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Abstract

In incremental learning, replaying stored samples from
previous tasks together with current task samples is one of
the most efficient approaches to address catastrophic for-
getting. However, unlike incremental classification, image
replay has not been successfully applied to incremental ob-
ject detection (IOD). In this paper, we identify the over-
looked problem of foreground shift as the main reason for
this. Foreground shift only occurs when replaying images of
previous tasks and refers to the fact that their background
might contain foreground objects of the current task. To
overcome this problem, a novel and efficient Augmented Box
Replay (ABR) method is developed that only stores and re-
plays foreground objects and thereby circumvents the fore-
ground shift problem. In addition, we propose an innova-
tive Attentive RoI Distillation loss that uses spatial atten-
tion from region-of-interest (RoI) features to constrain cur-
rent model to focus on the most important information from
old model. ABR significantly reduces forgetting of previous
classes while maintaining high plasticity in current classes.
Moreover, it considerably reduces the storage requirements
when compared to standard image replay. Comprehensive
experiments on Pascal-VOC and COCO datasets support
the state-of-the-art performance of our model 1.

1. Introduction

The field of deep learning has witnessed remarkable
progress recently, and state-of-the-art object detection mod-
els [5, 19, 23, 51, 52] have been developed that performs ex-
ceptionally well on benchmark datasets. However, these
models are typically designed to learn from data in a static

1Code is available at https://github.com/YuyangSunshine/ABR IOD.git
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Figure 1: Background Shift and Foreground Shift for im-
age replay settings. For each task, only the new classes are
annotated while the other objects are considered as back-
ground (bkg). Moving from task t − 1 to task t, the defini-
tion of the bkg changes, referred to as background shift [8].
When current task samples are trained with exemplars from
previous tasks, another critical problem-Foreground Shift
occurs due to varying annotations of new classes between
new samples (person as foreground) and exemplars (person
as bkg) in the same task. Our augmented box replay method
resolves these problems by mixing previous objects in the
bkg of new images or fusing together for training.

manner, assuming that all object classes are available at
once during training. In real-world scenarios, new object
classes may emerge over time, making it necessary to up-
date the model with new data. The inability to learn in-
crementally is a significant limitation for object detectors,
particularly in cases of limited data storage capacity or data
privacy concerns [10,46]. Therefore, developing incremen-
tal object detection (IOD) methods has become an essential
and challenging task in real-world applications.
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SOTA object detectors experience a phenomenon known
as catastrophic forgetting [47], where their performance on
previous classes degrades after learning new classes. This
issue is commonly observed in incremental settings [10]
and can be mitigated by balancing model stability (retaining
previous information) and plasticity (learning new informa-
tion without forgetting previous knowledge). While most
studies in incremental learning are based on image classi-
fication [2, 31, 34, 50], recently it has been studied in the
context of object detection [7, 9, 22, 48, 55] and semantic
segmentation [13, 20, 64]. A critical aspect in IOD is the
background shift, also known as missing annotations [7,48]
which occurs due to the presence of multiple class objects
in an image. Objects belonging to previous or future tasks
in incremental object detection are often not annotated and
assigned to the background class, as annotations are only
available for classes in the current task.

One of most efficient approaches in incremental classi-
fication is rehearsal-based strategy with storing images [6,
50]. However, directly applying the replay images into IOD
will cause the unlabelled objects of current classes in the
replay images to be treated as background by the model.
Consequently, the new objects will be background in replay
images, while regarded as foreground in the new images.
This leads to a contradiction between the foreground anno-
tations in the exemplars and the current images as illustrated
in Fig. 1. We refer to this problem as foreground shift which
affects the plasticity of the current model.

To overcome the foreground shift for image replay in
IOD, we propose a novel method called Augmented Box
Replay (ABR). ABR uses mixup and mosaic box augmen-
tation strategies to replay previous objects as an alternative
to image replay for training in the current task. Compared to
storing images in memory, ABR stores approximately four
times as many object instances with the same storage re-
quirements. To more effectively address catastrophic for-
getting, we introduce a novel Attentive RoI Distillation loss
that utilizes spatial attention from region-of-interest (RoI)
features to align the most informative features of the previ-
ous and new models and correct the anchor position devia-
tions of proposal pairs.

The proposed method is experimentally evaluated on
Pascal-VOC and COCO datasets, and significantly outper-
forms SOTA methods in multiple settings. Our main contri-
butions are three-fold:

• This paper is the first to identify the critical foreground
shift issue which has hampered the usage of replay
methods for IOD. We propose Augmented Box Re-
play as a solution that reduces the memory require-
ments, eliminates the foreground shift, and improves
the model stability and plasticity.

• We propose an innovative Attentive RoI Distillation
loss to focus the current model on important location
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Figure 2: Our ABR method is especially well on the chal-
lenging longer sequences (10-1) and when starting with a
small initial task (5-5). We compare here with state-of-the-
art methods FILOD [48] and MMA [7].

and feature information from the previous model and
further reduce catastrophic forgetting.

• Our method outperforms state-of-the-art methods
across multiple datasets and settings, showcasing its
practicality and effectiveness. Especially, on the more
challenging longer task sequences and the difficult sce-
nario with a small initial task, our method obtains sig-
nificant performance gains (see Fig. 2).

2. Related Work
Object Detection: Detector networks can be categorized
into one-stage [5, 36, 39, 51, 56, 57] and two-stage [19, 23,
35,52] detectors. One-stage detectors which directly predict
the output objects are comparatively faster while the two-
stage detectors are generally superior in performance. The
two-stage methods first extract regions of interests (RoIs)
using a network [52] and then obtain the final classifica-
tion and regression outputs using a multi-layer network on
the RoIs. Since these architectures perform poorly in incre-
mental settings, we extend the two-stage Faster R-CNN [52]
network such that it can learn new object classes over time.
Incremental Learning: Class-incremental learning [10,
46] and catastrophic forgetting [47] has been explored
extensively for image classification [6, 34, 50] problems.
The previous works can be categorized into rehearsal-
based, parameter-isolation and regularization-based meth-
ods. Rehearsal-based methods store training samples [6,
33, 50] from previous tasks or generates training data [30,
54, 59]. Parameter-isolation methods [41, 44, 45, 61] mod-
ify the initial network to accommodate new classes. Prior-
focused regularization methods constrain learning on new
classes and penalizing updating on weights [2,31] or gradi-
ents [43] while data regularization methods perform distil-
lation [25] between the intermediate features [14,15,27,34]
or attention maps [12] of the teacher model and the cur-
rent student model to reduce forgetting. Other methods use
embedding networks [62] or classifier drift correction [3]
to address the changing class distributions. In our work, we
focus on rehearsal-based and regularization-based methods.
Incremental Object Detection: Most of the recent works
on incremental object detection use the Faster R-CNN [52]
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Figure 3: Illustration of our proposed framework, which highlights the key novelties of Augmented Box Replay (ABR) and
Attentive RoI Distillation. ABR fuses prototype object b from Box Rehearsal Bt−1 into the current image Itn using mixup or
mosaic. Attentive RoI Distillation uses pooled attention Ai and masked features Fi ·At−1

i to constrain the model to focus on
important information from previous model. Inclusive Distillation Loss overcomes catastrophic forgetting based on ABR.

architecture and performs distillation on the intermediate
features [7, 22, 40, 48, 60, 66], the region proposal net-
work [7, 48, 66] and head layers [17]. Relatively few
works [32, 49, 53] used one-stage architectures for incre-
mental learning. Although the background shift issue was
partially addressed in [66] by preventing previous class re-
gions to be sampled as background but it was highlighted
recently in [7,48]. [7] proposed an unbiased classifier train-
ing loss and classifier distillation loss to explicitly tackle the
background shift. EWC [31] has been adapted by [38] for
object detection. While some methods replay images for
finetuning [21,28] after training and for meta-learning [29],
very few methods replay whole images [53] or stored fea-
ture representations [1] during training. For instance seg-
mentation, [18] explored copying random instances from
one image to another. Our work deals with bounding box
replay methods to better address the challenges of IOD.

3. Proposed Method

3.1. Problem Formulation and Overview

Object detection is primarily concerned with accurately
identifying and localizing objects of interest within an im-
age. Given a set of data D = {(In, Yn)}Nn=1, an ideal ob-
ject detector fθ(In) can predict a series of boxes Ŷn cor-
responding to the groundtruth Yn, where Yn = {yg =

(ug, vg, wg, hg, cg)}Gn
g=1, with (ug, vg) denoting the top-left

corner coordinates of the bounding box and (wg, hg) the
width and height of the bounding box, and ci denotes the
class for each of the Gn bounding boxes. Therefore, D has
K=

∑N
n=1 Gn groundtruth boxes totally. This work focuses

on two-stage detectors from the R-CNN family [19, 23, 52]
that typically consist of a CNN-based feature extractor, a
Region Proposal Network (RPN), and a class-level classifi-

cation and bounding box regression network (RCN).
Incremental object detection aims to learn to detect ob-

jects in a sequence of T tasks, where each task Dt =
{(Itn, Y t

n)}N
t

n=1 corresponds to a new set of classes Ct. The
model should be able to detect objects in the new classes
Ct while retaining the ability to detect objects in the pre-
viously seen classes C1:t−1 without catastrophic forgetting.
However, unlike in the classification tasks where each input
has a single label, Itn may contain objects from both Ct and
C1:t−1, and the annotations Y t

n only include the bounding
boxes and class labels for Ct. Therefore, Gt

n ≤ the number
of the real annotations in IOD. The presence of unlabeled
previous objects can lead to Background Shift during train-
ing, where attention of the detector is biased towards the Ct

and it fails to differentiate between the objects from Ct and
C1:t−1. Moreover, misassociations can propagate over time,
exacerbating catastrophic forgetting of previous classes.

A straightforward way to a solution is using the original
images from D1:t−1, as shown in Fig. 1, which provides
certain information for C1:t−1. However, the image replay
method involves replaying original images from the previ-
ous training set during the current one, which can cause
Foreground Shift due to replay of unlabeled objects from
Ct. Thus, the new classes or the foreground in the current
images are considered as the background in the replayed
images which results in the model failing to generalize to
new contexts. Additionally, storing the original images can
result in significant memory overhead, since they include a
lot of redundant information.

3.2. Augmented Box Replay

To mitigate the foreground shift problem, we propose an
Augmented Box Replay (ABR) strategy that selects a sub-
set of informative and representative box images from the



previous task, along with a new set of boxes for the current
task t. This method avoids replaying redundant informa-
tion and optimally employs its storage for the relevant ob-
ject regions. Specifically, ABR can replay these boxes in an
augmented way, which helps the model retain its ability to
detect previous objects in new contexts while improving its
detection performance on the current task. Fig. 3 illustrates
the pipeline of Augmented Box Replay strategy.

At the beginning, we involve a prototype box selection
to choose the most representative boxes whose feature maps
are close to the mean feature map after training of task t−1.
The memory buffer is denoted as Bt−1, where the memory
size M t−1 of Bt−1 is limited. Therefore, the selection is
an important factor that affects the performance. The final
Bt−1 can focus on the most relevant information and avoid
redundant or irrelevant information. Since box images are
smaller than images, the storage cost is reduced, making it
scalable to large datasets and complex models. See supple-
mentary material for more details.

To leverage prototype boxes Bt−1 accumulated from the
previous tasks in the current task t, we have designed two
types of replay strategies: mixup box replay and mosaic
box replay, inspired by [4, 65]. These strategies allow us to
effectively transfer knowledge from past tasks to the current
one and enhance the performance of the model.
MixUp box replay. This method replays the box images of
the previous class in the current data, placed in such a way
that the previous box objects blend into the image more nat-
urally, while ensuring that they have minimal overlap with
the groundtruth bounding boxes of the new class. It involves
assigning a random location in the current image Itn to each
box image b ∈ Bt−1 with size (wb, hb), and then mixing it
with Itn to create a new image Îtn. More specifically, Îtn is
obtained by overlaying b onto Itn at a location with a mix-
ing coefficient λ. For each pixel location in Îtn, if (u, v) is
not inside the box, then the original pixel value of Itn is re-
tained. If (u, v) is inside the box, the mixed pixel value is
computed by:

Îtn(u, v) =


λItn(u, v) if max

g∈Gn
t

yg ∪ b ≤ th
+(1− λ)b(û, v̂),

Itn(u, v) otherwise
,

(1)
where λ is values with the [0, 1] range and is sampled from
the Beta distribution [65], b(û, v̂) is the pixel value of the
box image b at location (û = u−wb, v̂ = v− hb), yg ∪ b is
the intersection over union (IOU) between each groundtruth
annotation yg,∀g ∈ Gt

n and the box image b, and th is a
threshold value. If the maximum IOU over union between
the groundtruth annotations and the box image b ≤ th, then
the pixel value at (u, v) in the new image Îtn is a mixture
of the original pixel value Itn(u, v) and the corresponding
pixel value in the box image b. Otherwise, the original pixel

Table 1: Influence of different detector components in
Faster-ILOD [48] on VOC 10-10 setting.

Frozen Feature RPN RCN VOC (10-10)
Backbone Distil. Distil. Distil. 1-10 11-20 1-20

✓ ✓ ✓ 70.3 53.0 61.7
✓ ✓ ✓ 70.7 53.3 62.0

✓ ✓ 70.6 53.7 62.2
✓ ✓ 69.8 53.3 61.6
✓ ✓ 8.2 62.7 35.5

value Itn(u, v) is retained. Note that at most two boxes are
mixed up in a single image Itn since the boxes are selected
randomly and the overlap condition limits the number of
boxes that can be mixed up in a single image.
Mosaic box replay. This method involves dividing Itn into
a grid and randomly selecting a subset of cells. Each cell
is then replaced with a box image b from Bt−1, and the
resulting image Îtn is used for rehearsal. In the mosaic box
replay strategy, a composite image is formed by combining
four box images into a single mosaic image. To create the
composite image, a random location is first selected as the
center point of the mosaic image. Then, each of the four
boxes is resized to a new size that is proportional to the size
of the mosaic image, with the scaling factor µ randomly
sampled from the range of [0.4, 0.6]. The resized boxes are
arranged in the four quadrants of the mosaic image, and the
remaining areas are filled with a fixed color value.

In summary, the Augmented Box Replay offers several
advantages for incremental learning in object detection: 1)
Information Richness: ABR selects the most informative
and representative boxes for rehearsal, which preserves the
accuracy and diversity of learned model. 2) Enhanced gen-
eralization: ABR serves as an augmentation method which
gives a different background context to both previous and
new classes and thus improves the generalization of the
model. 3) Memory efficiency: ABR replays only a small
set of representative box images instead of the entire im-
ages, which significantly reduces the memory requirement.
4) Adaptability: ABR can easily be integrated with differ-
ent object detection models to improve their performance.

3.3. Attentive RoI Distillation

Distillation-based methods [7,48,55] are commonly used
in IOD, aiming to transfer the knowledge of a model trained
on a previous task (teacher) to a current model (student)
while simultaneously learning the new task. To further ex-
plore the impact of the distillation operation on the forget-
ting of each detector component, an ablation study is evalu-
ated on the Faster-ILOD model [48] as shown in Table 1.
We can find that the feature extractor has a minimal ef-
fect on forgetting when either freezing the backbone or ap-
plying the feature distillation operation, and the presence
or absence of the RPN component only has a 0.1% effect



on forgetting. However, removing the distillation opera-
tion of the prediction head (RCN) results in a 26.2% drop
in performance. Our obtained analysis and [58] together
suggest that forgetting mainly occurs at the classification
head. However, a limitation of RPN distillation lies in its
focus solely on extracting RPN modules, which provide
region proposals without considering features within each
proposal. Consequently, the distilled model may overlook
informative features within the proposals, leading to sub-
optimal performance. To address this, we propose the At-
tentive RoI Distillation (ARD) loss, which allows the stu-
dent model to selectively focus on the most important fea-
tures from the teacher model by aligning the spatial atten-
tion maps and masked features of each proposal. Moreover,
ARD supports more inclusive RoI features for the final pre-
diction and helps to overcome the forgetting problem in the
classification head.

To enable the model to focus on the most informative
parts of an image, we calculate a spatial attention map At

i

for each F t
i , ∀i ∈ P t

n, where P t
n is the number of proposals.

The spatial attention map is obtained by raising the abso-
lute value of each feature plane F t

i,d to a power p (in the
experiments, p = 2) based on [63] and summing them up:

At
i =

C∑
d=1

∣∣F t
i,d

∣∣p , p > 0, (2)

Our method employs spatial attention maps from previous
and current models to emphasize the most informative fea-
tures and suppress the less informative ones. More superfi-
cially, the pooled attention distillation (PAD) loss is:

LPAD =
∥∥At−1

i −At
i

∥∥ , (3)

where At−1
i and At

i are the spatial attention maps for the
ith proposal in the previous and current models, respec-
tively. PAD can transfer knowledge from a previously
trained model to a new one in a progressive learning set-
ting. The key difference with existing distillation methods
in IOD is that here we explicitly distill the knowledge on
the location of the relevant features (this is encoded in the
attention map). Furthermore, ours applies the attentive dis-
tillation into the aligned bounding boxes, which contain the
very relevant both location and feature information. Specif-
ically, the Attentive RoI Feature Distillation (AFD) loss is
employed:

LAFD =
1

Pn

Pn∑
i=1

(
F t−1
i − F t

i

)2
At−1

i , (4)

where P t
n is the number of proposals for Itn, F t−1

i and F t
i

are the features extracted from the previous and new mod-
els, respectively. The squared difference (F t−1

i − F t
i )

2 pe-
nalizes larger deviations between the previous and new fea-
tures, which further encourages the new model to reproduce

informative features from the previous model. By using the
attention maps to weight the MSE term, AFD ensures new
model to focus on reproducing the most important features
from the previous model, while allowing for some flexibil-
ity in reproducing the less informative features. The overall
ARD loss function is defined as:

LARD = LAFD + γLPAD (5)

where γ is a hyperparameter that controls the strength of the
regularization.

ARD loss not only aligns the features of each proposal
but also has an effect on the position deviation of each an-
chor point. This spatial attention feature alignment reduces
the impact of background shift caused by the imbalance be-
tween new and previous classes and promotes knowledge
transfer from the previous model to the new model.

3.4. Inclusive Loss with Background Constraint

To avoid forgetting in classification head, we followed
the unbiased classification and distillation losses proposed
by [7,8]. However, due to our Augmented Box Replay strat-
egy, the input image Îtn contains many annotations about
previous objects. This means that using unbiased losses di-
rectly in this situation is not feasible, as it would ignore the
positive influence of the Bt−1 on the previous categories
during the training phase. Therefore, we involve Inclusive
Loss with Background Constraint to adapt the ABR based
on the unbiased classification and distillation losses. In de-
tail, the Inclusive Classification Loss is defined as follows:

LIC =
1

P t
n

P t
n∑

i=1

ci


log(pbi +

C1:t−1∑
c=1

pci ), ci = Cb

C1:t∑
c=1

ci log p
c
i , ci ∈ C1:t

(6)

where ci is the label of proposal i, pbi is the probability as
Cb, pci is the probability as Ct. For positive RoI of C1:t

in ABR, the standard RCN loss based on cross-entropy is
maintained. However, for negative RoI, the sum of the prob-
abilities of C1:t−1 is treated as Cb, ensuring that the model
does not learn to predict C1:t−1 for unlabeled objects.

Moreover, the inclusive distillation (ID) loss maintains
the performance of task t−1 by aligning the probabilities of
the previous model for the background class with the prob-
abilities of the new model for both Cb and Ct. The training
data for ABR includes grountruth annotations from box re-
hearsal, and the teacher model can detect previous objects.
Therefore, we only need to focus on each proposal of Ct:

LID =
1

Ω


pb,t−1
i log(pb,ti +

Ct∑
c=1

pc,ti ), ci = Cb

Ct−1∑
c=1

pc,t−1
i log(pc,ti ), ci ∈ C1:t

(7)



where Ω = |C1:t−1| + 1 is the number of previous and
background classes, pb,t−1

i and pc,t−1
i are the classification

probabilities of the background class and previous classes
in task t − 1, respectively, pb,ti and pc,ti are the classifica-
tion probabilities of the background class and new classes
in task t, respectively, for the proposal i, pc,ti is the classi-
fication probability of previous classes and new classes for
the proposal i in the current task t.

4. Experiments
4.1. Experimental Settings

Datasets: We evaluate the proposed method on two pub-
licly available datasets namely PASCAL VOC 2007 [16]
and MS COCO 2017 [37]. PASCAL VOC 2007 contains 20
object classes and 9,963 images, 50% of which is used for
training and validation and the remaining 50% for testing
following [16]. MS COCO 2017, as a challenging dataset,
has 80 different object classes and provides 83,000 images
for training, 40,000 for validation and 41,000 for testing.
IOD Protocols: Following previous works on this topic [7,
29, 55], we obey the same experimental protocols. Each
training task contains all images which have at least one
bounding box from a new class. The annotations are avail-
able only for the new classes while the previous and future
classes are not annotated. This setting is practical and can
also have repetitions of images across tasks.
Implementation Details: Similar to [7,9,22,29,40,48,55,
60, 66], we use the Faster R-CNN [52] architecture with
a Resnet-50 [24] backbone pretrained on ImageNet [11].
We train the network with SGD optimizer, momentum of
0.9 and weight decay of 10−4. We use a learning rate of 5
×10−3 for the initial task and 2 ×10−3 for the subsequent
tasks. We used 15K iterations for 5 or 10 class increments
in a task and 5K iterations when adding 1 or 2 new classes.
We set the memory size as 2,000 for all the experiments on
PASCAL VOC 2007, 10,000 for 70-10 and 5,000 for 40-
40 settings on MS COCO 2017 respectively. Our method
uses a stack to store boxes, which are randomly selected
and placed (while considering overlap criteria) during each
iteration. To balance the number of old and new objects,
we determine the 1:1:2 ratio for mixup, mosaic, and new
images based on comparisons across different settings.
Evaluation: We evaluate the methods in terms of mean
average precision at 0.5 IoU threshold for PASCAL VOC
2007. For MS COCO 2017, we also report the mAP at dif-
ferent IoU ranging from 0.5 to 0.95 IoU (mAP@[50:95]),
at 0.50 IoU (mAP@50) and at 0.75 IoU (mAP@75).

4.2. Quantitative Evaluation

Following previous works [7,29,48,55,60,66], we eval-
uate our method on settings with different number of initial
classes and one or more incremental tasks. We compare our

method with two baselines, the Fine-tuning when the model
is trained with the data incrementally without any regular-
ization or data replay, and the Joint training when the model
is trained on the entire dataset with all the annotations. All
results are obtained after training of the last task.

4.2.1 PASCAL VOC 2007

For PASCAL-VOC 2007, we perform our experiments on
19-1, 15-5, 10-10 and 5-15 single incremental task settings
adding 1, 5, 10, 15 classes respectively. For multi-step in-
cremental settings, we evaluate on 10-5, 5-5, 10-2, 15-1 and
10-1 settings where we add 5, 5, 2, 1 and 1 classes respec-
tively at every step till all the 20 classes are seen.
Single-step increments: We benchmark our ABR method
against the existing methods on Table 2. We notice that
Fine-tuning suffers from catastrophic forgetting across all
settings. ABR outperforms all other methods across all
the settings, significantly improving over MMA on the new
classes by 4.5 mAP on 15-5, 8.9 mAP on 10-10 and 9.8
mAP on 5-15. We argue that the enhanced stability and
plasticity is due to the augmented box replay of previous
classes and our effective attention distillation. Our improve-
ments over the methods storing exemplars [21, 28, 29] con-
firm the importance of the box replay for IOD.
Multi-step increments: The catastrophic forgetting and the
background shift problem is more crucial on the longer in-
cremental settings as seen in the performance from Table 3.
Fine-tuning suffers from almost complete forgetting on the
initial classes. ABR improves over the closest competitor
MMA by 3.9 mAP on 10-5, 3.5 mAP on 10-2, 3.4 mAP
on 15-1 and 7.7 mAP on the longest and most challenging
setting 10-1. It is interesting to observe that most meth-
ods struggle on the 5-5 setting with only 5 initial classes
while ABR improves over MMA by 19.5 mAP. This im-
plies that the existing methods require more classes in the
initial task to achieve better generalization and thus, fails to
adapt to new classes when the first task has lesser classes
in 5-5 setting. On the most difficult setting of 10-1 with
10 increments, ABR outperforms MMA by 4.1 mAP on the
previous classes and 11.1 mAP on the new classes. Note
that for multiple increment settings, the improvement in the
performance of incremental classes is not only due to better
learning of new classes but also due to lesser forgetting of
the intermediate task classes after moving to new tasks.

4.2.2 MS COCO 2017

For MS COCO 2017, we perform experiments on 40-40 and
70-10 settings adding 40 and 10 classes respectively. As
shown in Table 4, Fine-tuning suffers from catastrophic for-
getting on both settings. While Faster ILOD and MMA has
improved over Fine-tuning, our method improves average
mAP@[50:95] over MMA by 1.5 on 40-40 setting and by



Table 2: mAP@0.5% results on settings with single increments on Pascal-VOC 2007. Best among columns in bold and
second best among columns are underlined. Methods with * use exemplars. †: results from re-implementation.

19-1 15-5 10-10 5-15
#Method 1-19 20 1-20 1-15 16-20 1-20 1-10 11-20 1-20 1-5 6-20 1-20
Joint Training 70.1 75.7 74.3 76.4 67.8 74.3 75.5 73.0 74.3 70.1 75.7 74.3
Fine-tuning 11.8 64.7 14.4 15.9 54.2 25.5 2.6 63.4 32.9 6.9 63.1 49.1
ILOD (FasterRCNN)† [55] 69.8 64.5 69.6 72.5 58.5 68.9 69.8 53.7 61.7 61.0 37.3 43.2
Faster ILOD† [48] 70.9 63.2 70.6 73.1 57.3 69.2 70.3 53.0 61.7 62.0 37.1 43.3
PPAS [66] 70.5 53.0 69.2 - - - 63.5 60.0 61.8 - - -
MVC [60] 70.2 60.6 69.7 69.4 57.9 66.5 66.2 66.0 66.1 - - -
MMA† [7] 70.9 62.9 70.5 72.7 60.6 69.7 69.8 63.9 66.8 66.8 57.2 59.6
ORE* [28] 69.4 60.1 68.9 71.8 58.7 68.5 60.4 68.8 64.6 - - -
OW-DETR* [21] 70.2 62.0 69.8 72.2 59.8 69.1 63.5 67.9 65.7 - - -
Meta-ILOD* [29] 70.9 57.6 70.2 71.7 55.9 67.8 68.4 64.3 66.3 - - -
ABR (Ours) 71.0 69.7 70.9 73.0 65.1 71.0 71.2 72.8 72.0 64.7 71.0 69.4

Table 3: mAP@0.5% results on settings with multiple increments on Pascal-VOC 2007. Best among columns in bold and
second best among columns are underlined. †: results from re-implementation.

10-5 (3 tasks) 5-5 (4 tasks) 10-2 (6 tasks) 15-1 (6 tasks) 10-1 (11 tasks)
#Method 1-10 11-20 1-20 1-5 6-20 1-20 1-10 11-20 1-20 1-15 16-20 1-20 1-10 11-20 1-20
Joint Training 75.5 73.0 74.3 70.1 75.7 74.3 75.5 73.0 74.3 76.4 67.8 74.3 75.5 73.0 74.3
Fine-tuning 5.3 30.6 18.0 0.5 18.3 13.8 3.79 13.6 8.7 0.0 10.47 5.3 0.0 5.1 2.55
ILOD (FasterRCNN)† [55] 67.2 59.4 63.3 58.5 15.6 26.3 62.1 49.8 55.9 65.6 47.6 60.2 52.9 41.5 47.2
Faster ILOD† [48] 68.3 57.9 63.1 55.7 16.0 25.9 64.2 48.6 56.4 66.9 44.5 61.3 53.5 41.0 47.3
MMA† [7] 67.4 60.5 64.0 62.3 31.2 38.9 65.7 52.5 59.1 67.2 47.8 62.3 57.9 44.6 51.2
ABR (Ours) 68.7 67.1 67.9 64.7 56.4 58.4 67.0 58.1 62.6 68.7 56.7 65.7 62.0 55.7 58.9

Table 4: mAP results on MS COCO 2014 at different IoU,
where the best among columns in bold.

40-40 mAP@ 70-10 mAP@
#Method [50 : 95] 50 75 [50 : 95] 50 75

Joint Training 35.9 60.5 38.0 35.9 60.5 38.0
Fine-tuning 19.0 31.2 20.4 5.6 8.6 6.2
Faster ILOD [48] 20.6 40.1 - 21.3 39.9 -
MMA [7] 33.0 56.6 34.6 30.2 52.1 31.5
ABR (Ours) 34.5 57.8 35.2 31.1 52.9 32.7

0.9 on 70-10 setting. These results signify lesser forgetting
and better adaptation to new classes with our method.

4.3. Analysis and Ablation Study

We investigate the role of the network components, re-
play selection strategies, augmentation types in Table 5 on
the VOC 10-10 and 10-5 settings. We take the baseline
model with the RCN classification and distillation loss pro-
posed by [7]. We show that our attentive RoI distillation
improves over the RPN distillation used by [7, 48] owing
to better exploitation of location and feature information of
the RoIs. In replay strategies, we implemented the herding
strategy [50] for selecting boxes to replay. Our method im-
proves 1%∼1.5% mAP over the herding strategy. We can
observe that our proposed prototype box selection can better
capture more representative prototype samples for previous
classes. Further, we add mixup and mosaic replay individ-
ually and observe that both strategies improve the perfor-

mance on previous and new classes. The best performance
is achieved when both mixup and mosaic replay are per-
formed with the new images.

We investigate the role of the memory size and train
ABR with different memory size of previous class boxes.
Fig. 4 plots the mAP@50 results with increasing memory
size. It is observed that the performance increases with in-
creasing memory size or replay of more previous objects.
It can be observed that after the memory size > 2000, the
growth rate of mAP tends to be more stable. Therefore, in
the main experiments, we use a memory size of 2000.

Table 6 presents a comparison between image replay and
our proposed ABR method. The same number of objects
ensures that the original information about the previous cat-
egories stored in the memory buffer is consistent, and the
same storage space controls practicality in real-world ap-
plications. As shown in Table 6, despite having the same
number of objects, image replay performs worse than aug-
mented box replay in recognizing new classes. This con-
firms that replaying original images can lead to foreground
shift and limit the adaptation of new classes. On the other
hand, our memory buffer contains about 4 times as many
original objects for previous classes as image replay.

4.4. Visualization

Fig. 5 shows some examples of images generated by
mixup replay in VOC 10-10 setting. It can be seen intu-



Table 5: Ablation study highlighting contribution from different components, where the best among columns in bold.
RCN RPN RoI Selection AugmentedType VOC (10-10) VOC (10-5)

LIC ,LID Distil. LARD PBS Herding Random Mixup Mosaic 1-10 11-20 1-20 1-10 11-15 16-20 1-20
✓ 43.5 75.9 59.4 65.1 31.3 59.8 55.3
✓ ✓ 45.2 75.6 60.4 67.1 30.5 59.3 55.9
✓ ✓ 47.9 76.2 62.0 67.0 35.6 58.4 57.0
✓ ✓ ✓ ✓ 68.9 72.6 70.7 67.4 72.8 63.5 67.7
✓ ✓ ✓ ✓ 70.6 71.2 70.9 67.0 70.7 61.8 66.6
✓ ✓ ✓ ✓ ✓ 69.7 72.4 71.0 67.4 72.9 61.1 67.2
✓ ✓ ✓ ✓ ✓ 68.7 71.5 70.1 67.0 71.2 62.8 67.0
✓ ✓ ✓ ✓ ✓ 69.4 71.6 70.5 67.4 72.3 61.1 67.2
✓ ✓ ✓ ✓ ✓ 71.2 72.8 72.0 68.7 71.5 62.8 67.9

Table 6: Rehearsal alternative on Pascal VOC 2007 in
mAP@50. All experiments are done in our proposed
method with image replay or augmented box replay (ABR).

VOC (10-10)
Type Buffer Size Objects Memory↓ 1-10 11-20 1-20

- - - - 47.9 76.2 62.0
Image 182 455 15.5Mb 70.2 62.2 66.2
Image 800 2000 68Mb 71.6 57.9 64.7
ABR 2000 2000 15.5Mb 71.2 72.3 72.0
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Figure 4: The average mAP@50 of previous, current and
total classes in terms of different memory sizes at PASCAL
VOC 2007 15-5 setting.

itively that the mixup strategy makes the box reasonably
integrated into the new images and minimizes the occlusion
with the new objects. In addition, the background informa-
tion compared to the new objects is greatly enriched. The
inference results are available in supplementary material.

5. Conclusion

In this paper, we studied the experience replay method
for incremental object detection problem and introduced the
critical issue of foreground drift during old image replay.
We hypothesize that the foreground drift is the reason that
replay methods, which are dominant in incremental learning
for image classification, have been little studied for IOD.

To tackle this problem, our proposed method ABR stores
bounding boxes from old classes and replays them with new
images using mixup and mosaic augmentation strategies.

Figure 5: Examples of images generated by mixup augmen-
tation for 10-10 setting on PASCAL VOC 2007. Blue boxes
represent previous classes which are replayed in the back-
ground of new images. Orange boxes represent the ground
truth annotations of current classes.

This overcomes the foreground drift situation since only the
old classes are stored and replayed and not the unlabeled
new classes from old images. In addition to box replay,
the proposed attentive RoI distillation uses both the loca-
tion and feature information for the RoIs extracted from the
RPN and enables retention of meaningful knowledge of old
classes. Further, our method reduces the memory overhead
significantly. We demonstrate that ABR outperforms exist-
ing methods across all settings on representative datasets.

This work lays the foundation for bounding box replay
instead of the traditional image or feature replay methods
for object detection tasks. Future research should explore
the implications of the foreground shift in incremental se-
mantic segmentation and extend our approach to popular
transformer methods [42].

Acknowledgement. This work is supported by National Natural
Science Foundation of China (Grant No. 62127807, 62206135).
We acknowledge projects TED2021-132513B-I00 and PID2022-
143257NB-I00, financed by MCIN/AEI/10.13039/501100011033
and FSE+ and the Generalitat de Catalunya CERCA Program.



References
[1] Manoj Acharya, Tyler L Hayes, and Christopher Kanan.

Rodeo: Replay for online object detection. In British Ma-
chine Vision Conference (BMVC), 2020. 3

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In European Con-
ference on Computer Vision (ECCV), 2018. 2

[3] Eden Belouadah and Adrian Popescu. Il2m: Class incremen-
tal learning with dual memory. In International Conference
on Computer Vision (ICCV), 2019. 2

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020. 4

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision (ECCV), 2020. 1, 2

[6] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,
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and Matthieu Cord. Dytox: Transformers for continual learn-
ing with dynamic token expansion. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 2

[16] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International Journal of Computer
Vision (IJCV), 2009. 6

[17] Tao Feng, Mang Wang, and Hangjie Yuan. Overcoming
catastrophic forgetting in incremental object detection via
elastic response distillation. In Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2022. 3

[18] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2021. 3

[19] Ross Girshick. Fast r-cnn. In International Conference on
Computer Vision (ICCV), 2015. 1, 2, 3
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liuyuyang@sia.cn, congyang81@gmail.com, {dgoswami, joost}@cvc.uab.es, xialei@nankai.edu.cn

A. Additional Methods
A.1. Prototype Box Selection

This method involves selecting the most representative boxes,
as prototypes, from the current training data, which are then re-
played along with the future training data. The memory buffer is
commonly denoted as Bt, where t represents the current task and
the size M of Bt is limited. Therefore, the selection is an im-
portant factor that affects the performance. We employ a frozen
trained model to generate the Region of Interest (RoI)-Aligned

feature maps {F t
g ∈ RC×S×S}G

t
n

g=1 for Gt
n groundtruth boxes in

the current task t, where C is the number of feature planes and
S is the spatial dimension. Then, a prototype feature map F̂ t

c for
each class c ∈ Ct can be computed by:

F̂ t
c =

1

|F t
c |

Gt
n∑

g=1

F t
g , ∀cg = c, (8)

The distance between each feature map F t
g and the prototype fea-

ture map F̂ t
c for class c is computed using the Euclidean distance:

d(F t
g , F̂

t
c ) =

√∑
(F t

g − F̂ t
c )2, ∀cg = c, (9)

Then we sort {d(F t
g , F̂

t
c ), ∀cg = c}G

t
n

g=1 in ascending order, and
select the top Mc = M

|C1:t| boxes for that class to form the box
buffer Bt

c. The final Bt can focus on the most relevant informa-
tion for each task and avoid redundant or irrelevant information,
as shown in Algorithm 1.

Additionally, since boxes are typically smaller than whole im-
ages, the computational cost of training and rehearsal can be re-
duced, making the approach more scalable to large datasets and
complex models. The entire flow of our proposed method is shown
in Algorithm 2.

B. Additional Analysis
B.1. Analysis foreground shift problem

In Table 1 and Table 2, our algorithm demonstrates a remark-
able improvement in mean Average Precision (mAP) ranging from
0.2∼20% across all categories. Additionally, it exhibits a sub-
stantial mAP boost of 4.5% to 25.2% in new categories (fore-

Algorithm 1 Prototype Box Selection (PBR)

Input: The frozen trained model in fθt(·), the stream data
Dt at current task t, each image Itn has Gt

n groundtruth
labels {yg}

Gt
n

g=1, the box rehearsal memory Bt−1 after
task t − 1, the box rehearsal memory size M , the seen
classes C1:t until task t.

Output: The updated Bt after task t.
1: Initialize: Bt = {}, mt = ceil(M/|C1:t|);
2: F t

g = fθt(I
t
n, yg), ∀n ∈ N t, ∀g ∈ Gt

n;
3: bg = crop(Itn, yg), ∀n ∈ N t, ∀g ∈ Gt

n;
4: for c in C1:t do
5: if c ∈ Ct then
6: Compute F̂ t

c for each class c based on Eq. 8;
7: Dc = {(bg, yg) | cg = c};
8: Sort Dc following Eq. 9;
9: Bt+ = Dc[0 : mt];

10: else
11: for j = 1, 2, ...,mt do
12: i = j ∗

∣∣Bt−1
c

∣∣ /ceil(M/|C1:t−1|);
13: Bt+ = Bt−1

c [i];
14: end for
15: end if
16: end for

ground categories), indicating the enhanced stability and plasticity
achieved by our method.

Moreover, we conducted a comprehensive analysis of False
Positives (FP) [26] under the VOC 10-10 setting. Fig. 6 visu-
ally represents the number of background errors, specifically de-
tections confused with the background or unlabeled objects. No-
tably, our approach (ABR) demonstrates a clear advantage, ex-
hibiting a substantial reduction of 275 errors in new (foreground)
classes compared to the ImageReplay method. This compelling re-
sult strongly suggests the successful mitigation of the foreground
shift problem by our proposed approach.

B.2. Analysis Attentive RoI Distillation (ARD)
While existing methods have utilized attention distillation pri-

marily on feature maps, we advance this approach by integrating



Algorithm 2 Augmented Box Replay Method

Input: fθt−1
(·), Dt={Itn, Gt

n}
Nt
n=1, Bt−1 and Rat=1:1:2.

Output: The updated Bt and fθt(·) after task t.
1: Initialize: θt = θt−1;
2: for n in Nt do
3: MIX,MOS,NEW=GenerateReplayType(Rat);
4: if MIX then
5: Compute Îtn, Ĝ

t
n by MixupBoxReply(Itn, G

t
n);

6: else if MOS then
7: Compute Îtn, Ĝ

t
n by MosaicBoxReply(Itn, G

t
n);

8: else if NEW then
9: {Îtn, Ĝt

n} = {Itn, Gt
n};

10: end if
11: LDis = DistiallationLosses(fθt−1

(·), fθt(·), Îtn);
12: LDet = DetectionLosses(fθt(·), {Îtn, Ĝt

n});
13: Update θt by LDis + LDet;
14: end for
15: Update Bt by PBS(fθt(·), Dt, Bt−1);

Figure 6: False-Positive Analysis

location information of Region of Interest (RoI) proposals. By do-
ing so, our model gains the capability to distill both feature and
localization information from the replayed and new objects, lead-
ing to an overall performance enhancement.

Fig. 7 showcases some additional attention maps, highlight-
ing how our Attention-based RoI Distillation (ARD) loss effec-
tively retains attention on the old class (e.g., bicycle). This ob-
servation confirms ARD’s competence in alleviating catastrophic
forgetting, a phenomenon that impacts model performance when
learning new tasks.

Through the inclusion of location-awareness in attention distil-
lation, our proposed ARD method exemplifies its potential to mit-
igate catastrophic forgetting and reinforce the preservation of cru-
cial knowledge from previous tasks, resulting in improved overall
model performance.

(a) Image (b) w/o ARD (c) w ARD

Figure 7: Attention maps during training (person and bicy-
cle are new and old classes respectively).

Figure 8: Impact of the hyperparameters γ, α and β.

B.3. Effect of Hyperparameters
We conducted additional experiments under the VOC 10-10

setting to analyze the impact of all hyperparameters in our study,
as depicted in Fig. 8. For γ in Eq. 5 of the overall ARD loss func-
tion, we vary it in range [0.5, 1.0, 5.0]. From the results shown in
the first figure of Fig. 8, we find that the default γ = 1 provides
good results.

In consequence, we optimize the total objective function to re-
alize incremental object detecion learning:

Ltotal = Lfaster rcnn + αLID + βLARD (10)

where α and β weight for the Inclusive Distillation Loss and At-
tentive RoI Distillation, respectively. We vary it in range [0.1, 0.2,
0.5, 1]. The performance varies as a function of α, β outperform-
ing the state-of-the-art (66.8) for most combinations.

C. Additional Results
C.1. Detailed Results for the Long Sequences

In Table 7, we present the results of our experiments with long
sequences on the PASCAL-VOC 2007 dataset. To simulate this
scenario, we trained our detector on images from the first 5 classes
and gradually added classes 6 to 20 in groups of five.

The table shows the class-wise average precision (AP)@0.5
and the corresponding mean average precision (mAP). The first
row (JT) represents the upper-bound where the detector is trained
on data from all 20 classes. The subsequent three pairs of rows
demonstrate the results obtained when adding five new classes at
a time. The notation (1-5)+6..10 is used to represent this setting.
Our proposed ABR method outperforms the previous state-of-the-
art method MMA [7] on all sequential tasks, as can be seen from
the results in Table 7. Therefore, the ABR method can be more
useful in real-world scenarios where new object classes are fre-
quently introduced. Additionally, the ABR method is a novel ap-
proach that may have implications for future research in object
detection.



Table 7: Per-Class AP@50 and Overall mAP@50 values in different task on PASCAL-VOC 2007 5-5 setting.

Class Split Method aero cycle bird boat bottle bus car cat chair cow mAP-task1 table dog horse bike person mAP-task2 plant sheep sofa train tv mAP-task3 mAP-total

1-20 JT 72.7 81.0 76.0 58.9 62.0 76.4 87.4 85.7 72.6 82.4 75.5 57.7 83.2 85.7 80.5 84.2 78.3 45.8 77.1 65.9 75.7 74.5 67.8 74.3

(1-5)+6-10 MMA 73.8 80.8 71.2 52.5 63.3 55.2 74.9 65.2 39.1 73.3 64.9 64.9
ABR 71.7 82.6 69.5 53.6 63.8 63.0 79.0 68.5 47.0 78.4 67.7 67.7

(1-10)+11-15 MMA 67.4 78.1 64.5 49.7 63.5 23.1 34.5 26.3 8.7 35.0 45.1 47.5 52.8 67.5 65.9 76.0 61.9 50.7
ABR 68.5 79.6 67.3 51.9 56.7 60.2 75.2 62.8 38.6 62.0 62.3 54.0 66.3 76.9 74.5 77.3 69.8 64.8

(1-15)+16-20 MMA 72.3 75.5 57.0 46.9 59.9 4.8 32.4 38.5 3.3 1.4 39.2 0.7 28.8 42.2 44.1 18.2 26.8 36.0 46.5 52.0 52.0 66.6 50.6 38.9
ABR 69.3 80.0 65.6 53.9 54.6 52.2 75.5 69.4 34.3 69.6 62.4 22.9 41.8 48.7 53.7 60.8 45.6 39.6 71.3 59.2 76.1 70.4 63.3 58.4

C.2. Visualization
The inference results are presented in Fig. 9, which demon-

strate the effectiveness of our proposed ABR method in avoiding
the forgetting of previous classes and improving adaptation to new
classes. In the first two rows, our method is capable of accurately
distinguishing new classes from similar classes in the previous
classes, as seen in the detection of a bus in the first row of im-
ages and a cow in the second row of images. However, the popular
MMA method misclassifies the bus as a train or bus and the cow
as a dog or cow. In the third row, our algorithm successfully de-
tects the new class, a dining table, while also accurately locating
a previous class, a chair. In comparison to the MMA method, our
method achieves more precise position detection, as demonstrated
in the last two rows where person and boat are detected.

Overall, these results suggest that the proposed ABR method
can more effectively handle the problem of incremental learning in
object detection tasks, particularly in scenarios where new classes
are similar to previous ones. The ability to avoid forgetting and
adapt to new classes is crucial for practical applications, and the
improved performance of our method is promising for future re-
search in this area.



(a) Image (b) GT (c) MMA (d) Ours

Figure 9: Visualization of the inference results in MMA and Ours for 8 test images on PASCAL-VOC 2007 10-10 scenario.


