal) for the auxiliary model.
The training was conducted with batch size 8, and the MRI
model and CT model performed 300K and 100K training it-
erations, respectively. For the sampling stage, N=2000 and
predictor-corrector sampling [40] method were employed.

4.4. Comparison methods and evaluation

For the 3D medical inverse problem, our method was
compared with DiffusionMBIR [6], DPS [5], MCG [7],
score-MRI [§], score-CT [39], L1-Wavelet [24], FBPCon-
vNet [19] and ADMM-TYV. DiffusionMBIR is the state-of-
the-art method to solve general 3D inverse problems which
outperformed existing methods such as Score-MRI, Du-
DoRNet [47], U-Net [31] and Zero-filled in CS-MRI and
outperformed previous methods such as MCG, Labhiri et
al. [23], FBPConvNet, and ADMM-TV in SV-CT. As
the MR-ZSR problem is a new endeavor, no diffusion-
based method has been devised to address it specifically.
Quantitative evaluation was performed using peak-signal-
to-noise-ratio (PSNR) and structural similarity index mea-
sure (SSIM) [46] for the retrospective test dataset. PSNR
was evaluated in a 3D volume, and SSIM measured the av-
erage value of results of 2D slices for each slice direction
(axial, coronal, and sagittal).

For the evaluation of MR-ZSR’s clinical implications,
seven patients with ischemic stroke were included in the
evaluation (BMR—-ZSR-5mm). Visual assessments of corti-
cal atrophy and white matter hyperintensity were conducted
using the Global Cortical Atrophy scale [14] and Fazekas
grade [34], respectively. Using the TDPM, the prospective
standard T1-weighted images with a 5 mm thickness were
reconstructed into Imm images. Five out of seven patients
had 3D volumetric 1 mm T1-weighted images acquired si-
multaneously with a 5 mm T1-weighted image. The mean
cortical thickness obtained with an upscaled T1-weighted
image was compared to the mean cortical thickness mea-
sured with a Imm raw T1-weighted image as the ground
truth. Using FreeSurfer [42] and ATROSCAN (JLK Inc.,
Seoul, Republic of Korea) based on Swin U-net [9], the cor-
tical thickness was measured.

5. Experimental Results
5.1. MRI Z-axis super-resolution (MR-ZSR)

We first conducted MRI Z-axis x5 super-resolution im-
ages of Smm slices, which are mainly taken in clinical prac-
tice, to Imm with the retrospective Smm test dataset, and
the results are in the Table | and Fig. 2. For another merge
size, see Appendix C.I. MR-ZSR using TPDM showed
quantitatively better results than any other diffusion-based
2D/3D inverse problem-solving methods [6, 5, 7], and no
artifacts occurred in any slice direction of the volume. In
addition, the use of the auxiliary model not only improves
the quality of the slice in the auxiliary direction but also has
the effect of improving the detail of the entire slice direc-
tions (see (c) and (d) of the Fig. 2).

Notably, DiffusionMBIR [6], which is known to be
the highest-performing general linear 3D inverse problem
solver, did not work at all for our custom-designed MR-ZSR



Figure 2. MR-ZSR results from Smm— 1mm (x5) of the retrospective test volume (first row: coronal slice, second row: axial slice, third
row: sagittal slice). (a) measurement, (b) DiffusionMBIR [6], (c) DPS [5], (d) proposed method, (e) ground truth. For (d), first row:

primary plane, second row: auxiliary plane.

SSIM ¢

Method PSNR 1 Axialt  Coronal*  Sagittal
TPDM (ours) 35.97 0.970 0.966 0.964
TPDM-MEAN 32.84 0.963 0957 0.955

TPDM-MCG 34.48 0.961 0955 0.954
DiffusionMBIR [6] N/W
DPS [5] 34.77 0.965 0963  0.960

MCG [7] 32.72 0.951 0948 0944

Table 1. Quantitative evaluation (PSNR, SSIM) of MR-ZSR
(S5mm— 1mm; x5) on the BMR-ZSR-1mm test set. TPDM-MCG:
TPDM uses MCG instead of DPS, TPDM-MEAN: The forward
model used to create the retrospective dataset is used. N/W: Not
Working. *: primary plane, *: auxiliary plane.

forward measurement kernel. This problem is caused by the
total variation loss term, which is a key point loss term that
gives consistency in the batch direction in DiffusionMBIR.

As a forward model of TPDM, when merging slices, di-
viding the sum of slices by v/M (TPDM) instead of using
N (TPDM-MEAN) yielded superior results. In addition,
as a method for imposing measurement consistency con-
straints on the generation of the main model, TDPM with
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Figure 3. Comparison of the brain cortical thickness measurement
result of paired ground truth 1mm volumes (1mm) and upscaled
volumes from 5mm to 1mm with TPDM MR-ZSR.

DPS (TPDM) exhibited superior outcomes than TDPM with
MCG (TPDM-MCQG), which is consistent with [5].

The cortical mask measured in the reconstructed Imm
image was comparable to the mask estimated in the raw
Imm image by FreeSurfer (Appendix. C.1), with a mean
difference of 0.0610.11 (paired t-test, p=0.28), indicating
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Figure 4. Relationship between mean cortical thickness, and age
(a) and GCA scale (b) measured through brain MRI volume that
upscaled from Smm to 1lmm with TPDM MR-ZSR.

that reconstructed T1 images by TDPM are reliably used
for cortical thickness measurement that was not available in
routine T1 image in clinical practice (Fig. 3). When the cor-
tical thickness was measured by ATROSCAN, the cortical
mask in the reconstructed 1mm image was larger than the
cortical mask in the raw Imm image; the mean difference
was 0.34+0.08 (paired t-test; p<0.001). Nonetheless, the
difference is in a quite reasonable range for clinical uses.

Although age-dependent cortical thickness decline was
not clear in Freesurfer in the reconstructed T1 images, its
general tendency was clearly observed in ATROSCAN as
demonstrated by the dot plot (Fig. 4A). A similar trend
was observed in the Global Cortical Atrophy scale (GCA),
where cortical thickness by ATROSCAN was better corre-
lated with than that by FreeSurfer (Fig. 4B), albeit the dif-
ference between scales was not significant due to the small
sample (p=0.82 and 0.22, respectively).

Routine brain MR T1 images are typically acquired with
Smm thickness to save scan time. The findings from this
study suggest that the TDPM model could significantly ex-
pand the pool of eligible images for volumetric measure-
ment, which would facilitate cognitive decline research.
This is particularly important given that current routine
Smm acquisition protocols are inadequate for such research.
Further investigations with larger sample sizes and more di-
verse populations will be needed to fully demonstrate the
clinical implications of image reconstruction with TDPM.

5.2. Compressed-sensing MRI (CS-MRI)

We also evaluated TPDM by performing reconstruction
on retrospective x48 acceleration Poisson sub-sampled CS-
MRI volumes (Fig. 5, Table 2). For other acceleration fac-
tors, see Appendix C.2. Similarly to the outcomes by MR-
ZSR, TPDM showed the best results compared to the prior
art 2D/3D reverse problem-solving methods. Fig. 5 also
shows that TPDM accurately reconstructed the details, sur-
passing all other methods.

SSIM 1
Method PSNR 1 Axial* Coronal™  Sagittal
TPDM (ours) 3717 0.966 0.967 0.965
DiffusionMBIR [6] 34.83 0.907 0.909 0.906
ADMM-TV 27.01 0.812 0.802 0.812
DPS [5] 35.30 0.950 0.951 0.949
score-MRI [§] 32.75 0.849 0.853 0.855

L1-Wavelet [24] 23.15 0.557 0.530 0.535

Table 2. Quantitative evaluation (PSNR, SSIM) of CS-MRI (Pois-
son, x48 acc.) on the BMR-ZSR-1mm test set. *: primary plane,

T auxiliary plane.
SSIM 1
Method PSNR 1 Axial* Coronalt  Sagittal
TPDM (ours) 38.25 0.947 0.951 0.949
DiffusionMBIR [6] 34.78 0.857 0.856 0.861
ADMM-TV 30.33 0.856 0.894 0.867
DPS [5] 38.20 0.942 0.943 0.941
score-CT [39] 37.56 0.922 0.922 0.924

FBPConvNet [19]  32.09 0.945 0.932 0.931

Table 3. Quantitative evaluation (PSNR, SSIM) of SV-CT (36-
view) on the LDCT-CUBE test set. *: primary plane, T: auxiliary
plane. Note that only 2304 2D images were used for training.

5.3. Sparse-view CT (SV-CT)

The CT problem was used for only 9 volumes (about
2000 2D images) as a train dataset data to test the per-
formance of TPDM in extremely small data conditions.
The experimental results for 36-view SV-CT are shown in
Table 3, Fig. 6. Despite training with a highly limited
dataset, the TPDM model performed well compared to the
other models. Although the quantitative improvement over
DPS [5] is not large, TPDM outperforms DPS significantly
due to DPS being a 2D inverse problem solver which intro-
duces artifacts in the batch direction when applied to 3D
inverse problems. In the case of FBPConvNet [19], the
SSIM in the axial direction has a small improvement, but
since it is also a 2D model, it exhibits poor performance for
other slice directions. Furthermore, the blurred outcomes
commonly observed in convolutional networks trained us-
ing supervised techniques remain evident.

5.4. Unconditional 3D voxels volume generation

Using TPDM, we attempted to generate a full 3D
voxel volume unconditionally (for the algorithm, see Ap-
pendix A.3). We trained the TPDM model using the
BMR-ZSR-1mm dataset and used it to generate an MRI vol-
ume of the human head, the results of which are presented
in Fig. 7. Notably, we were able to create a complete three-
dimensional voxel volume with high resolution and quality,
without relying on any measurement guidance. We believe



Figure 5. x48 acceleration Poisson sub-sampled CS-MRI reconstruction results of the retrospective test volume (first row: axial slice,
second row: coronal slice, third row: sagittal slice). (a) Measurement, (b) DPS [5], (c¢) DiffusionMBIR [6], (d) proposed method, (e)
ground truth. For (d), first row: primary plane, second row: auxiliary plane.

that TPDM’s ability to generate 3D volumes is not solely
due to the 2D image order guidance provided by the mea-
surement in the DPS step, but also due to the alternative
denoising algorithms of the two diffusion models. The em-
pirical evidence presented here supports the reasonableness
of our proposed data distribution assumptions.

6. Conclusion

In this study, we introduced TPDM, a method for solv-
ing the general 3D inverse problem and generating vox-
els volume with pre-trained two perpendicular 2D diffu-
sion models. TPDM works in a completely unsupervised
manner and does not require any fine-tuning for individ-
ual inverse problems. It handles 3D volume without us-
ing any 3D diffusion model by assuming a 3D distribu-
tion as the product distribution of 2D distributions, effec-
tively avoiding the curse of dimensionality while still uti-
lizing probability distributions of 3D volume. Our findings
indicated that TPDM outperforms existing state-of-the-art
3D inverse problem-solving methods on several medical 3D
reconstruction problems, even when trained with a signifi-
cantly limited amount of data. Finally, using TPDM and a

novel forward measurement model, we first-ever attempted
diffusion-based Z-directional super-resolution of MRI im-
ages and demonstrated exceptional outcomes in both tech-
nical and clinical aspects.
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Figure 6. 36-view SV-CT reconstruction results of the retrospective test volume (first row: axial slice, second row: coronal slice, third row:
sagittal slice). (a) Measurement, (b) FBPConvNet [19], (¢c) DPS [5], (d) proposed method, (e) ground truth. For (d), first row: primary
plane, second row: auxiliary plane.

Figure 7. Results of the human head MRI volume generation using unconditioned TPDM. To visualize the volume, the iso-surface contour
is expressed as a surface after removing a quarter of the volume.
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Supplementary Material

A. Additional algorithms
A.l. Training TPDM

TPDM can be trained with a three-dimensional volume
dataset and Algorithm 2.

Algorithm 2 Training TPDM

Require: {X; € Ndixdaxds} M f511
Dyrim < {}, Daua < {} > Create 2D datasets
foriin1: M do
for jin1: ds do
Dprim-add(Xi[:v 7]])
end for
for jin1:d; do
Doyy-add(X;[4, 5 :])
end for
end for
sg+ + train 2D _DPM(Dyim, {0 }3)
8¢+  train2D_DPM(Dgyzs {04 }0)
return sg«, Sg«

> Train DPMs

A.2. Sampling with real value K

When K is a real number, select the primary model and
the auxiliary model in a stochastic way through sampling
from the Bernoulli distribution with p = 1 — 1/K (Algo-
rithm 3).

A.3. 3D voxel volume generation with TPDM

TPDM’s unconditional sampling can be performed by
removing the DPS step of the primary model from the con-
ditional sampling algorithm of TPDM (Algorithm 4).

B. Dataset
B.1. BMR-ZSR-5mm

We generated a Imm volumetric dataset (i.e.
BMR-ZSR-1mm) using structural brain 3T TI1-weighted
images from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset (271 subjects with probable dementia
and 211 subjects with normal cognition) and data from a
university hospital’s voluntary health screening program
(441 normal). Evaluation was performed on 1 subject from
the ADNI dataset which has normal cognition with the
retrospective slice thickness degradation or the CS-MRI
sub-sampling simulation.

The prospective Smm volumetric dataset (i.e.
BMR-ZSR-5mm) is also structural brain 3T T1-weighted
images, which is composed of seven patients with ischemic
stroke. The clinical information of the subjects is in
Table 4. Five out of seven patients had 3D volumetric Imm

Algorithm 3 Solving 3D Inverse Problem with TPDM
Require: Y e Ndixdoxds = A(.) . Nhxd _y Ndixdy
So*, S¢*’ {UZ}(1)3 Na Ka )\

Xn ~N(0,021) € Nt xd2xds
foriin N —1:0do
is_primary ~ Bernoulli(1 — +)
t &
X « torch.empty_like(X n)
if is_primary then
for jin1:ds do
€T < Xi+1[:7 Z,j]
y < Y[, 7]
o+ x + 07 - s (x,1)
' + step2D_DPM(x, sg+, 04, t)
x ' — A\Va||A(®o) — yll3

X[ty 4] < 2"
end for
else
for jin1:d; do
€T < Xi-i—l[j; 5 Z]
x’ < step_2D_DPM(x, S+, 0y, t)
Xi[j,::] <«
end for
end if
end for
return X

Algorithm 4 Unconditional Sampling with TPDM
Require: sg-, sg+, {0;}}, N, K
Xy ~N(0,021) € Ndixdaxds
foriin N —1:0do
t &
X, « torch.empty_like(X n)
if mod (i, K) # 0 then
for jin1:ds do
€Tr < Xi+1[:7 I,j]
x’ <+ step2D_DPM(x, sg+, 0, t)

X[y 4] 2
end for
else
for jin1:d; do
€T < Xi—i—l[j; 5 Z]
x' < step 2D DPM(x, S¢, 0, t)
Xilj,:,:] < o
end for
end if
end for
return X

T1-weighted images acquired simultaneously with a Smm



T1-weighted image.
B.2. LDCT-CUBE

The LDCT-CUBE dataset was built based on the
contrast-enhanced abdominal CT presented in the AAPM
2016 CT low-dose grand challenge [25]. The data set
was converted into 10 volumes with 256256 slices in the
axial slice direction through the same method as in [6]
(LDCT). Since LDCT has different lengths in the vertical
axis direction, a common part of volumes was manually
selected and 256 consecutive slices were cropped to gen-
erate 256x256x256 cube-shaped volumes. Zero padding
was added if the original slice was less than 256 slices. See
Table 5 for the detailed cropping parameters.

C. Additonal results
C.1. MRI Z-axis super-resolution (MR-ZSR)

Additional results of the prospective clinical evaluation
of a slice thickness of Smm to lmm MR-ZSR are shown
in Fig. 8, Fig. 9, and Table 6. It was shown that MR-ZSR
using TPDM works well for various GCA scales, especially
in the presence of lesions. Although the BMR—-ZSR-5mm
had slightly different MRI sequence parameters from the
BMR-ZSR-1mm used for training, TPDM was well adapted
without any additional model modification. These recon-
structed 1 mm images were evaluated as suitable for use as
an input for a conventional cortical mask segmentation al-
gorithm designed to operate only on images acquired with
actual 1mm slice thickness.

Table 7 shows the results of the retrospective quantitative
evaluation of MR-ZSR with a slice thickness of 3mm to
Imm.

C.2. Compressed-sensing MRI (CS-MRI)

We further attempted reconstruction on x 8 and x24 ac-
celerated Poisson sub-sampled CS-MRI volumes. The re-
sults are Table 8 and Table 9, respectively. If the problem
is straightforward (x 8 acceleration), each 2D image can be
restored with a high degree of accuracy, leading to near-
perfect outcomes even with only the 2D solving method
(DPS [5]). Nevertheless, as the complexity of the challenge
increases (x24, x48), we can only get better results in 3D
with the assistance of a 3D prior.

D. Sampling hyperparameters

Sampling hyperparameters utilized for TPDM,
MCG [7], DPS [5], DiffusionMBIR [6], score-MRI [£],
and score-CT [39] are presented for each experiment. The
sampling hyperparameters for all comparative experiments
were configured to match the specific hyperparameters that
yielded optimal results from the models identified during

GCA O GCA 1 GCA2

Prospective Smm

Reconstructed Imm

Figure 8. Result of the prospective Smm—1mm (x5) MR-ZSR for
different GCA scales. first/second row: primary plane, third row:
auxiliary plane.

(b) Raw lmm (¢) Raw lmm
FreeSurfer ATROSCAN

®®

(f) Reconstructed
Imm ATROSCAN

(d) Reconstructed
Imm Imm FreeSurfer

(e) Reconstructed

Figure 9. Comparison of estimated cortical mask between raw
Imm image and Smm—1mm (x5) image from the prospective
test volume.

the experimental phase. Common to all experiments in
TPDM, an integer value K=2 was used for the MRI model,
and a real number value K'=2.7 was used for the CT model.
All diffusion models were sampled with N=2000 sampling
steps, regardless of the problem.



#|Age|Gender|Cortical infarct| GCA scalel WMH grade |Previous strokeHypertension|Diabetes|Hyperlipidemia|Current smoking
1174 M No 1 0 No Yes No No No
2171 M Yes 2 2 No Yes Yes No Yes
3133 M No 0 0 No No No No No
4| 48 F No 1 2 Yes No Yes No No
5/39| M Yes 1 1 No No No No No
6| 58 F No 1 2 Yes No Yes Yes No
7168 | M No 2 1 Yes Yes No No Yes
Table 4. Subject information of the prospective clinical evaluation of MR-ZSR.
Patient ID  # of raw slices ~ Cropped slices range PSNR + SSIM ¢
L096 658 224:480 Method Axial* Coronal™  Sagittal
L109 254 000:254 TPDM (ours) 44.96 0.988 0.989 0.988
L143 468 212:468 DiffusionMBIR [6] 41.21 0.934 0.934 0.934
L192 480 064:320 DPS [5] 47.10 0.991 0.991 0.991
L286 420 000:256 score-MRI [8] 39.90 0.914 0.914 0.913
L291 685 249:505
1.310 426 030:286 Table 8. Quantitative evaluation (PSNR, SSIM) of CS-MRI (Pois-
L333 488 049:305 son, x8 acc) on the BMR-ZSR-1mm test set. *: primary plane, "
L506 421 000:256 auxiliary plane.
LO067 (test) 448 004:260
SSIM +
PSNR 1 - -
Table 5. Cropping information of the LDCT-CUBE dataset. The Method Axial*  Coronal™  Sagittal
range shown includes the start point and does not include the end- TPDM (ours) 40.34 0.979 0.978 0.978
point. The indexes start at 0. DiffusionMBIR [6] 37.48 0.895 0.899 0.897
DPS [5] 39.06 0.965 0.967 0.965
score-MRI [8] 35.54 0.843 0.845 0.844

Mean cortical thickness

# Raw 1mm TPDM 5mm — 1mm
FreeSurfer Astroscan FreeSurfer  Astroscan
1 221092 2.21+0.78 2.26+x0.98 2.52+0.84
2 2.07£0.93 1.90+0.72 2.31%x1.12 2.38+0.84
3 237+x1.00 2.40+0.81 2.30%£1.06 2.67+0.85
4 231£1.00 2.36+0.82 2.38+1.06 2.68+0.86
5 223095 2.24+0.79 2.25+1.02 2.54+0.84
6 N/A N/A 2.06+1.00 2.27+0.87
7 N/A N/A 2.26x£1.06 2.40+0.86

Table 6. Result of the mean cortical thickness measurement of
prospective ground truth Imm MRI volume and upscaled 1mm
MRI volume from Smm by TPDM.

SSIM 1
Method PSNR 1 Axial™  Coronal*  Sagittal
TPDM (ours) 38.76 0.982 0979 0.978

DiffusionMBIR [6] N/W

Table 7. Quantitative evaluation (PSNR, SSIM) of MR-ZSR
(Bmm—1mm; x3) on the BMR-ZSR-1mm test set. N/W: Not
Working. *: primary plane, *: auxiliary plane.

Table 9. Quantitative evaluation (PSNR, SSIM) of CS-MRI (Pois-
son, x24 acc) on the BMR-ZSR-1mm test set. *: primary plane,
T auxiliary plane.

D.1. MR-ZSR

Retrospective Smm to Imm used A=4 for TPDM/DPS,
A=0.1 for MCG. Prospective Smm to 1mm uses A=1 for
TPDM. Retrospective 3mm to 1lmm was performed with
TPDM by A\=2.

D.2. CS-MRI

For Poisson sub-sampled x48 acceleration, A=0.01
was used by TPDM/DPS. DiffusionMBIR used A=0.0001
and p=0.1. For the x24 acceleration, TPDM/DPS
uses A=0.007, and DiffusionMBIR uses A\=0.0001 and
p=0.1. For x8 acceleration, A=0.002 for TPDM/DPS, and
A=0.0005 and p=0.1 for DiffusionMBIR. Score-MRI has no
hyperparameters configuring the sampling stage.

D.3. SV-CT

For the 36-view SV-CT problem, A=0.025 was used for
TPDM/DPS, and A=0.01 and p=40 were used for Diffusion-
MBIR. Score-CT used A\=0.8.




E. Computational resources

Both the training and sampling processes of the TPDM
were executed utilizing two NVIDIA GeForce RTX 3090
GPUs. Employing the settings expounded upon in the text,
the training duration for the MRI and CT models amounted
to approximately 3 days and 1 day, respectively, for each
2D model, be it primary or auxiliary. The process of TPDM
sampling necessitated an approximate timeframe of 24 to
36 hours per volume, contingent upon the specific problem
type. Adopting a batch size of 6 during sampling, TPDM
consumption of VRAM totaled around 48GB.

F. Code Availability

The official implementation of TPDM and pre-trained
MRI model checkpoint can be accessed at https://
github.com/hyn2028/tpdm. This repository pro-
vides the necessary resources and instructions to replicate
the experiments and utilize the TPDM.
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