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Abstract

Deep metric learning is crucial for finding an embedding
function that can generalize to training and testing data,
including unknown test classes. However, limited training
samples restrict the model’s generalization to downstream
tasks. While adding new training samples is a promis-
ing solution, determining their labels remains a significant
challenge. Here, we introduce Hybrid Species Embedding
(HSE), which employs mixed sample data augmentations to
generate hybrid species and provide additional training sig-
nals. We demonstrate that HSE outperforms multiple state-
of-the-art methods in improving the metric Recall@K on
the CUB-200 , CAR-196 and SOP datasets, thus offering a
novel solution to deep metric learning’s limitations.

1. Introduction
Image retrieval heavily depends on deep metric learning

to grasp visual similarities. In its early stages, methods like
pair-based loss [8, 13, 19, 37] and proxy-based loss [25, 15]
were proposed to train models. Nevertheless, the true goal
of image retrieval is to adapt to the unknown, and the chal-
lenge lies in selecting a metric that can effectively han-
dle differences between classes in deep metric learning. A
promising approach involves exploring both intra-class and
inter-class variations within the image itself, rather than re-
lying solely on label information [33, 43, 40, 23, 51, 30].

Hard negative samples, often termed false positives, re-
fer to images that resemble anchor images but carry dif-
ferent labels. The reason behind these hard samples lies in
their potential for sharing remarkably similar or even identi-
cal features with the anchor samples. Approaches like hard
sample mining and generation have been proposed to aid
network convergence by introducing a substantial gradient
[1, 41, 12, 34, 49, 48, 17, 18]. Recently, an advancement in
generating appropriate hard samples involves creating sup-
plementary training data [17, 38, 5, 21]. This is primarily
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Figure 1: (a) Deep metric learning methods struggle with linear interpo-
lation for generating new training samples with labels when new samples
fall between anchors of different classes. The manifold structure lacking
clear boundaries makes it challenging to assign a label, even when new
samples are between anchors of the same class. (b) Samples with multiple
simultaneous features may not lie on a linear interpolation path, and their
location may be unknown. They can be classified as an unknown class
situated inside or outside a manifold boundary. To tackle this challenge,
we propose using the HSE method to allocate the sample to an appropriate
embedding space location based on its feature information.

achieved through linear interpolation, a prevalent method
for generating synthetic samples. However, assigning ab-
solute labels to these synthesized samples is intricate due
to the manifold structures and cluster boundaries present
in the embedded space [17]. Even when the new samples
are formed by linear interpolation between samples of the
same label, accurately determining absolute labels remains
a challenge. Synthetic sample labels have emerged as a po-
tential solution, with [38] corroborating their similarity to
mixup data augmentation and highlighting the label’s repre-
sentation through linear interpolation. Nonetheless, this ap-
proach is constrained to mixup data augmentation, as mixup
uniformly blends features and labels from different images,
which might not hold true for other techniques.

We introduce a novel Hybrid Species Embedding (HSE)
that leverages mixed sample data augmentations to generate
additional training samples [35, 47, 45, 2, 20]. HSE creates
hybrid species by combining features from multiple classes
and embedding them into spatial positions. During training,
different classes are randomly chosen for data augmentation
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in each batch. The labels of hybrid species are disregarded,
and their placement near the category with the most simi-
lar features simulates human categorization behavior, as de-
picted in Figure 1(b). This strategy positions hybrid species
close to the samples they are synthesized from, ensuring
similarity while avoiding unrelated samples. By synthesiz-
ing samples using various mixed sample data augmentation
techniques, each incorporating multiple features of a known
class, our approach naturally imparts similar characteristics
to the hard sample for the model without requiring explicit
mining. Additionally, we dynamically adjust the position of
each batch of hybrid species embedding to bypass the need
for considering label information of these hybrid instances.
Our contributions encompass:

• Introducing a novel metric learning strategy embed-
ding challenging and unseen classes (Hybrid species), dur-
ing training. These hybrid species offer supplementary
training signals, enhancing the generalization capacity of
downstream tasks, as validated through experiments.

• Adapting mixed sample data augmentation techniques
for our Hybrid Species Embedding (HSE) to address con-
straints associated with pair-based metric learning losses,
which typically demand explicit class labels.

• Demonstrating through experiments our efficacy in en-
hancing performance across state-of-the-art metric learning
tasks on CUB-200, CAR-196, and SOP datasets.

2. Related Work
We utilize the Mixed Sample Data Augmentation

(MSDA) method to create unknown samples and improve
the model’s generalization ability for downstream tasks.
This approach resolves the issue of insignificant compar-
isons caused by random selection of samples in metric
learning. While mining hard samples from a finite training
set is limited, MSDA enables us to create more hard sam-
ples. In the following, we review existing relevant works.

2.1. Metric Learning

Deep metric learning compares data in pairs and pulls
them together if they belong to the same category, otherwise
separates them [8, 13, 19, 37, 26]. The exponential growth
in the number of tuples during training can present chal-
lenges in achieving model convergence, and may include
meaningless metrics. Proxy-based approaches, e.g., choos-
ing a proxy point for each class, have been proposed as a
solution [25, 15]. These proxies contain information from
multiple samples, require less computation in pairwise com-
parisons, helping the network converge more effectively.

Methods that rely solely on label information may result
in over-clustered or overly separated samples with identi-
cal or differing labels, respectively, and can lead to reduced
performance on new and unseen test samples. EPSHN [43]
notes this problem, particularly for species with varying

features such as birds of the same species with different
sexes. To avoid this, [30, 40, 31, 33, 51, 50, 18] emphasize
the importance of incorporating semantic information from
the images themselves, often through large pre-trained lan-
guage models like CLIP [29] and BERT [3], to better align
the visual representation space and discover potential dif-
ferences within and between classes. The MSloss function
[40] is one such approach that combines self-similarity and
relative similarities to weight selected pairs.

Depending solely on label information can be insuffi-
cient for effective sample learning. Previous works ad-
dressed this limitation by assigning varying metrics or
weights based on inter-sample variability. However, these
techniques had limitations when dealing with a small num-
ber of training samples or unseen samples. To address this,
we introduce additional training samples and a novel metric
for improved learning. Prior works like [49, 17] added ad-
ditional samples, but mainly relied on linear interpolation.
In contrast, our approach generates extra training samples
through selecting the appropriate MSDA, providing greater
flexibility than linear interpolation.

2.2. Hard Sample Mining

Pair-based metric learning generates lots of paired sam-
ples, and handling negative samples is crucial for reducing
model redundancy. Various studies [6, 10, 34, 41, 49] have
explored the use of hard negative mining while constructing
triples to create useful gradient sums, aiding fast conver-
gence of triplet loss networks. Additionally, [34] suggested
a semi-hard negatives scheme that selects even harder nega-
tive samples, while [6] introduced a hierarchical triplet loss
(HTL) that constructs a hierarchical tree of all classes and
selects semi-hard negatives with a dynamic margin.

The discussed methods require selecting hard samples
from the training set to improve model performance. Hard
samples are challenging examples that can evaluate the
model’s ability to generalize. For example, if a model per-
forms well on horses and donkeys but struggles with mules,
evaluating its performance on mules (as a hybrid of both
species) can directly assess its generalization ability.

Recent studies focus on generating additional hard sam-
ples for training. HDML [49] creates hard samples be-
tween different labeled samples, while [17] generates ad-
ditional training samples between identically labeled sam-
ples through hard sample mining. Gu et al. [7] use synthetic
proxy points and competition to create hard samples. These
methods use linear interpolation to generate new samples,
leading to false negatives and positives due to the difficul-
ties in determining class boundaries on the manifold struc-
ture. DAS [21] and IAA [5] try to solve this issue by adjust-
ing features slightly and adding extra examples during mid-
training of the model, aiming to make sure that new exam-
ples still belong to the same class. Despite these attempts,
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completely removing this problem remains challenging.
We use mixed sample data augmentations in the pre-

processing stage of images to generate additional hard sam-
ples, instead of linear interpolation. This has several ad-
vantages, including a higher probability of generating hard
samples without subsequent mining and the ability to iden-
tify the underlying content of the image even without its la-
beling information. This makes our method highly effective
for generating and processing additional hard samples.

Original images in the training set

CutMix:

num=2 num=3 num=4

MixUp:

num=2 num=3 num=4

GridMask:

mask=50 mask=150mask=250

Figure 2: Creating Hybrid Species: Three Ways. We explore three dif-
ferent ways for generating hybrid species, varying parameter num, which
controls the number of classes included. The mask indicates block size.

2.3. Mixed Sample Data Augmentations (MSDA)

Traditional data augmentation techniques assume all
samples belong to the same class and do not consider re-
lationships between different samples. In contrast, MSDA
combines two samples, using various forms of label repre-
sentation [35]. Popular methods include Mixup [47], Cut-
mix [45], Cutout [4], and GridMask [2], each with the core
idea of producing images with more representative features
of real-world scenarios. Other MSDA techniques include
SmoothMix [20] and FMix [9].

Despite significant achievements in image classification,
the above methods have not been applied to metric learn-
ing. [17] discussed the similarity between linear interpola-
tion of features and mixup data augmentation, but due to the
peculiarities of mixed labels, it cannot be directly applied
to metric learning, which typically requires distinguishing
samples as dichotomous, i.e., positive and negative sam-
ples. Recently, [38] modified an existing metric learning
loss function to accommodate mixup, but the input mix was
limited to mixup. Our proposed method can be applied to a
variety of mixed sample data augmentations (Section 3.2).

We modified multiple mixed sample data augmentations
as shown in Figure. 2 to ensure that mixed data augmented

samples contain features from multiple classes in a balanced
manner. Specifically, for CutMix, we uniformly cropped
and merged images from top to bottom to ensure that fea-
tures from multiple classes are regularly distributed. For
Mixup, we fused the samples in equal proportions to ensure
a balanced representation of features from multiple classes.
Lastly, we modified Gridmask by replacing the mask with
an image to create a fusion effect.

3. Proposed Method
3.1. Preliminaries

As a preliminary for our proposed method, we consider
a batch of images denoted by x = x1, x2, ..., xn with corre-
sponding labels y = y1, y2, ..., yn. Deep metric learning in-
volves the use of a Convolutional Neural Network (CNN) to
learn a non-linear transformation of each image into an m-
dimensional deep feature space ϕ(x; θϕ) : X → Rm, where
θϕ represents the network’s parameters. In order to further
learn a mapping from the m-dimensional feature space to a
k-dimensional space, we use a linear mapping layer repre-
sented by f(ϕ; θf ) : Rm → Rk, where θf represents the
parameters of the linear mapping layer.

Formally, we define the distance between two data points
in the embedding space as:

df (xi, xj) = ||f(ϕi)− f(ϕj)||2 (1)

Metric learning models usually involve pairwise sam-
pling of a sample, e.g. considering the contrastive loss:

Lcont = ydf (a, x)
2 + (1− y)[m− df (a, x)]

2
+ (2)

where y denotes the label, a is the anchor image and m is
the marginal value. To train a metric learning model, we
first select an anchor image and choose a positive sample
with the same label (y=1) and a negative sample with a dif-
ferent label (y=0). The network is then trained to minimize
a loss function that penalizes negative samples that are too
close together and positive samples that are too far apart.
It is noteworthy that the loss value will be relatively large
when the distance between the anchor point and the nega-
tive sample is small, while it will be relatively small when
the distance is very far. Thus, selecting hard samples during
the selection of pairs will result in a larger gradient.

Studies have tried to increase the number of hard sam-
ples for metric learning by generating more samples. How-
ever, linear interpolation methods can produce false posi-
tives and negatives. It is important to note that the binary
metric learning label y cannot be used as a one-hot label for
image classification tasks.

Our Hybrid Species Embedding (HSE) method ad-
dresses the challenges of creating additional hard samples
and applying them to metric learning without label informa-
tion to improve generalization. We address the challenge of
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mixed sample data augmentations by emulating human cat-
egorization behavior to assign these samples to a reasonable
position in the embedding space. We propose incorporating
newly generated samples as an extra training signal for the
model, using the same feature extraction network for both
the original image and the hybrid species generated using
MSDA, and included in each batch. The loss function Lm

clusters the original samples based on their labels, while
our proposed loss function LHy deals with the embedding
positions of the new samples, as shown in Figure. 3.

Figure 3: Our HSE method uses batches of original images and hybrid
species generated by Mixed Sample Data Augmentation (MSDA). The
feature extraction network (CNN) processes both types of images to ob-
tain their corresponding feature vectors (fOr and fHS ). The loss function
includes two components: Lm (metric learning loss) groups original sam-
ples into clusters based on their labels, and LHy optimizes feature extrac-
tion by comparing hybrid species embedding positions.

(a) HS-Anchor (b) WP-Anchor (c) N-Anchor

Figure 4: Three types of anchor point selection: The dashed lines indi-
cate that the sample pairs should move away from each other, while the
solid lines indicate that the sample pairs should move closer to each other.
The red sample is a hybrid species synthesized from green and blue. (a)
denotes the use of the hybrid species as the anchor point, (b) denotes using
the class that synthesizes the hybrid species as an anchor point, and (c)
denotes using a class unrelated to the hybrid species as an anchor point.

3.2. Hybrid Species

In the context of image classification tasks, hard nega-
tive samples refer to images that are similar to the anchor
images but have different labels. We posit that hard nega-
tive samples typically possess similar features to the anchor
samples. Therefore, when a sample is derived from an an-
chor image, there is a high likelihood that the sample will be
classified as a hard sample. Let xA and xB denote two im-
ages with labels yA and yB , respectively, where yA ̸= yB .
The generated sample xH contains both the features of xA

and the features of xB . We refer to xH as the hybrid species.

xH has a high likelihood of becoming a hard negative
sample, while simultaneously presenting potential gradi-
ents in classes A and B. This can be achieved by utiliz-
ing mixed sample data augmentation techniques, such as
mixup. Mixup generates a new training sample, denoted
as (xH , yH), by linearly interpolating two training samples
(xA, yA) and (xB , yB), where xH and yH are:

xH = λxA + (1− λ)xB (3)

yH = λyA + (1− λ)yB (4)

where λ is obtained from a beta distribution and is con-
strained to [0, 1]. To achieve a distribution of λ values that is
centered around 0.5, λ should follow a beta distribution with
shape parameters α and α, e.g., λ ∼ Beta(α, α), where
α ∈ (0,∞). The generated training sample (xH , yH) is
then used for model training with a loss function.

Many pair-based metric learning losses rely on having
distinct class labels, but the output yH is often a probability
distribution per class, which is unsuitable for metric learn-
ing applications. Determining how to utilize these labels for
metric learning presents a significant challenge. This diffi-
culty is illustrated in Eq. 2.

Lcont = ydf (a, xH)2 + (1− y)[m− df (a, xH)]2+ (5)

As the binary label y ∈ {0, 1}, the label for xH is not
straightforward, since it is a hybrid sample. When we con-
sider xH as a negative sample of the anchor point, it is not
reasonable, as xH contains the same features as the anchor
samples. Keeping them away from each other could cause
the model to ignore important features and focus on irrele-
vant ones.Therefore, the binary label y is invalid for xH .

[38] showed that classification tasks are not fundamen-
tally different from metric learning, and the label of the syn-
thesized sample XH can still be represented by linear inter-
polation of the labels. Eq. 5 can then be converted to:

L̃cont = λdf (a, xH)2 + (1− λ)[m− df (a, xH)]2+ (6)

Now, xH appears with nonzero contributions in both
positive and negative terms for positive-negative pairs, due
to the interpolation factor λ ∈ [0, 1].

However, we found that these methods are only appli-
cable to mixup and may be subject to controversy in other
forms of mixed sample data augmentations. This is due to
the fact that mixup binds the images together evenly based
on the assigned weight parameter, λ. The same applies to
labels In contrast, cutmix synthesizes xH by replacing a
crop area of xA with that of xB , where the crop area of λ
and (1 − λ) is taken from xA and xB , respectively. There-
fore, the label of xH cannot be accurately represented by
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HS-Anchor WP-Anchor N-Anchor
Intra-class variation " " $

Inter-class variation " " "

Conflict $ " $

Table 1: Three types of anchor point selection are considered for inter-class
and intra-class variation.

linear interpolation, as the area being replaced is indeter-
minate, and may contain either significant features or irrel-
evant content. Consequently, the contribution of the crop
area to xH remains inconclusive, making the application of
linear interpolation for labeling mostly infeasible.

Instead of fully utilizing the label information of xH , we
can translate them into their appropriate spatial embedding,
as we will describe in next subsection. Also, when applying
MSDA to images, we need to consider how the labels are
to be processed, which limits us to intermixing only two
samples. In contrast, xH does not require us to define label
information, and can hence be mixed by multiple classes.

3.3. Hybrid loss

3.3.1 Anchor Point Selection and Processing

Although it is challenging to accurately assign a label to xH

obtained through MSDA, the features of xH can be inferred
based on the source images. We define C (xI) to represent
the label of image xI . When xH is selected as an anchor, it
may not be possible to find a suitable positive sample, but
xH shares semantic information with C (xA) and C (xB)
to some extent. Thus, we can consider C (xA) and C (xB)
as weak positive samples (WP) of xH , with the remaining
classes treated as negative samples.

During the training phase, the embedding of the spatial
position of xH plays a crucial role in the generalization of
downstream tasks. Therefore, deciding how to treat xH in
pair selection becomes the first key question. Since xH

contains information for multiple classes, including it in a
paired selection can provide more gradient information. We
divided the pairing methods into three categories, as shown
in Figure. 4: HS (hybrid species sample) as the anchor
point, WP (weak positive sample) as the anchor point, and
N (negative sample) as the anchor point. We compared the
three methods and and summarized the findings in Table 1.

The choice of anchor point in a classification task can
affect the learning of intra-class and inter-class variation.
When using xH as an anchor point, it pulls towards the
WP while staying away from the rest of the class. Using
WP as an anchor point keeps it close to its composite xH

to maintain identical points within the class, but may re-
sult in conflicts with the synthetic sample of xH leading
to non-converging losses. Anchoring with N treats xH as a
negative sample and moves it away from other samples, los-

ing its purpose. Our findings recommend using HS as the
anchor sample to effectively focus on both intra-class and
inter-class variation while ensuring convergence.

3.3.2 Strategies for Sample Mining

In the previous subsection, we analyzed the contribution of
pairwise selection to the embedding of xH . Since xH is
randomly generated in each epoch, how to embed it more
efficiently and reasonably becomes the second key issue of
our study. For instance, when xH is used as an anchor point,
the corresponding WP may contain multiple classes. If xH

pulls all WP close together, clusters that are unrelated may
merge, which is unreasonable. If xH randomly selects WP
that are far apart, the structure of the cluster may be de-
stroyed. On the other hand, if negative samples that are far
apart are selected, the resulting gradient will be smaller. In
summary, it is vital that we choose a reasonable and valid
sample for performing metric learning with HS.

Several studies have explored the advantages of hard
negative mining in constructing informative gradients [12,
36, 34]. In this context, we introduce the notion of hard
negatives for the hybrid species as:

xHhn
= argmin

x:C(xI )̸=C(xA)∩C(xI )̸=C(xB)

d (f (xH) , f (xI))

(7)
It is worth noting that xHhn

does not only yield a large
gradient for xH , but it also possesses the same potential gra-
dient as the inputs C(xA) and C(xB) that are used to syn-
thesize xH .

The study by [43] shows that easy positive mining im-
proves the generalization performance of downstream tasks.
Our experiments also demonstrate the benefits of this ap-
proach for xh. We define the easy hybrid weak positive of
the hybrid species as:

xHewp = argmin
x:C(xI)=C(xA)∪C(xI)=C(xB)

d (f (xH) , f (xI))

(8)
There are two primary reasons why bringing xH and

xHewp
closer together is beneficial. Firstly, it enables the

model to concentrate on the features that are shared by both
inputs, which can significantly influence the sample mea-
surements. Secondly, this approach avoids the potential is-
sue of pushing weak positives that are distant from each
other too close together. By doing so, it preserves both the
intra-class variance and the inter-class variance, which can
help maintain the manifold structure of the classes in the
embedding space.

Our hybrid loss function involves mapping the output of
the convolutional neural network onto a unit sphere, which
is a widely accepted technique. During each mini-batch,
when xH serves as the anchor, we select xHewp

and xHhn

for comparison. As in Algorithm 1, the former corresponds
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1 # Nsize: Number of samples of the same class in
each batch

2 # n: The number of classes that synthesize xH

3 # b: batch size d:dimension
4 # F = b×d
5 # Map of feature similarity between samples
6 Map = F × F⊤;
7 # xH as the anchor,look for weak positive sample
8 DWP = Map;
9 for each i ∈ [b−Nsize, b] do

10 for each j ∈ [n ∗Nsize, b] do
11 DWP[i][j] = -1;
12 end
13 end
14 # Each xH corresponds to the value and index of the

most similar WP sample
15 VDWP ,IDWP = DWP.max(1) ;
16 # xH as the anchor,look for negative sample
17 DN = Map;
18 for each i ∈ [b−Nsize, b] do
19 for each j ∈ [0, n ∗Nsize] do
20 DN[i][j] = -1;
21 end
22 for each j ∈ [b−Nsize, b] do
23 DN[i][j] = -1;
24 end
25 end
26 # Each xH corresponds to the value and index of the

most similar negative sample
27 VDN ,IDN = DN.max(1);
28 # Select the WP sample and negative sample parts

corresponding to xH

29 T = [VDWP [-Nsize:],VDN [-Nsize:]] ;
30 Hybrid loss = -α logsoftmax(T).mean();

Algorithm 1: Hybrid Loss

to the original sample, while the latter represents xH . To
synthesize xH , we typically select samples from the first n
classes. Then, we search for the most similar weak positive
sample and negative sample for xH , respectively.

The NCA loss function is an effective way to avoid the
selection of margin hyperparameters and handle the dis-
tance between samples efficiently[46]. To ensure that hy-
brid species are embedded in a suitable location, we define
the hybrid loss based on the NCA loss:

LHy = −α log
1

1 +
exp(f(xH)⊤f(xHhn))
exp(f(xH)⊤f(xHewp))

(9)

where α is a hyper-parameter that controls the balance be-
tween bringing xH and xHewp

closer and pulling xH and
xHhn

farther apart. The LHy loss serves as an auxiliary loss

to process additional samples and can be combined with
other metric learning losses. As in Figure. 3, the final loss
is the sum of the metric learning loss Lm and the LHy loss:

L = Lm + LHy (10)

When incorporating our method with the contrastive loss
(Eq. 2), the resulting final loss is:

L = Lcont + LHy (11)

4. Experiments
Our HSE method uses pre-trained BN-Inception [14]

and ResNet [11] models on ILSVRC 2012-CLS [32] with
PyTorch. These models have learned feature representa-
tions from diverse images, reducing time and resources
for new dataset training. They also perform well in im-
age recognition tasks, making them suitable for computer
vision applications. For generalization ability evaluation,
we maintain consistency with base methods on image pre-
processing, learning rate, and batch size. (Source code:
https://github.com/SHQberserker/HSE)

Nsize examples from each class are selected per batch.
We use two methods to incorporate hybrid species during
training: selecting multiple classes to add hybrid species as
additional examples of batch, and randomly replacing ex-
amples in the batch with hybrid species. We use the cutmix
technique to create hybrid species by stitching two samples
together evenly. Algorithm 1 fixes the last Nsize samples of
each batch as synthetic samples.

4.1. Datasets and Metrics

We tested our framework’s ability to perform well on
challenging datasets: CUB-200, CARS-196, and SOP.
These datasets involve fine-grained classification tasks,
where there are many categories and relatively few images
per category. We followed the data split approach from [22].
Specifically, for CUB-200, we used 5864 images from the
first 100 categories for training and 5924 images from the
last 100 categories for testing. For CARS-196, we trained
on the first 98 classes and tested on the remaining images.
Additionally, for SOP, we utilized the first 59,551 images
(11,318 classes) for training and the remaining 60,502 im-
ages (11,316 classes) for testing.

To assess our experiments, we employed the Recall@K
metrics. This measure involves selecting the K images that
are closest to the query image. If there’s an image with the
same label as the query image, we score 1; otherwise, it’s 0.
Recall@K calculates the average score for all query images,
with higher values indicating better retrieval performance.
These metrics provide a way to quantitatively evaluate how
well our model can find similar images, which is crucial for
many image-based applications.
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4.2. Results and Analysis

4.2.1 Comparison

Experiments compared our proposed method to existing
methods, including N-pair, EPSHN, MSloss and Proxy-
Anchor. Results are shown in Table 2 for CUB-200 and
CARS-196 datasets, where * indicates our results under
the same experimental settings. Our method improves on
different approaches to varying degrees . Our method had
less impact on the N-pair method as it mostly ignores intra-
class variation, leading to excessive clustering between the
same classes. However, we observed a significant improve-
ment in recall@K when the EPSHN method was augmented
with the additional training signal of HSE. Recall@1 im-
proved by 2.5% and 2.3% on the challenging CUB-200
and CARS-196 datasets, respectively, where Nsize=16 and
Nsize=8, respectively. Importantly, HSE-E outperformed
the ensemble-based method that EPSHN had not surpassed
before on the CUB-200 and CARS-196 datasets.

We believe that EPSHN tends to ignore intra-class vari-
ations, such as those found in [43] where birds of different
sexes may vary greatly within the same class, but should
also focus on characteristics common between members of
the same class. When xH is added, it helps the network to
focus more on these common characteristics. MSloss fo-
cuses on both inter-class variation and intar-class variation.
However, when adding our additional training signals, there
is still a certain improvement. This is because the features
that our additional training signals focus on help the net-
work generalize to unknown classes.

Our method achieves good results in pair-based meth-
ods and is effective in proxy-based metric learning meth-
ods. We improve approximately 1% in both Recall@1 and
Recall@2. This confirms our universality, which can be ap-
plied to various metric learning loss functions. We also
compared our method to the Metrix/input [38] approach.
Metrix/input has a high computational cost because it cal-
culates 1

2n(n − 1) embeddings for a batch of n examples.
Instead, our method achieves a similar effect using only
Nsize ∗ Cnum embeddings. Our approach is hence more
computationally efficient. We also remain applicable to dis-
criminate between positives and negatives for every anchor
point. We can also incorporate non-additive component
functions that involve loss functions, e.g., EPSHN.

HSE is also effective on the SOP dataset. Unlike smaller
datasets, the SOP dataset has superclasses, which introduce
more variation between different superclasses and less vari-
ation within the same superclass. It’s challenging to mea-
sure similarity between samples within the same superclass
in the SOP dataset. As shown in Table 3, we generate HS
from samples that share the same superclass but have differ-
ent labels. When we apply HSE to various classical meth-
ods, we observe varying degrees of improvement.

4.2.2 Impact of Minibatch Parameters

Impact of Nsize

We trained a ResNet-18 embedding network on CUB-200
and CARS-196 datasets with batch size 128 and embedding
dimension 512 to investigate HSE’s impact on model gener-
alization at various Nsizes. HSE’s effectiveness varies with
methods, datasets, and Nsizes (Figure. 5). The best perfor-
mance occurs at Nsize between 4 and 16 with a batch size of
128, followed by performance degradation. When there are
too few negative samples, the hybrid species’ gradient in-
formation becomes insignificant, and they may be grouped
with WP’s clusters, harming downstream tasks.

(a) CUB (b) CAR

Figure 5: Effect of additional training signals provided by different Nsizes.

Figure 6: Results on the CUB dataset using different Cnum in MS loss.

Impact of Cnum

We found that HSE improves the generalization ability of
the model. However, increasing the number of hybrid
species does not necessarily lead to better results. We con-
ducted experiments on the CUB dataset using the MS loss
method, as shown in Figure. 6. Our loss function indirectly
affects the entire embedding space of the batch when learn-
ing the spatial embedding of a single hybrid species. After
training for a certain period, the two combined classes have
essentially covered the entire dataset.

4.2.3 Effect of Hybrid Species

We investigated the effectiveness of different data augmen-
tation techniques in providing additional training signals for
hybrid species. Table 4 shows the classic blending data
augmentation techniques we used, with certain modifica-
tions made to each method. Notably, CutMix and GridMask
stand out. CutMix can incorporate features from each com-
positional image to a certain extent, but may also diminish
key features. Mixup dilutes key features as the number of
samples increases. GridMask (block=50) covers the entire
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CUB-200 CARS-196
Recall@k k=1 k=2 k=4 k=1 k=2 k=4
Angular512[39] G 53.6 65.0 75.3 71.3 80.7 87.0
HDML512 [49] G 53.7 65.7 76.7 79.1 87.1 92.1
HTL512 [6] BN 57.1 68.8 78.7 81.4 88.0 92.7
Margin128 [41] R 63.6 74.4 83.1 79.6 86.5 91.9
SoftTriple512 [28] BN 65.4 76.4 84.5 84.5 90.7 94.5
DR512 [24] BN 66.1 77.0 85.1 85.0 90.5 94.1
Ensemble-based
HDC384 [44] G 53.6 65.7 77.0 73.2 82.4 86.4
A-BIER512 [27] G 55.3 67.2 76.9 78.0 85.8 91.1
ABE-8512 [16] G 60.6 71.5 79.8 60.6 71.5 79.8
DREML9216 [42] R 63.9 75.0 83.1 86.0 91.7 95.0
Npair64*(Nsize=8) [37] R 51.3 64.2 75.3 64.2 76.0 84.6
HSE-N64(Nsize=8) R 52.5+1.2 66.0+1.8 77.4+2.1 64.9+0.7 76.6+0.6 84.7+0.1
EPSHN512*(Nsize=16) [43] R 64.9 75.3 83.5 83.1 89.7 93.6
HSE-E512(Nsize=16) R 66.9+2.0 77.4+2.1 85.5+2.0 85.4+2.3 91.2+1.5 96.9+3.3
HSE-E512(Nsize=8) R 67.4+2.5 77.7+2.4 85.7+2.2 84.8+1.7 90.6+0.9 94.3+0.7
MS† 512 R 67.8 77.8 85.6 87.8 92.7 95.3
+Metrix/input[38] R 69.0+1.2 79.1+1.3 86.0+0.4 89.0+1.2 93.4+0.7 96.0+0.7
MS512∗(Nsize=5) [40] BN 65.7 77.0 86.3 81.7 88.7 93.2
HSE-M512(Nsize=5) BN 67.6+1.9 78.0+1.0 85.8-0.5 82.0+0.3 88.9+0.2 93.3+0.1
Proxy-Anchor† 512 R 69.5 79.3 87.0 87.6 92.3 95.5
+Metrix/input[38] R 70.5+1.0 81.2+1.9 87.8+0.8 88.2+0.6 93.2+0.9 96.2+0.7
Proxy-Anchor*512[15] R 69.4 79.2 87.0 88.5 92.7 95.6
HSE-PA512 R 70.6+1.2 80.1+0.9 87.1+0.1 89.6+1.1 93.8+1.1 96.0+0.4

Table 2: The comparison of the Recall@K (%) performance of our proposed method HSE with several baseline methods on the CUB-200-2011 and Cars-
196 datasets. The backbone networks used in the models are denoted by abbreviations: G for GoogleNet, BN for Inception with batch normalization, and R
for ResNet50. The symbol † indicates the reproduced result reported by the original authors.N-pair and EPSHN use cnum=1 and batch size of 128. MSloss
uses cnum=1, batch size of 80, and α=0.05. Proxy-Anchor uses cnum=1, batch size of 128, and α=2.

SOP
Recall@k k=1 k=10 k=100
EPSHN512*(Nsize=5) [43] R 74.3 86.9 94.3
HSE-E512(Nsize=5) R 76.3+2.0 88.4+1.5 94.9+0.6
MS† 512 R 76.9 89.8 95.9
+Metrix/input[38] R 77.9+1.0 90.6+0.8 95.9
MS512∗[40] (Nsize=5) R 78.2 90.2 96.2
HSE-M512 R 78.7+0.5 90.4+0.2 96.1-0.1
Proxy-Anchor† 512 R 79.1 90.8 96.2
+Metrix/input[38] R 79.8+0.7 91.4+0.6 96.5+0.3
Proxy-Anchor*512[15] R 79.2 90.4 95.8
HSE-PA512(Nsize=5) R 80.0+0.8 91.4+1.0 96.3+0.5

Table 3: The comparison of the Recall@K (%) performance of our pro-
posed method HSE with several baseline methods on the SOP.Where
batch=120,cnum=12, and hybrid species as additional examples of batch.

image despite using relatively small blocks. Results show
that CutMix is the most effective approach for improving
the performance of Hybrid Species (HS). We also found that
adding more class features does not necessarily improve HS
performance, but adding critical features that are specific to
a particular class can lead to better HS results.

We investigate the selection of weak positive samples
by hybrid species using the Proxy-Anchor method on the
CUB dataset. Cutmix augmentation technique is used to
stitch images either vertically or horizontally, with the up-

CUB CAR
R@1 num R@1 num

Cutmix 67.4 2 85.4 2
67.2 3 85.0 3
67.1 4 84.2 4

Mixup 67.0 2 85.3 2
66.9 3 81.0 3
R@1 Masksize R@1 Masksize

Gridmask 67.4 50 84.9 50
66.0 150 84.8 150
67.1 250 84.0 250

Table 4: Results on the Cub dataset using different Mixed Sample Data
Augmentations in EPSHN. (R@1 = Recall@1)

per part mainly containing the bird’s head and the lower part
containing the bird’s body when stitched vertically. When
stitched horizontally, the probability of the left and right
sides containing the bird’s head is almost the same. Our
HSE approach improves model performance by focusing on
essential image features. Our study on the CUB dataset
demonstrates that the hybrid species prioritize the bird’s
body during metric learning, particularly the lower half,
which is synthesized as the easy weak positive sample using
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Figure 7: Analysis of easy weak positive samples selected by hybrid
species using Proxy-Anchor on CUB dataset. Hybrid species are obtained
by stitching two images of different labels using cutmix. We quantify the
probability that selected easy weak positive samples contain upper or bot-
tom half during training using ”aut up/down”. With our method, we also
report ”our up/down” and ”our left/right” indicating the likelihood of easy
weak positive samples containing upper or bottom half of the bird or left
or right half of the stitched image, respectively.

the Cutmix augmentation technique. While the selection
probability of the lower half increases from 0.6 to 0.7∼0.8
during Proxy training, our proposed method ensures a prob-
ability of 1. Stitching hybrid species horizontally results in
a selection probability of around 0.5. This approach allows
the network to focus on important features during training,
providing an advantage over traditional methods. Figure. 7
provides a visual representation of our findings.

4.2.4 Visualization of Embedding Space

We demonstrate the effectiveness of our proposed method
on training and test data using t-SNE (t-distributed stochas-
tic neighbor embedding) visualization technique. t-SNE
can effectively reduce the dimensionality of the embedding
space while preserving pairwise similarity between sam-
ples. It enables us to visually inspect how well the model
separates different classes and identifies clusters of simi-
lar samples by plotting the embedding space in 2D or 3D.
Therefore, t-SNE is a useful tool for evaluating the quality
of learned embeddings in deep metric learning.

We experimented on two classes from the training set
and two classes (wren and woodpecker) from the test set.
Figure. 8 shows that EPSHN is effective at distinguishing
between different classes in the training set, but the embed-
ding for hybrid species is relatively dispersed. With the ad-
ditional HSE training signal, the embedding of the hybrid
species becomes more concentrated and is located between
the two classes. This approach considers all the features
of difficult samples, creating a more comprehensive em-
bedding of the samples. When additional training signals
are learned, the model can generalize better to unknown
classes. This is demonstrated in the test set, where the

EPSHN method cannot distinguish the black classes from
the green and blue classes. However, when the training sig-
nal of HSE is applied to the downstream task, black classes
can be successfully distinguished from green classes.

(a) Oriole (id=95) (b) Nuthatch (id=94) (c) Hspecie

EPSHN (train) HSE-EPSHN (train)

EPSHN (test) HSE-EPSHN (test)

Figure 8: We present a t-SNE visualization of EPSHN and HSE-EPSHN
on the test set of CUB. Specifically, we select two different classes (de-
noted by blue dots and green dots) from the training set as shown in (a)
and (b), respectively. (c) is the synthetic class from classes (a) and (b),
denoted by red dots.For the test set, we selected four bird categories, con-
sisting of two types of wrens and two types of woodpeckers, where each
color represents a specific category.

5. Conclusion

Our Hybrid Species Embedding (HSE), a metric
learning approach that aims to enable models to learn
the spatial embedding of unknown and difficult classes
during training. HSE generates additional hard samples
using mixed data augmentation methods without defining
their label information and applies them to the metric
learning process. Experiments demonstrate significant
improvements on multiple datasets when compared to three
widely used pair-based methods and state-of-the-art proxy
methods. HSE enhances the generalization ability of the
model by providing additional training signals in deep
metric learning.
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