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Abstract

Modeling and synthesizing low-light raw noise is a fun-
damental problem for computational photography and im-
age processing applications. Although most recent works
have adopted physics-based models to synthesize noise, the
signal-independent noise in low-light conditions is far more
complicated and varies dramatically across camera sen-
sors, which is beyond the description of these models. To
address this issue, we introduce a new perspective to syn-
thesize the signal-independent noise by a generative model.
Specifically, we synthesize the signal-dependent and signal-
independent noise in a physics- and learning-based manner,
respectively. In this way, our method can be considered as a
general model, that is, it can simultaneously learn different
noise characteristics for different ISO levels and generalize
to various sensors. Subsequently, we present an effective
multi-scale discriminator termed Fourier transformer dis-
criminator (FTD) to distinguish the noise distribution accu-
rately. Additionally, we collect a new low-light raw denois-
ing (LRD) dataset for training and benchmarking. Qualita-
tive validation shows that the noise generated by our pro-
posed noise model can be highly similar to the real noise in
terms of distribution. Furthermore, extensive denoising ex-
periments demonstrate that our method performs favorably
against state-of-the-art methods on different sensors.

1. Introduction
Low-light raw denoising is an important yet challeng-

ing problem for the increasingly widespread computational
photography [53]. Due to the powerful computational ca-
pability of deep learning, the learning-based low-light raw
denoising algorithms have shown great superiority and be-
come the mainstream manner [10, 21] in recent years. How-
ever, since the standard paradigm of deep learning is to learn
a mapping from the low-light noisy raw image to its normal-
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Figure 1. Examples of generated and denoised raw images from
our proposed method. (a) Clean raw image, (b) Real noisy raw
image, (c) Generated noisy raw image from our proposed noise
model, (d) Denoised raw image of the denoise network [10]
trained on the image generated by our noise model. Our model
can generate noise at different ISO levels by a single learned noise
model. The results of the visualization and quantitative metric
Kullback-Leibler divergence (KLD) demonstrate that the distribu-
tion of the synthetic noise is close to the real noise distribution.
Noise at high ISO levels drowns out the signal, resulting in unsat-
isfactory image denoising.

light counterpart, this leads to a reliance on the large-scale
dataset of real-world noisy-clean raw image pairs, which is
extremely tedious and labor-intensive to collect.

A naive strategy is to synthesize the low-light noisy raw
images to obtain more paired training data. Existing noise
synthesis methods can be roughly categorized into physics-
based noise models and Deep Neural Network (DNN)-
based noise models.

Physics-based noise modeling [23, 54, 52] is the most
commonly used noise synthesis method in low-light condi-
tions, which obtains the statistical distribution of different
noise sources by analyzing the physical process of cam-
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era sensor imaging. However, noise sources on different
camera sensors vary widely due to differences in circuit de-
sign and signal processing techniques, making it impossible
for physics-based methods to extract and model all noise
sources accurately. Moreover, each noise source’s proper-
ties and statistical behavior vary significantly at different
exposure times or ISO levels, making physics-based meth-
ods tedious and error-prone. All these limitations make it
impossible for a physics-based method to achieve accurate
noise modeling on multiple camera sensors.

DNN-based noise modeling [1, 9] learns to synthesize
noise from real captured datasets with deep generative net-
works. Although the existing deep models show promising
synthetic results on raw images due to their powerful rep-
resentation capability, some previous studies [58, 44] have
revealed that they perform poorly on extremely low-light
raw images.

In this paper, we present a new perspective on synthe-
sizing realistic low-light raw noise. Specifically, instead
of directly synthesizing noise with generative networks,
we separate the noise synthesis process into two compo-
nents, i.e., signal-dependent and signal-independent, which
are implemented through a physics-based manner and a
learning-based manner, respectively. We employ a pre-
trained denoise network during the training procedure to
transfer the synthesized and real noisy raw images into a
nearly noise-free image space to perform image domain
alignment. Meanwhile, to better distinguish the synthesized
and real noise, we present an effective multi-scale discrim-
inator, namely Fourier transformer discriminator (FTD), to
perform the noise domain alignment. In addition, we col-
lect a new low-light raw denoising (LRD) dataset for train-
ing and benchmarking. Extensive experiments demonstrate
that our noise model performs favorably against existing
state-of-the-art noise models on different camera sensors.
Fig. 1 shows examples of the synthetic noisy raw images
and the corresponding denoising results trained on the syn-
thetic noisy raw images.

In conclusion, our contributions can be summarized into
three aspects:

• We propose a general noise model with separated syn-
thesis processes to express the noise terms of accord-
ing characteristics, enabling the noise model to imitate
accurate low-light raw noise on different sensors.

• We establish an effective multi-scale discriminator
framework, namely Fourier transformer discriminator
(FTD), which encourages the generator to favor solu-
tions that reside on the manifold of real low-light raw
noise distributions.

• We collect a new large-scale dataset for low-light raw
denoising benchmarking and researching.

2. Related Work
Deep Image Denoising. Image denoising is an

extensively-studied yet still unresolved issue in computa-
tional photography. In the designing of traditional denois-
ing algorithms, making an analytical regularizer related to
image priors (e.g., sparsity [19, 3], smoothness [46, 49],
self-similarity [7, 16, 41], low rank [27]) plays a criti-
cal role. In the modern era, deep learning-based algo-
rithms [57, 6, 29, 55] have demonstrated their powerful su-
periority. However, most of them are based on the assump-
tion that the noise conforms to a Gaussian distribution, but
the noise captured in the real world is much more complex
than Gaussian noise, which makes these methods even in-
ferior to the traditional method BM3D [15]. To address this
problem, several works have established a database of noisy
and clean image pairs taken by real cameras as a bench-
mark [2, 45], thus improving the denoising performance of
learning-based algorithms [13, 11, 24] in real-world scenes.
Although this line of work is promising, the burden of ac-
quiring real image pairs is heavy, and the collected pairs
suffer from pixel misalignment, luminance misalignment,
limited data volume, and lack of diversity.

Physics-based Noise Model. The additive white Gaus-
sian (AWGN) noise model is the most widely-used physics-
based noise model. However, it deviates strongly from the
realistic noise distribution, which leads to significant perfor-
mance degradation on images with real noise [45, 2]. The
classical Poisson-Gaussian (P-G) noise model [23, 22, 30,
6, 42, 52] is proposed to handle the domain gap between
synthetic images and real images, which considers both
photon shot noise and sensor readout noise. Most recently,
Wei et al. [54] has developed a novel noise model by ana-
lyzing the noise generation process in the image processing
pipeline and obtaining the distribution of noise sources by
using statistical methods. Nonetheless, the noise sources
vary dramatically on different sensors, making it imprac-
tical to extract and model all kinds of noise sources accu-
rately. Zhang et al. [58] proposes a novel strategy for syn-
thesizing noisy raw images, which samples directly from a
Poisson distribution and a database of dark frame images
to obtain synthetic images. However, the dark frames vary
with the exposure time and ISO level, which makes it chal-
lenging to obtain the dark frame database for all exposure
times and ISO levels.

DNN-based Noise Model. Early works [12, 35] at-
tempt to synthesize realistic noisy images by utilizing Gen-
erative Adversarial Networks (GANs), but they provide
limited improvement in real-world denoising performance.
Abdelhamed et al. [1] proposes a novel generative noise
model, Noise-Flow, based on normalization flow to synthe-
size realistic noisy raw image, which is the first generative
model that provides powerful noise modeling capabilities.
Chang et al. [9] presents a camera-aware generative noise



model termed CA-NoiseGAN to generate multiple noises
for different camera sensors. Monakhova et al. [44] intro-
duces a physics-inspired generative noise model to learn the
noise distribution of the camera sensor in low-light condi-
tions, but this approach is limited to synthesizing noise that
mimics a single ISO level, which is cumbersome in prac-
tical applications. In this work, we introduce a generative
noise model to synthesize noise for different ISO levels and
generalize it to various camera sensors.

3. Methodology
3.1. Sensor Noise Formation

To model more realistic low-light raw noise, it is neces-
sary to understand the noise formation of Complementary
Metal-Oxide-Semiconductor (CMOS) [47]. For a raw im-
age produced by a CMOS sensor, the raw image formation
process from incident photons to digital values can be mod-
eled as follows:

D = KI +N, (1)

where K presents the gain of the whole system, I stands for
the number of photoelectrons stimulated by the scene radi-
ation, N denotes the summation of all noise sources physi-
cally caused by light or camera.

Due to several physical limitations of CMOS, noise oc-
curs from various sources. According to the relation be-
tween noise and light intensity [31, 18, 20], we analyze
the raw image formation in Eq. (1) and categorize the raw
image noise into signal-dependent and signal-independent
components:

D = K(I +Ndep) +Nindep, (2)

where Ndep represents the signal-dependent noise, and
Nindep represents the signal-independent noise. Generally,
the signal-dependent noise includes photon-shot noise and
photo response non-uniformity. For the signal-independent
noise, it includes read-out noise, fix pattern noise [51], dark
current noise [4], quantization noise, flicker noise [5], ther-
mal noise, reset noise [37], and so on.

3.2. Separated Noise Modeling

According to the noise formation process described in
Eq.(2), we can separate the noise synthesis process into
signal-dependent and signal-independent components. In
well-lit environments, these two noise components can be
accurately synthesized by physics-based models [58]. How-
ever, in low-light conditions, the signal-independent noise
becomes more complex and varies significantly among
camera sensors. Existing physics-based methods cannot ac-
curately model this noise component, and building a noise
model for each sensor is laborious. Therefore, we adopt
a generative model to synthesize the signal-independent

noise. For the signal-dependent noise, we still utilize
a physics-based model for synthesis since most previous
works [22, 54, 58] have shown that the physics-based model
can synthesize it accurately at a lower price. The framework
of our proposed noise model is shown in Fig 2.

Signal-Dependent Noise Synthesis. From the noise for-
mation process of CMOS sensors discussed above, we can
observe that the signal-dependent noise consists of pho-
ton shot noise and photo response non-uniformity. How-
ever, according to previous reserches [26, 33], the photo re-
sponse non-uniformity contribute less than 3% in the signal-
dependent noise, which has a minimal impact. Therefore,
the photon shot noise can be considered the only signal-
dependent noise source.

Due to the intrinsic stochastic nature of photons reach-
ing the CMOS sensor, the photon shot noise can be directly
sampled from the Poisson distribution P:

(Ndep + I) ∼ P(I). (3)

For the synthesis of signal-dependent noise, extensive
studies [54, 58] have demonstrated that the incident pho-
ton numbers strictly follow the Poisson distribution. Thus
we can accurately synthesize the signal-dependent noise in
a physics-based manner, which can be modeled as follows:

Ŷ = (Ndep + I) = P(
Y

K
)K, (4)

where Y is the clean image, Ŷ is the sampled image con-
taminated by signal-dependent noise. The overall system
gain K can be easily obtained from the meta information of
DNG file [32].

Signal-Independent Noise Synthesis. Previous stud-
ies [54, 58] have demonstrated that signal-independent
noise is the dominant component in low-light conditions.
Since the noise sources in the signal-independent compo-
nent are extraordinarily complicated and vary significantly
with different exposure times, ISO levels, and camera sen-
sors. Instead of adopting a physics-based approach to model
the signal-independent noise, we exploit the powerful learn-
ing capabilities of the Generative Adversarial Networks
(GAN) to model it. Fig. 2 shows the overall framework of
our proposed noise model.

To synthesize signal-dependent noise, we first sample a
random initial noise map to reflect the stochastic noise be-
havior according to the conditions of each ISO level. Then,
we fed the random initial noise map into a noise genera-
tor, which we utilize a typical residual 2D U-shape archi-
tecture [48]. (More details of the generator architecture can
be found in the supplementary material.) Formally, this syn-
thesis process can be formulated as follow:

Nindep = G(Ninit ∼ N (0, σ2
r)), (5)



Figure 2. Overview of the framework. The proposed noise model is divided into three components: (a) signal-dependent noise synthesis,
(b) signal-independent noise synthesis, and (c) domain alignment. Please refer to Sec. 3 for more detailed descriptions.

where Ninit is the sampled random initial noise map, G is
the proposed U-shape noise generator. We sample the ran-
dom initial noise map from N (0, σ2

r) and spatially replicate
through all pixel positions of the clean raw image Y . σr is
the noise parameter of the signal-independent component in
the in-camera noise profile, which is related to the camera
ISO levels. Similar to the conditional GAN [43], this pa-
rameter can be specified as a condition to control the noise
level of Ninit, which enables the network to generate dif-
ferent ISO levels of signal-independent noise.

Following the synthesis of signal-dependent and signal-
independent noise by the two methods described above.
Given a clean raw image Y , we can produce a pseudo-noisy
raw image D̂ as follows:

D̂ = K(I +Ndep) +G(Ninit) = Ŷ +Nindep. (6)

In the training phase, we begin by taking paired raw
images as inputs and subsequently extract essential pa-
rameters, including ISO levels, exposure times, and in-
camera noise profiles from the noisy raw images, employing
ExifTool. The generation of noisy raw images is accom-
plished by utilizing both the in-camera noise profile and the
clean raw images as inputs to the generator.

During the inference phase, we adopt a different ap-
proach. Here, we leverage the in-camera noise profile of
the target ISO level, in combination with the clean raw im-
age, to serve as inputs. These inputs are then jointly fed
into the generator, facilitating the synthesis of the noisy raw
images corresponding to the desired target ISO level.

Domain Alignment. The most common strategy in im-
age generation to construct image domain alignment is to
minimize the distance between synthetic and real images di-
rectly. However, since the noise generator should produce
different noise samples at each forward pass, it is incompat-

ible with deploying the L1 loss directly between the synthe-
sized noisy raw image D̂ and the real noisy raw image Drn.
Besides, this strategy may drastically damage the quality of
D̂ due to the stochastic characteristics of noise [8]. There-
fore, the interference of noise should be excluded in the pro-
cess of constructing image domain alignment.

To tackle this issue, inspired by [8], we introduce a pre-
trained denoise network [10] (Denoise-Net) to transfer D̂
and Drn into virtually noise-free image space. Then, per-
form L1 loss between the denoised versions of D̂ and Drn.
Since the denoised image is relatively stable, minimizing
the L1 loss enables the synthesized noise to converge to the
real noise distribution while preserving the stochastic char-
acteristics of the noise. The proposed L1 loss can be formu-
lated as follows:

L1 =∥ P (D̂)− P (Drn) ∥1, (7)

where P prensent the Denoise-Net. Note that we utilize
the same paired data to train the Denoise-Net and the noise
model, thus eliminating potential domain gap issues.

We adopt adversarial learning for noise domain align-
ment to make the generated noise distribution fit real noise
distribution as closely as possible. General discriminators
perform superiorly in discriminating noise-free or noisy im-
ages with low noise levels. However, we find that they are
insufficient to discriminate noisy raw images with a high
noise level, especially for low-light noisy raw images. (See
Table 4.) To tackle this issue, we introduce a new discrimi-
nator. See more details in the following subsection.

3.3. Fourier Transformer Discriminator

Based on the spectral transform theory, it is postulated
that noise can be categorized as high-frequency informa-
tion, whereas the content information of an image is typ-



Figure 3. Framework of the proposed Fourier Transformer Dis-
criminator. The architecture comprises three Fourier transformer
blocks and one vanilla transformer block.

ically associated with low-frequency components. Conse-
quently, the operation performed in the spectral domain can
more accurately differentiate between the noise and con-
tent information. Therefore, we present a transformer block
called Fourier transformer block inspired by fast Fourier
convolution (FFC) [14]. The structure of this block is con-
structed by imitating the FFC, which replaces the convolu-
tion layer with the transformer block. (See supplementary
material for the detailed structure.) Like the FFC, our pro-
posed Fourier transformer block also takes two interlinked
paths: a spectral path that conducts operation in the spectral
domain with half of the input sequences and a spatial path
that operates with another half. Each path receives comple-
mentary information and then performs an exchange inter-
nally to fuse the information.

Motivated by TransGAN [34], we establish an effec-
tive multi-scale discriminator, namely Fourier transformer
discriminator (FTD), based on the proposed Fourier trans-
former block. The overall framework of FTD is shown in
Fig 3. The 4-channel input raw image is firstly divided into
three sequences by choosing different patch sizes. Then,
these three sequences are fed into different Fourier trans-
former blocks through a linear transformation. The most
extended sequence is combined with the learnable position
encoding to serve as the input of the first block. The second
and third sequences are concatenated into the second and
third blocks. To reduce the resolution of the feature map
between each block, we convert the 1D sequences to 2D
feature maps and feed them into the Average Pooling layer.
At last, a vanilla transformer block and a classification head
are applied to output the prediction score.

3.4. Training Objective

To achieve the training objective, we optimize the gener-
ator and discriminator in an adversarial way [25]. Among
adversarial frameworks, we select WGAN-GP [28] to cal-
culate the adversarial loss Ladv , which minimizes the
Wasserstein distance to stabilize the training. The loss can

Figure 4. Example images of the LRD dataset. First column: long
exposure reference (ground truth) images. Second column: low-
light images with -1EV. Third column: low-light images with -
2EV. Fourth column: low-light images with -3EV.

be defined as follows:

Ladv = E
D̂∼Pg

[DF (D̂)]− E
Drn∼Pr

[DF (Drn)]

+ λ E
x̃∼Px̃

∥(∇x̃DF (x̃)∥2 − 1)2], (8)

where DF is our proposed discriminator FTD, Pg is the syn-
thetic noisy data distribution defined by the generator, Pr is
the real noisy data distribution, Drn is the real noisy raw
image.

In addition to the aforementioned L1 loss, we employ
the perceptual loss to improve the perceptual quality:

Lper =∥ ϕ(P (D̂)− ϕ(P (Drn) ∥22, (9)

where ϕ(·) denotes the feature map extracted from a VGG-
19 [50] model pre-trained on ImageNet [17].

To summarize, the full objective of our proposed noise
model is combined as follows:

L = Ladv + λ1L1 + λ2Lper, (10)

where λ1 and λ2 are two hyper-parameters to control the
balance of loss functions. In our experiment, these parame-
ters are set to λ1 = 0.1, λ2 = 0.01.

4. Low-light Raw Denoising (LRD) Dataset
Creating low-light raw image datasets is essential for

standardizing low-light raw denoising techniques. The ex-
isting dataset for benchmarking low-light raw denoising is
the See-in-the-Dark (SID) dataset [10]. However, since it
is designed to produce perceptually good images in low-
light conditions, there are some limitations in benchmark-
ing low-light raw denoising. First, the long-exposure refer-
ence images in this dataset still contain some noise, which
may disorient the generative noise model. Second, the vary-
ing number of images for each ISO level and exposure time



Table 1. Quantitative comparisons on the SID, ELD and LRD datasets in terms of PSNR and SSIM. The results are conducted on different
exposure ratios. The red color indicates the best results, and the blue color indicates the second-best results.

Dataset Ratio
Physics-based Real-noise-based DNN-based

Poisson-Gaussian ELD Paired data Noise Flow Ours
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

SID
×100 37.51 / 0.856 41.21 / 0.952 41.39 / 0.954 36.75 / 0.787 41.95 / 0.956
×250 31.67 / 0.765 38.54 / 0.929 38.90 / 0.937 33.98 / 0.739 39.25 / 0.931
×300 28.53 / 0.667 35.35 / 0.908 36.55 / 0.922 31.82 / 0.713 36.03 / 0.909

ELD ×100 39.46 / 0.785 45.06 / 0.975 43.80 / 0.963 38.68 / 0.793 44.95 / 0.979
×200 33.81 / 0.615 43.21 / 0.954 41.54 / 0.918 36.30 / 0.713 43.32 / 0.966

LRD
-1EV 33.77 / 0.895 38.31 / 0.968 38.80 / 0.970 35.19 / 0.874 38.89 / 0.971
-2EV 32.99 / 0.856 37.35 / 0.959 37.88 / 0.961 34.55 / 0.842 37.95 / 0.962
-3EV 31.44 / 0.770 36.49 / 0.950 36.92 / 0.951 33.72 / 0.826 37.01 / 0.953

may cause class imbalance issues. All these limitations hin-
der applications for low-light raw denoising and low-light
raw image synthesis.

To address this issue, we collected a new low-light raw
denoising (LRD) dataset for training and benchmarking. In
contrast to the SID dataset, which sets a fixed exposure time
to capture long and short exposure images, we captured
long and short exposure images based on the exposure value
(EV). Motivated by multi-exposure image fusion [40, 39],
the exposure value for long exposure images was set to 0,
and the exposure value for short exposure was set to the
commonly used parameters -1, -2, and -3. The dataset is
designed for application to low-light raw image denoising
and low-light raw image synthesis.

The dataset contains both indoor and outdoor scenes. For
each scene instance, we first captured a long-exposure im-
age at ISO 100 to get a noise-free reference image. Then
we captured multiple short-exposure images using differ-
ent ISO levels and EVs, with a 1-2 second interval between
subsequent images to wait for the sensor to cool down, thus
avoiding unexpected noise introduced by sensor heating.

We captured 6 different ISO levels ranging from 200 to
6400 to obtain various noise levels. We captured 100 im-
ages at each ISO and EV setting to preserve a balanced
training sample. Therefore, the total number of images in
our dataset is 1800 (100 images × 6 ISO levels × 3 expo-
sure value). Images were captured using a typical camera
sensor: IMX586, which has a full-frame Bayer filter. The
image resolution is 4000 × 3000. We mounted the camera
on a sturdy tripod to ensure the sensor would not wobble.
An example of long-short image pairs at different exposure
values is shown in Fig. 4. We selected 10% of the images in
each exposure value and ISO levels to form the test set and
selected another 5% of the images as the validation set.

5. Experiments
5.1. Experimental Setup

Dataset. We first utilize the SID Sony set [10] or our
proposed LRD dataset to train the pre-trained denoise net-

Table 2. Average Kullback-Leibler divergence (AKLD) [56] eval-
uation of different noise models. Our proposed noise model out-
performs state-of-the-art methods on both SID and LRD datasets.

Dataset Ratio P-G ELD Noise Flow Ours

SID
×100 0.179 0.117 0.162 0.075
×250 0.254 0.177 0.249 0.113
×300 0.325 0.231 0.293 0.119

LRD
-1EV 0.459 0.135 0.274 0.099
-2EV 0.592 0.163 0.338 0.109
-3EV 0.701 0.188 0.375 0.123

work. Then we fix the pre-trained denoise network to train
the generator and discriminator on the same set. Subse-
quently, the generator takes the clean raw images from the
SID Sony set or LRD dataset as input images to generate re-
alistic pseudo-noisy raw images. The generated noisy-clean
raw image pairs are utilized to evaluate the denoising per-
formance on three benchmarks: the Sony set of SID and
ELD datasets, and the LRD dataset. The images in the SID
Sony set are collected using Sony α7SII in 231 static scenes.
There are 1865 images for training, 234 for validation, and
598 for testing. The ELD Sony set [54] consists of 60 low-
light noisy raw images for testing, which are also captured
using the same camera as the SID.

Implementation Details. To optimize the noise genera-
tor and discriminator, we augment all training samples by
randomly cropping and horizontal flipping to construct a
mini-batch of size 128. The Adam [36] optimizer is adopted
for training, while the initial parameters β1 and β2 to 0.5
and 0.999. The initial learning rate is set to 2 × 10−4, and
the patch size is set to 64×64. The cosine annealing strategy
is employed to steadily decrease the learning rate from the
initial value to 10−6 during the training procedure, where
the model is trained over 100 epochs. Denoising models
are optimized using the generated training pairs from the
trained generator with a mini-batch of size 1. The patch
size is set to 512 × 512. The Adam [36] optimizer is uti-
lized with an initial learning rate of 2 × 10−4, followed by
halving at epoch 100 and finally to 5× 10−5 at epoch 180.



Figure 5. Raw image denoising comparison with state-of-the-art methods on low-light noisy raw images from the SID dataset [10]. Best
viewed in color and by zooming in.

Figure 6. Raw image denoising comparison with state-of-the-art methods on low-light noisy raw images from the ELD dataset [54]. Best
viewed in color and by zooming in.

The training runs for 200 epochs. We select the same U-
shape architecture in [10] as our denoising baseline. All of
our experiments are conducted on four-channel raw images.
The implementation is conducted on the Pytorch framework
with a single GeForce 2080Ti GTX GPU.
5.2. Model Analysis on Synthetic Noise

We first analyze the realism of the synthesized pseudo-
noise raw images generated by our proposed generator. For
quantitative comparison, we utilize the widely applied met-
ric, Average Kullback-Leibler divergence (AKLD) [56], to
measure the discrepancy between the real noise and the syn-
thetic noise patches generated by different noise formation
models in the SID dataset and LRD dataset. The results are
depicted in Table. 2. Our proposed noise model achieves the
minimum AKLD on both datasets. These results demon-
strate that the distribution of synthetic noise generated by
our proposed noise model more closely matches the real
noise distribution.
5.3. Denoising Results on SID and ELD datasets

In order to demonstrate the reliability of our pro-
posed noise model, we conduct raw image denoising ex-
periments on SID and ELD datasets and compare them

with some state-of-the-art methods: physics-based noise
model Poisson-Gaussian (P-G), ELD, and DNN-based
noise model Noise Flow. Moreover, we also compare our
noise model with the model trained with paired real data.

Table. 1 shows the comparison results on the SID and
ELD datasets over different exposure ratios. For the
physics-based methods, the ELD noise model significantly
outperforms the P-G noise model in terms of both PSNR
and SSIM scores. As described in the previous work [58],
the DNN-based method Noise Flow performs poorly in low-
light conditions, which indicates that this method is un-
suitable for synthesizing low-light noisy raw images. Our
noise model outperforms all existing low-light noise syn-
thesis methods over different exposure ratios and even par-
tially outperforms the denoiser trained with real paired data.
This is because the real captured low-light raw image pairs
still suffer from issues such as luminance misalignment and
pixel misalignment [38], which may lead to unsatisfactory
denoising results. A visual comparison of our noise model
and other noise models is shown in Fig. 5 and Fig. 6. The P-
G noise model is far from the real noise distribution. Thus
it fails to remove the noise. The ELD noise model pro-



Figure 7. Raw image denoising comparison with state-of-the-art methods on low-light noisy raw images from our proposed LRD dataset.
Best viewed in color and by zooming in.

Table 3. Ablation study of the contribution of each component in
the model framework in terms of PSNR and SSIM. The best results
have been shown in bold.

Components Index SID
×100 ×250 ×300

w/o Noise Separation PSNR 39.91 37.53 33.05
SSIM 0.902 0.883 0.867

w/o Denoise-Net PSNR 41.09 38.83 35.66
SSIM 0.937 0.913 0.899

Full framework PSNR 41.95 39.25 36.03
SSIM 0.956 0.931 0.909

vides better denoising results but suffers from color bias and
residual noise. The result of denoising with paired real data
obtains favorable visual quality but still suffers from imper-
fections. Our proposed noise model can provide competi-
tive denoising results with visual pleasurable.

5.4. Denoising Results on LRD dataset
To further validate the generalization ability of our pro-

posed noise model, we assess model performance on our
LRD dataset. Table. 1 and Fig. 7 summarize all competing
methods’ quantitative and qualitative results. The results
are consistent with the results on the SID and ELD datasets.
Our method can still achieve comparable results with state-
of-the-art methods. The P-G noise model still fails to re-
move the real noise, resulting in unsatisfactory visual re-
sults. ELD noise model provides satisfactory noise removal
but still suffers from color bias issues. The results of our
noise model are visually pleasing without significant resid-
ual noise or color bias, demonstrating our noise model’s
generalization ability across different camera devices.

5.5. Ablation Study
Impact of Each Components. We perform break-down

ablations to evaluate each component’s effects in the model
framework. The comparison results evaluated on the SID
dataset are reported in Table. 3. First, we remove the noise

Table 4. Ablation study of the contribution of Fourier transformer
discriminator in terms of PSNR, SSIM. The best results have been
shown in bold.

Discriminator Index SID
×100 ×250 ×300

Transformer PSNR 40.23 37.36 33.22
SSIM 0.931 0.910 0.892

Fourier Transformer PSNR 41.95 39.25 36.03
SSIM 0.956 0.931 0.909

separation strategy and directly synthesize the noise us-
ing the generative model, we follow the scheme of CA-
NoiseGAN [9] and take the noise parameter instead of the
initial Gaussian noise map as the condition information.
The PSNR and SSIM values show a significant decrease.
Secondly, after deploying the pre-trained denoise network
(Denoise-Net), the performance of the noise model is im-
proved moderately, suggesting that the pre-trained denois-
ing network successfully performs image domain alignment
and improves the quality of synthetic images. These results
convincingly demonstrate the superiority of our proposed
noise model in synthesizing low-light raw noise.

Effectiveness of Fourier Transformer Discriminator.
A significant advantage of our proposed noise model over
existing generative noise models is that the FTD can effec-
tively fuse information through operations in spectral and
spatial domains. To verify the effectiveness of the FTD,
we employ a conventional discriminator with vanilla trans-
former blocks for comparison. Table. 4 shows the compar-
ison results on the SID dataset, and our proposed FTD can
discriminate the noise distribution more accurately, thus en-
couraging the generator to synthesize more accurate noise.

6. Conclusion
In this paper, we present a new perspective for real-

istic low-light raw noise synthesis. Specifically, we syn-



thesize the signal-dependent and signal-independent noise
in a physics- and learning-based manner. We employ a
pre-trained denoise network during the training procedure
to transfer the synthesized and real noisy raw images into
a nearly noise-free image space for image domain align-
ment. Meanwhile, we introduce an effective discriminator,
namely Fourier transformer discriminator (FTD), to per-
form noise domain alignment. Our method is general for
different ISO levels and different camera sensors. Subse-
quently, we collect a new low-light raw denoising (LRD)
dataset for training and benchmarking. Both qualitative
and quantitative experiments on the public datasets and
our dataset collectively demonstrate the superiority of our
method over state-of-the-art methods.
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