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Abstract

Estimating the transferability of publicly available pre-
trained models to a target task has assumed an important
place for transfer learning tasks in recent years. EXxist-
ing efforts propose metrics that allow a user to choose one
model from a pool of pre-trained models without having to
fine-tune each model individually and identify one explicitly.
With the growth in the number of available pre-trained mod-
els and the popularity of model ensembles, it also becomes
essential to study the transferability of multiple-source mod-
els for a given target task. The few existing efforts study
transferability in such multi-source ensemble settings using
just the outputs of the classification layer and neglect pos-
sible domain or task mismatch. Moreover, they overlook
the most important factor while selecting the source mod-
els, viz., the cohesiveness factor between them, which can
impact the performance and confidence in the prediction of
the ensemble. To address these gaps, we propose a novel
Optimal tranSport-based suBmQOdular tRaNsferability met-
ric (OSBORN) to estimate the transferability of an ensem-
ble of models to a downstream task. OSBORN collectively
accounts for image domain difference, task difference, and
cohesiveness of models in the ensemble to provide reliable
estimates of transferability. We gauge the performance of
OSBORN on both image classification and semantic seg-
mentation tasks. Our setup includes 28 source datasets, 11
target datasets, 5 model architectures, and 2 pre-training
methods. We benchmark our method against current state-
of-the-art metrics MS-LEEP and E-LEEP, and outperform
them consistently using the proposed approach.

1. Introduction

In computer vision, transfer learning is a go-to strategy to
train Deep Neural Networks (DNNs) on newer domains and

datasets across tasks such as image classification [36, 25],
image segmentation [55, 74] and object detection [20, 53].
This widespread usage is due to the easy availability of
a large pool of open-sourced pre-trained models (trained
on large-scale datasets such as ImageNet [37, 3]), which,
when fine-tuned, achieve faster convergence and better per-
formance than training from scratch. However, every time
a user wants to employ transfer learning, the question that
has increasingly grown relevant with an increased number
of source models is: “Which combination of dataset and
architecture should I pick to fine-tune to achieve the best
performance on my target dataset?”. To solve this, we need
a tool that helps us choose a source or set of source models,
which require minimal fine-tuning and achieves maximal
performance.

Transferability estimation (TE) metrics have been pro-
posed in recent years to tackle this problem [60, 45, 71, 59,

]. With these metrics, a particular source model can be se-
lected without conducting expensive fine-tuning of all avail-
able source models on the target training set. Most efforts
in this direction are, however limited by their capability of
selecting only a single source model, thus restricting their
use in an ensemble learning setting. There has been only
one work so far [ 1] which extends an existing single-source
transferability estimation method [45] to an ensemble set-
ting. While this work showed promising results, it did not
consider the similarity between source and target datasets
in the latent representation space, or account for the rela-
tionships between individual models in the ensemble. This
problem space remains nascent at this time, necessitating
more efforts to estimate transferability reliably in different
conditions.

Ensemble models have been popular for a few decades
now in machine learning [18, 7, 64]. Ensemble models are
known to increase task accuracy, decrease overall predictive
variance and increase robustness against out-of-distribution
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Figure 1. Illustration of the objective and problem setting of our proposed metric. (Trivia: OSBORN is also the main antagonist in

the Spider-Man movie (2002), hence the emoji.)

data samples [19]. Recent efforts have shown the usefulness
of ensembles of pre-trained models [65], especially consid-
ering the widespread availability of pre-trained models in
the community [50]. The problem of estimating transfer-
ability for a model ensemble from a large source model pool
becomes even more relevant in this context.

In this work, we introduce a novel transferability esti-
mation metric specifically designed for ensemble selection
called Optimal Transport-based Submodular Transferability
metric (OSBORN). As stated earlier, a recent effort in this
direction [ 1] showed promising results for such a score, but
focused on individual model’s performance (via the classi-
fier’s outputs) and did not consider the feature (latent rep-
resentation) space mismatch, or how these models interact
with each other in the ensemble. To address this, OSBORN
measures the latent space mismatch between the source and
the target datasets (domain difference) in addition to the
mismatch in the classifier’s outputs (task difference). Also,
to account for the interaction between models in the ensem-
ble, we introduce a novel model cohesion term, which cap-
tures the mutual cooperation between models towards form-
ing an ensemble. Cohesion is required to ensure that indi-
vidual models in an ensemble are in agreement with each
other in terms of predictions (and not voting out each other).
Thus, in this work, we propose a domain, task and cohesion-
aware transferability estimator for ensemble selection from
a source pool of multiple models.

Beyond bringing the abovementioned factors into trans-
ferability estimation for ensembles, we show that the pro-
posed score can be viewed as a submodular set function [4].
This allows us to follow a greedy maximization strategy,
which is known to provide a high-quality solution for the
problem based on well-known theoretical guarantees [42].
We thus select cohesive and closely related models for a par-
ticular target dataset. To evaluate our metric, we conduct
extensive experiments using 28 source datasets, 11 target
datasets, and 5 model architectures. In downstream tasks,

we consider fully-supervised pre-training-based image clas-
sification, self-supervised pre-training-based image classifi-
cation, semantic segmentation as well as domain adaptation.
Table 1 presents an overview of our experiment breadth, as
compared to other recent efforts on this problem. In particu-
lar, to the best of our knowledge, we are the first to perform
transferability estimation of ensembles for image classifica-
tion and domain adaptation tasks.

To summarize, we make the following contributions: (1)
We introduce a novel transferability estimation metric for
ensemble selection that considers domain similarity, task
similarity and inter-model cohesion in its design; (2) We
show that viewing the proposed metric as a submodular
set function allows us to use a simple greedy maximiza-
tion strategy to select a source model ensemble for a given
target dataset; (3) We study the performance of our met-
ric across a wide range of downstream tasks and model
pools;(4) We evaluate the reliability of our metric using
different correlation metrics in our studies, and also carry
out additional analysis and ablation studies to study its use-
fulness. We outperform earlier methods by a margin of
58.62%, 66.06%, and 96.36% in terms of Pearson Correla-
tion Coefficient (PCC), Kendall 7 (KT) [31] and Weighted
Kendall 7 (WKT) [63] for the image classification task. '

2. Related Work

Transfer Learning: Over the years, transfer learning has
been applied and explored across various fields [12, 41,

, 5], as well as across datasets, model architectures, and
pre-training strategies [39, 15, 24]. These efforts have in-
cluded the study of interesting and practical questions such
as which particular layers are more transferable [70] or esti-
mating the correlation between pre-training and fine-tuning
performance [33]. Beyond finetuning of source models to
target datasets, task transfer methods [73, 14] have also
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‘ Single Source TE

‘ Classification Segmentation DA Classification
#LEEP [45] v X X
#LogME [71] v X X
# OTCE [59] X X v

‘ Multi Source TE
#MS-LEEP [1] x v x
# Ours v v v

Table 1. Experimental settings studied by different methods in
single-source TE and multi-source TE settings (DA: Domain
Adaptation). We note the wide range of our experimental settings
when compared to earlier work.

studied relationships between visual tasks such as semantic
segmentation, depth prediction and vanishing point predic-
tion, or used attribution maps to relate such tasks [56, 57].
In contrast to the aforementioned methods, the objective of
our work is dataset transferability estimation.

Transferability Estimation Metrics (Single Source): As
stated earlier, gauging transferability reduces the effort in
finding an optimal source model for a particular target
dataset because it averts the expensive fine-tuning process.
In recent years, significant efforts have been made in this
problem space, considering the relevance of this problem to
practitioners. The H-Score was proposed [6] to measure the
usefulness (in terms of discriminativeness) of pre-trained
source models for the target task. While this method shows
promising results as a pioneer work in this field, it misses
considering the scenarios where the source and target data
have different distributions. Subsequently, NCE [60], and
LEEP [45] developed methods that used the classifier out-
puts of pre-trained source models when the target dataset is
forward-propagated through the model to estimate the log-
likelihood of the target dataset. NCE largely focused on
estimating transferability in scenarios where the source and
target tasks share the same input data (e.g., face recogni-
tion and facial attribute classification). Subsequent methods
such as LogME [71] also showed that likelihood methods
might be prone to over-fitting. To tackle this, LogME [71]
estimated the maximum value of label evidence (instead of
maximum likelihood) given the feature set extracted by the
pre-trained source models. Considering the fact that pre-
vious methods largely relied on classifier outputs and their
sub-optimal performance in practical scenarios like cross-
domain settings, OTCE [59] proposed an optimal transport
framework to compute domain difference (based on fea-
ture space) and task difference (based on label space) to
estimate transferability. This method leveraged the source
model’s latent representations in addition to classifier out-
puts with no explicit assumptions on the source and target
datasets. All the above works are, however focused on esti-
mating transferability from a single source model to a target

dataset.
Transferability Estimation Metrics (Multi-Source En-
sembles): Agostinelli et al[l] recently proposed the first
work on extending transferability estimation to select
source model ensembles in [1], specifically focused on se-
mantic segmentation. This work extends LEEP [45] to en-
sembles, and shows promising results in the considered set-
tings. Our work builds on this effort in multiple ways: (i)
instead of solely relying on classifier outputs for estimating
transferability [45, 1, 60], we also consider the domain mis-
match in the latent feature representation space; (ii) beyond
looking at the individual model’s outputs in an ensemble,
we also consider the interactions and correlation between
the model outputs; (iii) we make no assumptions on the
source and target data distributions; and (iv) while [1] fo-
cused on segmentation, we show our method’s results on
classification, segmentation and domain adaptation tasks.
We also show results on multiple pre-training strategies
while previous works [45, 71, 60, 59] mostly focus on fully-
supervised pre-training strategies. Our proposed metric can
also be viewed as a submodular function, which allows us
to leverage ranking-based greedy optimization strategies to
make it efficient in practice.
Ensemble Learning. Learning ensembles of models has
been popular in machine learning to increase overall task
performance, decrease prediction variance, prevent over-
fitting, and increase out-of-distribution robustness [7, 22,
, 47]. More recent efforts in training ensembles of neural
network models have focused on speeding up their train-
ing [61, 65], leveraging a single model’s capacity to train
multiple subnetworks whose predictions are ensembled to
improve robustness [23], or studying mixture-of-experts
paradigms which bring together thousands of subnetworks
for large language models [54]. We clarify that our work
focuses rather on selecting model ensembles from a larger
source model pool via estimating transferability without ex-
plicitly training ensembles themselves. One can view our
work as a step before ensemble learning when there is a
larger model pool and only few models can be ensembled.
As stated in [ 1], this setting is commonly encountered by a
practitioner in the real-world across application domains.

3. Background and Preliminaries

Notations: Given M source datasets, we denote the 7t/
source dataset as Dg-={(2%.,y% )}, ~ Py (z,y) and
target dataset as Dy={(xi,y{)}™, ~ Pi(z,y) where,
2l € Xe,xl € Xy, Yl € Vsr, and yi € V. Note that
we do not restrict the label spaces P(),-) and P()}) to
span the same category set. We base our study on a domain-
agnostic and task-agnostic setting.

Transferability Estimation for Ensembles: For every
source dataset D, we assume there exists a pre-trained
model on that dataset denoted by (6, hs) where 6 is the



feature extractor, and h is the classifier head. M represents
the collection of such source models. As stated earlier, we
focus on a multiple source model selection setting (i.e. en-
sembles) where our metric provides a transferability esti-
mation (TE) score o<~ for a given subset of models M,
from the source pool M. When correlated to the accuracy
AMe=t (e, fine-tuned accuracy of the ensemble on the
target test set), this TE score provides the reliability of the
transferability estimate. Following [ 1], we calculate the en-
semble accuracy by fine-tuning individual models in subset
M., (both 0 and h) on the target train set and averaging their
predictions on the target test set.

Submodularity in TE for Ensembles. The main idea
of TE involves choosing optimal source models for a
given target dataset. Apart from performance & com-
putation trade-offs, a crucial motivation to select a sub-
set of models is to mitigate risk of negative transfer.

Fig 2 herein shows that opting for s
all models in the ensemble could gj‘;
lead to a decrease in overall per- §
formance compared to selecting a B
smaller set of models. This can N
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Figure 2. Test accura-
cies on Caltechl0l with

be due to the detrimental impact of
weak or non-transferable models in '

the ensemble, highlighting the im-  jg¥ne sevse ofmodels
portance of carefully combining models to ensure optimal
performance. Further, finding an optimal ensemble for a
given target dataset requires checking all possible combina-
tions of different source models for a particular ensemble
size. This exhaustive process is an NP-hard problem. In
this paper, we propose a submodular approach to rank the
available models in the source pool according to the perfor-
mance gain they would yield if added to the subset pool of
the ensemble and select the top k models, where k is the
required size of the ensemble. While submodular subset
selection is popular in different machine learning settings
[4, 30, 66], to the best of our knowledge, this is the first
such use for transferability estimation. To this end, we first
formally define submodularity below.

Definition 3.1. Ler Q be a set and P () be the power
set of ), then a submodular function is a set function
f:P(Q) = R. The submodular function follows the prop-
erty of diminishing returns, i.e. adding a new element to
a smaller set produces a larger increase in f compared to
a larger set. Mathematically, if for all X, Y C Q, where
X CY andforallv € Q\Y, the property follows:

fX +0) = f(X) =2 f(Y +0) = f(Y) 0]

A key benefit of posing a problem as one of submodular
subset selection is that a greedy approach can be leveraged
to efficiently identify a solution of required subset size that
is reasonably close to the optimal solution. Nemhauser [42]
showed that the quality of the subset chosen greedily cannot

be worse than 1 — e~ ! of the optimal value. This makes

submodularity an attractive approach for usage in the field
of TE for ensembles as we can rank the models in the source
pool and select an ensemble of desired size. Further details
on how to greedily select the models are discussed later in
this paper.
Evaluation Criteria. As stated earlier, the reliability of
a TE method is obtained by measuring the correlation be-
tween ae=* and AM-—*  Previous works [71, 45,
] measure this correlation using different techniques such
as Pearson Correlation Coefficient (PCC), Kendall 7 (KT)
[31] and Weighted Kendall 7 (WKT) [63]. We report re-
sults for all these correlation measures to be comprehensive
in our analysis.

4. OSBORN: Transferability Estimation Met-
ric for Model Ensemble Selection

> >

In order to design a reliable transferability estimation
approach for model ensembles, we propose the Optimal
Transport-based Submodular Transferability metric (OS-
BORN), which considers three factors: domain difference,
task difference, and inter-model cohesion. Inspired by ear-
lier efforts on single-source transferability estimation [59],
we consider both classifier output and distance in the latent
representation space in our approach. Besides, since our
focus is on model ensembles, we consider inter-model re-
lationships in this metric. We now describe each of these
quantities.

Minimize Domain Difference (Wp). In order to minimize
the latent space mismatch between the source and target
datasets, similar to [59], we choose Wasserstein distance
and Optimal Transport (OT) to compute this mismatch ow-
ing to its advantages in capturing the geometries of under-
lying data. Mathematically, the p-Wasserstein distance is
given as follows:

Wp(ﬁ,y):< nf / D(x,z)”dﬂx,z))l/p o)

mell(B,y

where, p > 1, 8,7 are continuous or discrete random
variables in a complete and separable space S, D(.,.) :
S x S — Rt is a distance or a cost function between two
points x and z, 7(/3,~) is the coupling matrix which can
also be understood as the joint probability distributions with
marginals /3 and ~. In particular, in this work, we use the 1-
Wasserstein distance, also called the Earth Mover Distance,
to calculate the domain difference between source and tar-
get latents as:

Wp (0s,00) = D 1165(22) = 0s(x)l 3755 (3)

ij=1

where || - — - ||3 is the distance or cost metric, * is the
optimal coupling matrix of size m X n obtained by solv-
ing the optimal transport (OT) problem using the Sinkhorn



algorithm [11, 59]. Note that 64(.) is the feature extrac-
tor belonging to the source model. Intuitively, if the latent
space of the source dataset is closely aligned with that of
the target dataset, it is easier for the model to transfer.

Minimize Task Difference (Wr). In order to measure the
difference between a source task and the given target task,
we use the mismatch between the model/classifier’s outputs
for source and target data forward-propagated through the
source model. We use the conditional entropy (CE) of the
predicted labels y; € s of the target dataset samples given
their ground truth labels y; € );. The predicted labels
are obtained by forward-propagating the target samples
through the corresponding source model 6. Let Y, be aran-
dom variable that takes values in the range of )s; and Y; be
a random variable that takes values in the range of ), then
W can be calculated as:

Wr (05, ) = H(YV:|Y2)
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where ]f’(y},yt) is the joint distribution of predicted and
ground truth target labels and P(y,) is the marginal dis-
tribution of the ground truth labels. These quantities can
be easily computed using the optimal coupling matrix (ob-
tained in Eqn 3) as follows:

Pjny) = > )
0§y =yl =y

The marginal distribution can be obtained from the joint dis-
tribution as follows:

P(y) =Y Pliew), 6)

Yt €Vs

Intuitively, similar tasks will result in a low Wy value.
Using Wr i.e CE alone represents empirical transferabil-
ity according to [60]. However, in [59], it is experimen-
tally shown that using only CE is insufficient in a domain-
agnostic setting, which motivates us to combine this with
Wp to account for feature representation space mismatch.

Minimize Model Disagreement (Cohesiveness W ). For an
ensemble, it is important that the individual models re-
inforce the predictions of each other and have less dis-
agreement amongst themselves to have overall good perfor-
mance. To understand the cohesiveness of an ensemble, we
use Conditional Entropy to capture the amount of disagree-
ment between models in the subset of models M.. Mathe-
matically, we represent W¢ as:

Wo (Me, ) = Y H(mi(zy)my(z,)) ()

mi,m;EMe.

[ o]
[ o] [0 [
Domain Difference (WWp): Wasserstein dist.
b/w. the source (0.1 (z,1)) and target latents (6.1 (z;))
b 4
’
’
Task Difference (1177): Conditional entropy of
-=> predicted target train set labels (h,(6,(xz,)) given the
Ay ground truths (y,)

1

1

1 Model Cohesion (WW¢): Sum ofthe con-
_')ditional entropies of source model (0,:) pre-
17 dictions  (h.:(0,:(xs)) given  predictions  of (0,2)

<€ e (ho(6.2(x.) and vice versa

*through source models. *

forward pass target train set images ()

E
ha
E

ground truth labels of the
target train set images ()
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Figure 3. Overview of our method for estimating the transferability
for ensembles.

Intuitively, we want a high cohesiveness and less disagree-
ment among the models to reinforce the ensemble’s predic-
tive belief, i.e. a low W value, and to avoid scenarios
where models vote out each other’s predictions.

Bringing the quantities together, we define OSBORN for
a subset of models M, of our source pool M as follows. Our
metric collectively accounts for domain difference, task dif-
ference and model cohesion. Ref. Fig. 3 for the overview.

OSBORN = Y [Wp(my, zy) + Wr(mi, z,)]+
m;EM, (8)
We (M, xt)

A model ensemble that obtains a low OSBORN score will
have better transferability to a target dataset. Our experi-
ments show that a simple combination of these three quan-
tities (with no weighting co-efficients) outperforms existing
methods in all our experiments. In our ablation studies and
analysis, we study the contribution of each OSBORN com-
ponent as well as the effect of weighting each component
differently.

Submodular Subset Selection in OSBORN. As stated ear-
lier, we show that the proposed OSBORN metric translates
to a submodular optimization problem, which allows us
to rank and pick models efficiently from the source pool.
While the aforementioned quantities were written from a
minimization perspective (for clarity and ease of under-
standing), to pose this as a submodular maximization prob-
lem, we consider the corresponding scoring function to be
maximized as:



FM) == " [Wp(ms, ) + Wr(ms, z)]—
m;EM, (9)

We (Me, xt)

The value of our set function is a transferability estimate
designed such that it is highly correlated to the fine-tune ac-
curacy (see Table 3 & 4), thus enabling us to select models

without expensive fine-tuning.
Theorem 4.1. The scoring function f (

Equation 9, is a submodular function.

X), as defined in

Proof. Let X; and X5 be two sets such that X; C Xy C
M. If we consider an unselected model instance v €
M\ X5. The gain in the score is obtained by appending v to
the set X7, and this is calculated as:

f(XiUv) = f(X1) == [Wp (v,2:) + Wr (v, 74)]
= > H(mi(z) | v(x))

m;EX1
= > H(v(w) | my(x))
m;EXy
(10)
Similarly, the gain obtained by set X is given by:
[ (X2 Uv) = f(X2) == [Wp (v,21) + Wr (v, 24)]
Y H(mi(z) | v(z)

m; Xz

- > H(v(

m;E€Xy

(z4) [ my (z4))

Y

As we have X; C X5, the number of terms in the summa-
tion of Equation 11 will be greater than or equal to that of
Equation 10. Since entropy is always a non-negative value,

we can say that
ZHmthHvact ZH

m;€X1 m;E€X,
Z H (my; (x¢) | v (z)) Z H (v (z) | my (24))
miE€Xo m;EXo

This implies that

F(X1Uv) = f(Xy) > f(Xa2Uv) = f(X2) (12

We can see that Equation 12 satisfies the condition in
Definition 3.1. This completes the proof. O

Submodular Optimization using Greedy Maximization.
Since our set function f(M,) (mentioned in Eq. 9) is sub-
modular, it exhibits monotonicity, i.e. the set with maxi-
mum gain is always the entire source pool M. However,
since we want to select a subset of models i.e. ensemble set
from the source pool M, we impose a cardinality constraint.

(1) [ my (1)) =

Formally, we aim to select the set M, of size at most k that
maximizes the gain:

2, X f(Me) (13)

This problem is however NP-hard, but we use the greedy
maximization strategy to find a near-optimal set of mod-
els M, for the target dataset. In practice, we pre-calculate
pair-wise domain difference Wp and task difference W
between each source and target datasets. Then, we calculate
the model cohesion term W for adding each model m; to
the set of already selected models M.. Using these three
quantities pertaining to m;, we calculate the gain achieved
by adding it to the set M, as f (M, Um;) — f (M,.) and
greedily pick the model with the highest gain and add it
to the set M,. We continue this iteration till we achieve
the ensemble set size of k. Once the target samples are
forward-propagated through the source models, the quan-
tities in our metric can be computed independently for each
source model, thus making our overall computations paral-
lelizable.

Considering M} as the optimal ensemble set, it is well-
known from [42] that such a greedy approach has a perfor-
mance guarantee of at least 63% of the optimal ensemble
set, i.e.

ronyz (1-1) s00) (14

In practice, we observe that we see that the avg. accuracy
of the ensemble selected by greedy (76.315%) in a fully-
supervised setting is, 95.56% of the avg. accuracy of the
optimal ensemble(79.857%). Similarly for self-supervised
setting, the avg. accuracy of the ensemble selected by
greedy (79.857%) is, 93.50% of the avg. accuracy of the
optimal ensemble(84.962%), as shown in Table 2. More
details on the experiments are presented in the next section.

| Ensemble Accuracy (Fully Supervised)

Target Dataset

| Greedy | Optimal
Oxford102Flowers | 90.720 91.697
Caltech101 68.533 75.333
StanfordCars 69.692 72.540
Average ‘ 76.315 ‘ 79.857
Ensemble Accuracy (Self Supervised)

Oxford102Flowers | 86.935 95.604
Caltech101 88.800 90.000
StanfordCars 62.604 69.282
Average | 79.446 | 84.962

Table 2. Comparison of the target test set accuracies achieved by
fine-tuned ensembles selected using the greedy optimization of
OSBORN vs the optimal ensembles. We clearly observe that our
approach empirically gives significantly stronger performances
than the theoretical guarantee.



5. Experiments and Results

Experimental Setup. We follow the same experimental
setup as the previous work on source model ensemble se-
lection [ 1] to evaluate our transferability metric in the mul-
tiple source model setting. Given a total of M models in the
source pool, our objective is to select an ensemble model by
choosing k£ models from the source pool. We follow [1] in
setting k to 3 for fairness of comparison. We also conducted
a study to evaluate this on the Oxford-IIIT Pets dataset, and
found that maximum accuracy is gained for an ensemble of
size 3 (see Fig 4), which further reinforces our choice for
conducting experiments.

Classification Datasets. For the classification tasks, we
consider 11 widely-used datasets including CIFAR-10 [35],
CIFAR-100 [35], Caltech-101 [16], Stanford Cars [34], Ox-
ford 102 Flowers [46], Oxford-IIIT Pets [49], Imagenette
[27], CUB200 [67], FashionMNIST [68], SVHN [43], Stan-
ford Dogs [32]. These datasets are popularly used in many
transfer learning tasks. Out of these 11 datasets, we set
Caltech-101 [16], Stanford Cars [34], Oxford 102 Flowers
[46], Oxford-IIIT Pets [49], Stanford Dogs [32] as our tar-
get datasets and estimate transferability using OSBORN.
Model Architectures (Fully-supervised). For this setting,
we consider 2 source model architectures ResNet-101 [25]
and DenseNet-201 [28], keeping in mind the model diver-
sity and capacity. We take these models from the open-
sourced PyTorch Library [50]. Initially, both the models are
initialized with the fully-supervised ImageNet weights [37],
and then we train them on the 11 classification datasets to
prepare our source model pool.

Model Architectures (Self-supervised). For this setting,
we consider ResNet-50 [25] as our source model architec-
ture but initialize it with weights obtained from two self-
supervised pre-training strategies, namely BYOL [21] and
MoCov2 [9]. We have two variants of ResNet-50 models to
produce enough diversity. And as done in the previous case,
we train these two models on the 11 classification datasets
to prepare our source model pool. We use multiple pre-
trained SSL models to build our pool. However, finetuning
is done in a fully-supervised fashion. Our motivation here
was to study if OSBORN can estimate transferability reli-
ably across multiple pre-training settings.

Training Setup for Source Models (Classification Tasks).
For all classification tasks, we train the source models using
a cross-entropy loss and optimize it using Stochastic Gradi-
ent Descent (SGD) with momentum. Given these details,
the most important hyperparameters are learning rate, batch
size and weight decay. We train the models with a grid
search of learning rate in (le—1, le—2, le—3, 1le—4), batch
size in (32,64, 128), and weight decay in (le—3, le—4,
le—5, 1e—6, 0) to pick the best hyperparameters. All our
experiments are written in PyTorch and are conducted on
a single Tesla V-100 GPU. For the fully-supervised pre-

trained setting, we initialize the models with ImageNet
weights. In the case of a self-supervised pre-trained setting,
we initialize the models using BYOL or MoCov2 (on Ima-
geNet) weights. For our experiments on the multi-domain
DomainNet dataset, we initialize our models with ImageNet
weights.

Training Setup for Source Models (Semantic Segmen-
tation Tasks). We train the source models using a pixel-
wise cross-entropy loss and optimize it using Stochastic
Gradient Descent (SGD) with momentum. The most im-
portant hyperparameters herein are learning rate, batch size
and weight decay. We train the models with a grid search
of learning rate in (le—1, le—2, le—3, le—4), batch size
in (32,64, 128), and weight decay in (1le—3, le—4, le—5,
le—6, 0), and pick the best hyperparameters. All these ex-
periments are also written in PyTorch and conducted on a
single Tesla V-100 GPU. We initialize source models using
the COCO pre-trained weights.

Implementation of Source Models and Baselines. We use
open-source models available via the PyTorch Library for
classification and semantic segmentation tasks. We use the
PyTorch Lightning Library to obtain model weights for a
self-supervised pre-training setting. We use the code re-
leased by the respective papers for calculating OTCE [59],
MS-LEEP, E-LEEP, IoU-EEP and SoftloU-EEP [1] scores.

Evaluating

Ensemble  Per-
formance. We
follow the pro-
tocol in [I] for
computing ground
truth  accuracies
of ensembles. We
finetune (both

Test Accuracy
& 2 8

=

<

0 1 2 3 4 5
Num of members

feature éxtractor Figure 4. Test accuracy on the Oxford-
and classifier of) HIT Pets dataset compared to the en-
all  the source semble size. We observed a similar
models present trend across other datasets as well.

in the ensemble using the target training set. Then, we
individually make predictions using the source models on
the target test set and average them to get the final ensemble
prediction. We note that no target-trained models are in
the source pool. We compare this final prediction with the
ground-truth label and calculate the classification accuracy.
Note that we need to fine-tune all source models only
once and can re-use their predictions on the test set across
all ensemble combinations. As stated earlier, we report
Pearson Correlation Coefficient (PCC), Kendall 7 (KT) and
Weighted Kendall 7 (WKT) in our results.

Evaluation on Fully-Supervised Pre-Trained Models.
We herein compare our OSBORN with the baseline metrics,
i.e. MS-LEEP and E-LEEP, in terms of three correlation



Target Dataset Weighted Kendall’s 7 Kendall’s 7 Pearson
g MS E Ours MS E Ours MS E Ours
Oxford102Flowers | 0.086 -0.019 0.616 | 0.138 0.074 0.400 | 0.230 0.164 0.456
OxfordIIITPets 0414 0393 0.558 | 0.346 0326 0453 | 0.504 0.500 0.666
StanfordDogs 0.326 0323 0477 | 0244 0.242 0427 | 0.398 0.407 0.604
Caltech101 0435 0409 0.565 | 0.240 0231 0.335 | 0.353 0341 0.486
StanfordCars 0.115 0.018 0486 | 0.137 0.071 0.368 | 0.256 0.163  0.549
Average \ 0275 0225  0.540 \ 0221  0.190 0.367 \ 0.348  0.315  0.552

Table 3. Comparison of different ensemble transferability estimation metrics for fully-supervised models (classification tasks). The best
results are indicated in bold. Note: MS: MS-LEEP, E: E-LEEP, Ours: OSBORN.
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Figure 5. Comparison of OSBORN over 5 target datasets interms
of Weighted Kendalls’s 7. We can see that our metric constantly
outperforms the baselines across every dataset by a large margin.

metrics, WKT, KT, and PCC2. The correlation values are re-
ported in Table 3. Averaged across five target datasets, OS-
BORN improves 96.36% over MS-LEEP and 140% over E-
LEEP in terms of WKT; improves 66.06% over MS-LEEP
and 93.16% over E-LEEP in terms of KT; improves 58.62%
over MS-LEEP and 75.23% over E-LEEP in terms of PCC.
We can visually see the overall performance of our metric
outperforming the existing baselines significantly in Fig 5.

Evaluation on Self-Supervised Pre-Trained Models. We
compare the performance of our method with the baseline
methods, i.e. MS-LEEP and E-LEEP. We present the exper-
imental results regarding different correlation coefficients
in Table 4. Note that we use the Frobenius norm regu-
larizer while solving the OT problem because it gave us
better results when compared to using other regularizers.
In the appendix, we report results without any regularizers
and compare them with the Frobenius norm variant. Ta-
ble 4 shows that, averaged across five target datasets, OS-
BORN improves 268.69% over MS-LEEP and 231.82%
over E-LEEP in terms of WKT; improves 442.10% over

2Qur baselines MS-LEEP and E-LEEP use custom proprietary model
architectures that are not publicly available. We hence followed the au-
thors’ code and guidelines in using their method on the models used in
our work, and picked the best-performing hyperparameters for the results
corresponding to their baselines shown in this work.

MS-LEEP and 379.07% over E-LEEP in terms of KT; im-
proves 527.27% over MS-LEEP and 392.86% over E-LEEP
in terms of PCC.

Performance of Selected Ensembles. Table 2 reports the
ensemble accuracy of the models selected through OS-
BORN. For completeness of this discussion, we also report
the same results for OSBORN without greedy maximiza-
tion as well as for MS-LEEP and E-LEEP in Table 5. Fol-
lowing [!], we first calculate the OSBORN value for ev-
ery ensemble candidate and pick the ensemble that bags the
highest value. We follow a similar strategy with MS-LEEP
and E-LEEP to pick the best model according to their val-
ues. To compute the ensemble accuracy, we used the in-
dividual models fine-tuned on the target train set and got
their predictions on the target test set. We average these
predictions and compare them with the ground truth labels
to obtain overall accuracy. We observe that the ensemble
selected by OSBORN achieves the highest test accuracy
across all datasets. In the case of both fully supervised
and self-supervised settings, the baseline methods, i.e. MS-
LEEP and E-LEEP, select the same ensembles (despite hav-
ing different correlation values) in every case, which is why
they obtain the same ensemble accuracy.

Scaling Number of Models in Ensemble. As shown ear-
lier in this section (Fig 4), we found the performance to sat-
urate after an ensemble size of 3 in the datasets considered
in this work as well as in [1]. On the other hand, we also ob-
serve unsurprisingly that the cost of ensemble selection can
go up significantly as the ensemble size increases. We show
the cost performance of models selected for the Caltech101
dataset in Fig 6. Despite the increasing trend, we note that
the time taken is still in the order of seconds, which makes
the proposed OSBORN metric practical and relevant.

Ablation Studies. We conducted additional experiments to
understand the influence of each component in OSBORN
(included in the Appendix). In general, while simple addi-
tion of the three quantities in OSBORN without any weights
outperformed previous methods, we observed that these can
be finetuned through grid search over a larger range of val-
ues to get even better transferability estimates. This how-
ever varies with the target dataset. On Caltech101 as the tar-
get dataset, we noticed that giving more weightage to Wp



Weighted Kendall’s 7

Target Dataset MS E

Ours ‘ MS

Kendall ’s 7 Pearson
E Ours ‘ MS E Ours

Oxford102Flowers | -0.080 -0.090 0.549
OxfordIIITPets 0.555 0.574 0.357
StanfordDogs 0.089 0.132  0.170
Caltech101 0.290 0311 0.488
StanfordCars -0.359  -0.377  0.260

-0.035 -0.050 0.336 | -0.077 -0.090 0.306
0221 0.229 0.139 | 0.201 0.212 0.232
0.014  0.029 0.110 | 0.132 0.159 0.236
0.195 0.228 0.308 | 0.248 0.287 0.374
-0.207  -0.221  0.139 | -0.285 -0.289  0.232

Average

‘0.099 0.110  0.365 ‘ 0.038  0.043

0.206‘ 0.044  0.056 0.276

Table 4. Comparison of different ensemble transferability estimation metrics for self-supervised pre-trained models (classification tasks).
The best results are indicated in bold. Note: MS: MS-LEEP, E: E-LEEP and Ours: OSBORN.
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Figure 6. Cost performace of model selection for the Caltech101
dataset.

\ Ensemble Accuracy (Fully Supervised)

Target Dataset

| MS-LEEP | E-LEEP | Ours
Oxford102Flowers |  85.347 85.347 89.865
Caltech101 68.533 | 68.533 68.533
StanfordCars 48.623 48.623 62.915
Average | 67501 | 67.501 |  73.771
Ensemble Accuracy (Self Supervised)
Oxford102Flowers |~ 88.278 88.278 93.040
Caltech101 86933 | 86.933 89.333
StanfordCars 6.056 6.056 61.820
Average | 60422 | 60422 |  80.598

Table 5. We compare the target test set accuracies achieved by
fine-tuned model ensembles picked by MS-LEEP, E-LEEP and
OSBORN.

compared to the other two terms (W and W) achieved
higher correlation scores, as shown in Fig 7. This could be
because of the wide variety of images in this dataset. Wp
measures the latent space mismatch between such varied
images with the source datasets (which may not have over-
lapping images/representation with the target set), which
benefits in this case. More detailed analysis is provided in
the Appendix.

- 0372
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0.332
Q045 0310
& 042 X o
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0.339 0.232
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A value A; value A; value

Figure 7. Wp weightage vs. correlation comparison for Cal-
tech101. We set weights for Wr and W¢ as 1.

6. Conclusions

In this paper, we propose a novel optimal transport-based
transferability estimation metric, OSBORN, carefully de-
signed for ensembles that consider multiple factors, such as
the mismatch in the latent space, label space, and the co-
hesiveness amongst the individual models in the ensemble.
We show that the proposed metric can be treated as a sub-
modular optimization problem, allowing us to leverage a
greedy strategy for source model ensemble selection. We
show experimentally that our metric outperforms the exist-
ing metrics MS-LEEP and E-LEEP across tasks on multiple
correlation metrics. Future directions include increasing the
computational efficiency of this method, as well as studying
its applicability to other tasks and problem settings.
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Appendix

In this appendix, we provide additional details which we
could not include in the main paper due to space constraints,
including additional results, details and analysis that pro-
vide more insights into the proposed method. In particular,
we discuss the following:
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A. Comparison against OTCE

In this section, we compare OSBORN with the OTCE
metric. OTCE is limited by its ability to estimate transfer-
ability for a single source model; however, we naively add
the OTCE scores of the individual models present in the
ensemble to make it a multi-source variant. The results in
terms of various correlations are shown in Tab. 6. OSBORN
outperforms OTCE by 131.76% in terms of WKT, 235.59%
in terms of KT and 513.33% in terms of PCC.

B. Modified Baselines

In this section, we understand the effect of adding the
model cohesion term W to our baselines i.e. MS-LEEP
and E-LEEP. Table 8 shows the results. While it expectedly
improves correlations of these baselines (further corrobo-
rating the usefulness of our proposed cohesiveness term),
OSBORN still achieves higher correlations than these mod-
ified baselines.

Tarset Dataset ‘Weighted Kendall’s 7 Kendall’s 7 Pearson
getDalaset | OTCE Ours | OTCE Ours | OTCE Ours
Oxford102Flowers | 0.406 0.616 0.118  0.400 | 0.086 0.456
OxfordIIITPets 0.186 0.558 0.075 0453 | 0.109 0.666
StanfordDogs 0.093 0.477 0.05 0.427 | 0.088  0.604
Caltech101 0.179 0.565 0.223  0.335 | 0.068 0.486
StanfordCars 0.300 0.486 0.123  0.368 | 0.100 0.549
Average | 0.233 0540 | 0.118 0396 | 0.090 0.552

Table 6. OTCE vs OSBORN (Ours)

C. Additional Experiments

In this section, we present the results of additional ex-
periments we conducted on tasks like multi-domain/domain
adaptation and semantic segmentation. We could not in-
clude details about these in the main paper due to space
constraints. We start by describing the datasets used, mod-
els trained and then report the performance of OSBORN
and other baselines on these tasks.

Multi-domain/Domain Adaptation Dataset: Domain-
Net. We use the DomainNet [51] dataset to test OSBORN
in a challenging multi-domain source pool setting. Domain-
Net consists of 6 domains (styles) namely, Clipart (C), Info-
graph (I), Painting (P), Quickdraw (Q), Real (R) and Sketch
(S), each covering 345 common object categories. Out of
these 6 domains, we evaluate the performance of OSBORN
on 3 domains, that are Real (R), Infograph (I) and Clipart
©.

Semantic Segmentation Datasets. For conducting exper-
iments on the semantic segmentation tasks, we choose 10
popularly used segmentation datasets, Pascal Context [40],
Pascal VOC [13], COCO [38], CamVid [&], CityScapes
[10], India Driving Dataset (IDD) [62], Berkeley Deep
Drive (BDD) [72], Mapillary Vistas [44], SUIM [29], and
SUN RGB-D [58]. Out of these 10 datasets, we evaluate
and compare the performance of OSBORN with baselines
on 3 target datasets, namely Camvid [8], CityScapes [10],
and SUIM [29].

Model Architectures (DomainNet). For building the
source pool for the multi-domain experiments, we use the
same models as we used in the fully-supervised pre-training
setting i.e ResNet-101 [25] and DenseNet-201 [28]. Ini-
tially, both models are initialized with the fully-supervised
ImageNet weights [37], and we then train them on 6 do-
mains of the DomainNet dataset. Model Architectures
(Semantic Segmentation). For semantic segmentation, we
employ a FCN [55] with ResNet-101 [25] backbone, and
a Lite R-ASPP with MobileNetv3 backbone [26] as our
source model architectures. The capacity of the former is
much higher than the latter thus bringing in diversity. We
initialize these models with the COCO pre-trained weights
[38] and then train them on the 10 datasets to include them
in our source pool *.The rest of the experimental setup is the
same as in Section 5 of the main paper.

Results on DomainNet. We compare OSBORN with the
baseline metrics, i.e. MS-LEEP and E-LEEP, in terms of
WKT, KT, and PCC. The correlation values are reported in
Tab. 10, averaged across three target domains.

Results on Semantic Segmentation. Apart from MS-

30ur baselines MS-LEEP and E-LEEP use custom proprietary model
architectures that are not publicly available. We hence followed the au-
thors’ code and obtained guidelines from them in using their method on
the models used in our work, and picked the best-performing hyperparam-
eters for the results corresponding to their baselines shown in this work.
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Figure 8. Relation between weighted coefficient values for terms in OSBORN and corresponding correlation scores for Oxford102Flower

‘ Weighted Kendall’s 7 Kendall’s 7 Pearson
Target Dataset
| MS E IoU sloU Ours | MS E IoU sloU Ours | MS E IoU sloU Ours
Camvid 0173 -0.279  0.175 -0.074 0.190 | -0.006 -0.108 0.030 -0.050 0.114 | 0.088 -0.050 0.071 -0.024 0.091
Cityscapes | -0.356 -0.390 -0.306 -0.153 0.056 | -0.166 -0.188 -0.115 -0.090 0.108 | -0.263 -0.241 -0.191 -0.154 0.216
SUIM 0052 0051 0191 0097 0237 |-0014 -0016 0.084 0075 0078 |-0.024 -0.028 0230 0164 0.112
Average | -0.159 -0.053 0.020 -0.043 0.161 | -0.062 -0.104 0.0003 -0.022 0. |-0.066 -0.106 0.037 -0.005 0.140

Table 7. Comparison of different ensemble transferability estimation metrics for semantic segmentation tasks. On average, we beat all the
previously proposed methods for estimating transferability for semantic segmentation in terms of correlations. Note, MS: MS-LEEP, E:

E-LEEP, IoU: IoU-EEP, sloU: SoftloU-EEP.

LEEP and E-LEEP, the paper [1] also proposes two addi-
tional metrics for predicting transferability on semantic seg-
mentation tasks, which are namely IoU-EEP and SoftloU-
EEP. In this section, we compare the performance of OS-
BORN with these two metrics as well. We present the ex-
perimental results for the semantic segmentation tasks in
Tab. 7. As seen in the table, OSBORN improves transfer-
ability estimation when compared to previous works.

D. Weighted version of OSBORN

While our results in the main paper showed that OS-
BORN outperforms existing state-of-the-art as is in its sim-
ple form, we conducted additional experiments to study
the influence of weighting each component of OSBORN.
Our studies showed that this can vary for different tar-
get datasets. Fig. 8 shows these results for the Ox-
ford102Flowers dataset. For target datasets such as Ox-
fordIIITPets and Oxford102Flowers, we observe that when



Tarset Dataset Weighted Kendall’s 7 Kendall’s 7 Pearson
8 MS E We+MS We+E | MS E We+MS We+E | MS E We+MS We+E
Oxford102Flowers | 0.086 -0.019  0.413 0.459 | 0.138 0.0739 0315 0330 | 023 0.164 0.401 0.385
OxfordIlITPets | 0.414  0.393 0.540 0522 | 0346  0.326 0.473 0475 | 0.504 0.5 0.666 0.676
Caltech101 0435 0.409 0.314 0385 | 0.240 0.231 0.242 0.236 | 0353  0.341 0.315 0.354
StanfordDogs | 0.326 -0.472  0.348 0.384 | 0.244 -0.236 0.269 0326 | 0398 -0.154  0.496 0.571
StanfordCars 0.115  0.018 0.066 0.147 | 0.137  0.071 0.144 0.185 | 0.256 0.163 0.360 0.434
Average | 0275 0.097 0265 0.301 | 0221 0110 0246 0.259 | 0348 0222  0.383 0.407

Table 8. Comparison of baselines and modified baselines. Note: MS: MS-LEEP, E: E-LEEP, W¢: Model Cohesion term

Tareet Dataset Weighted Kendall’s 7 Kendall’s 7 Pearson
g Standard Frobenius \ Standard Frobenius \ Standard Frobenius
Oxford102Flowers 0.616 0.614 0.400 0.390 0.456 0.463
OxfordIIITPets 0.558 0.539 0.453 0.446 0.666 0.660
Caltech101 0.565 0.557 0.335 0.329 0.486 0.433
StanfordDogs 0.477 0.581 0.427 0.508 0.604 0.628
StanfordCars 0.486 0.445 0.368 0.361 0.549 0.544
Average \ 0.540 0.547 \ 0.397 0.407 \ 0.552 0.556

Table 9. In this table, we report the change in correlations obtained using a Frobenius norm based regularizer rather than a standard (non-
regularized) method for the fully-supervised pre-trained models (classification tasks).
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Figure 9. t-SNE plots of features learned by corresponding method’s ensembles on StanfordCars dataset. ‘Optimal’ chooses best ensemble

with exhaustive search

we give more weightage to Wp and subsequently to Wr, as
compared to W, we achieve higher correlations. We be-
lieve this is because these datasets have some fine-grained
characteristics in each class, which need more attention for
classification. We believe that such a trend holds for trans-
fer from coarse-grained to fine-grained datasets in general,
while we observed a higher weightage to Wr to provide
more favorable results in other settings. As stated earlier,
while not using any weighted coefficients for the terms in
OSBORN is by itself beneficial, carefully picking weights
for a specific target dataset can further improve perfor-
mance. Learning these weighting coefficients would be an
interesting direction for future work.

E. Visualization of Results

In Fig 9, we show t-SNE plots for data points of differ-
ent classes in StanfordCars when passed through ensembles

selected using various methods. We see that the ensemble
selected by our method is better at segregating classes and
closer to the Optimal as compared to MS-LEEP.

F. Results with Frobenius Norm Regularizer

As mentioned in Section 3 of the paper, there is an option
to use a regularizer to solve the OT problem. In this section,
we investigate the usage of a Frobenius norm regularizer
[52],[17] in the experiments for image classification tasks
(both fully-supervised and self-supervised pre-training set-
tings). In Tab. 9, we show the results of OSBORN with the
use of a Frobenius norm regularizer (column: Frobenius)
and without any regularizer (column: Standard) for the
fully-supervised pre-training setting. We observe that both
variations give comparable results on an average. In Tab.
11, we report the results for a self-supervised pre-training
setting. In contrast to Tab. 9, we observe that a Frobenius



Target Domain Weighted Kendall’s 7 Kendall’s 7 Pearson
arget Domalll |- vis E  Ours | MS E  Ours | MS E  Ours
Real 0.057 0026 0.576 | 0.016 -0.011 0.415 | 0010 -0.033 0.518
Infograph 0.165 0.163 0.298 | 0.046 0048 0230 | 0076 0.057  0.308
Clipart 0.003 -0.076 0.040 | 0.115 0078 0.161 | 0.248 0.193  0.179
Average | 0.075 0.038  0.305 | 0.059 0.038 0269 | 0.111 0072 0335

Table 10. Comparison of different ensemble transferability estimation metrics for classification tasks on the DomainNet dataset. Averaged
across 3 domains, OSBORN achieves the best results under all the correlation values. MS: MS-LEEP, and E: E-LEEP.

Target Dataset Weighted Kendall’s 7 Kendall’s 7 Pearson
g Standard Frobenius ‘ Standard Frobenius ‘ Standard Frobenius
Oxford102Flowers 0.492 0.549 0.293 0.336 0.272 0.306
OxfordIIITPets 0.316 0.357 0.123 0.139 0.193 0.232
StanfordDogs 0.140 0.170 0.074 0.110 0.210 0.236
Caltech101 0.484 0.488 0.279 0.308 0.345 0.374
StanfordCars 0.207 0.260 0.100 0.139 0.198 0.232
Average | 0328 0.365 | 0.174 0.206 | 0244 0.276

Table 11. In this table, we understand the difference in correlations obtained using a Frobenius norm-based regularizer rather than a standard
(non-regularized) method for the self-supervised pre-trained models (classification tasks).

feasibility). Since semantic segmentation is a dense pre-

diction task with a high computational cost, we follow the
strategy mentioned in [1] and sample 1000 pixels from an
image. Considering class imbalances in semantic segmen-
tation datasets, we sample pixels inversely proportionally to

Target Dataset | Wp + Wr + We | Wp + W | Wp +We | Wr + We
OxfordIIITPets 0.666 0.539 0.657 0.622
Oxford102Flowers 0.455 0.418 0.435 0.405
StanfordCars 0.548 0.524 0.526 0.512
StanfordDogs 0.604 0.496 0.643 0.563
Caltech101 0.486 0.501 0.517 0.309
Average | 0.552 | 049% | 055 | 0482

Table 12. Comparison of pearson corr. scores. Bold represents
highest score, Underline represents second highest score.

norm regularizer improves the performance substantially in
this case. We hypothesize that self-supervised pre-training
may make a model more conducive to the source datasets,
which a Frobenius norm regularizer offsets while perform-
ing optimal transport computations by making them much
easier and structured.

G. Implementation Details

Here, we describe miscellaneous details pertaining to the
experiments reported in Section 5 of the main paper.

Optimal Transport Computation. We use the Python Op-
timal Transport Library (POT) to conduct our experiments.
To keep the computational cost in check, we use a strati-
fied representative set of 5000 samples from the train sets to
calculate the Wasserstein distance (since it involves extract-
ing the source and target latent). This makes our method
tractable and practical. We perform stratified sampling to
follow a class-balanced approach, i.e. we sample the im-
ages inversely proportional to their class frequencies in the
train set. Also, we standardize all three terms in OSBORN
to avoid the dominance of any term on the others.

Input Data. In the case of classification tasks, we resize the
input images to 224 x 224, and in the case of semantic seg-
mentation, we resize them to 256 x 256 (for computational

the frequency of their class categories in the target dataset,
similar to what MS-LEEP performed in their experiments.

H. Balancing Three Components of OSBORN

To study further on importance of each component of
OSBORN, we conducted experiments by completely re-
moving one of the terms and reporting the resulting correla-
tions/results in Table 12. The analysis demonstrates, inter-
estingly, that the inclusion of the W term significantly im-
proves correlation scores. Our metric includes domain dif-
ference (Wp) and task difference (Wr) besides the model
cohesiveness term (W¢). While selecting models from the
source pool, our objective is not just minimizing the model
disagreement via (W) but the entire metric. Through the
interplay and equilibrium of these three components, model
collapse is prevented.



