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Abstract

This paper is on Few-Shot Object Detection (FSOD),
where given a few templates (examples) depicting a novel
class (not seen during training), the goal is to detect all
of its occurrences within a set of images. From a practi-
cal perspective, an FSOD system must fulfil the following
desiderata: (a) it must be used as is, without requiring any
fine-tuning at test time, (b) it must be able to process an arbi-
trary number of novel objects concurrently while supporting
an arbitrary number of examples from each class and (c) it
must achieve accuracy comparable to a closed system. To-
wards satisfying (a)-(c), in this work, we make the following
contributions: We introduce, for the first time, a simple, yet
powerful, few-shot detection transformer (FS-DETR) based
on visual prompting that can address both desiderata (a) and
(b). Our system builds upon the DETR framework, extend-
ing it based on two key ideas: (1) feed the provided visual
templates of the novel classes as visual prompts during test
time, and (2) “stamp” these prompts with pseudo-class em-
beddings (akin to soft prompting), which are then predicted
at the output of the decoder. Importantly, we show that
our system is not only more flexible than existing methods,
but also, it makes a step towards satisfying desideratum (c).
Specifically, it is significantly more accurate than all meth-
ods that do not require fine-tuning and even matches and
outperforms the current state-of-the-art fine-tuning based
methods on the most well-established benchmarks (PASCAL
VOC & MSCOCO).

1. Introduction

Thanks to the advent of deep learning, object detection
has witnessed tremendous progress over the last years. How-
ever, the standard setting of training and testing on a closed
set of classes has specific important limitations. Firstly, it’s
unfeasible to annotate all objects of relevance present in-the-
wild, thus, current systems are trained only on a small subset.
It does not seem straightforward to significantly scale up this
figure. Secondly, human perception operates mostly under
the open set recognition/detection setting. Humans can de-

tect/track new unseen objects on the fly, typically using a
single template, without requiring any “re-training” or “fine-
tuning” of their “detection” skills, arguably a consequence
of the prior representation learned, an aspect we sought to
exploit here too. Finally, important applications in robotics,
where agents may interact with previously unseen objects,
might require their subsequent detection on the fly without
any re-training. Few-Shot Object Detection (FSOD) refers
to the problem of detecting a novel class not seen during
training and, hence, can potentially address many of the
aforementioned challenges.

There are still important desiderata that current FSOD
system must address in order to be practical and flexible
to use: (a) They must be used as is, not requiring any re-
training (e.g. fine-tuning) at test time - a crucial component
for autonomous exploration [26]. However, many existing
state-of-the-art FSOD systems (e.g. [42, 50, 36]) rely on
re-training with the few available examples of the unseen
classes. While such systems are still useful, the require-
ment for re-training makes them significantly more difficult
to deploy on the fly and in real-time or on devices with
limited capabilities for training. (b) They must be able to
handle an arbitrary number of novel objects (and moreover
an arbitrary number of examples per novel class) simulta-
neously during test time, in a single forward pass without
requiring batching. This is akin to how closed systems work,
which are able to detect multiple objects concurrently. How-
ever, to our knowledge there is no FSOD system possessing
this property without requiring re-training. (c) They must
attain classification accuracy that is comparable to that of
closed systems. However, existing FSOD systems are far
from achieving such high accuracy, especially for difficult
datasets like MSCOCO.

This work aims to significantly advance the state-of-the-
art in all three above-mentioned challenges. To this end,
and building upon the DETR [3] framework, we propose a
system, called Few-Shot Detection Prompting (FS-DETR),
capable of detecting multiple novel classes at once, support-
ing a variable number of examples per class, and importantly,
without any extra re-training. In our system, the visual tem-
plate(s) (i.e. prompts) from the new class(es) are used, dur-
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ing test time, in two ways: (1) in FS-DETR’s encoder to
filter the backbone’s image features via cross-attention, and
more importantly, (2) as visual prompts in FS-DETR’s de-
coder, “stamped” with special pseudo-class encodings and
prepended to the learnable object queries. The pseudo-class
encodings are used as pseudo-classes which a classification
head attached to the object queries is trained to predict via
a Cross-Entropy loss. Finally, the output of the decoder are
the predicted pseudo-classes and regressed bounding boxes.
The two components, when combined allow the creation of
a FSOD model that can localise, within one forward pass
multiple objects at once, each with an arbitrary number of
examples, without retraining.

Contrary to prior work (e.g. TSF [23] and AirDet [26]),
FS-DETR, akin to soft-prompting [21], “instructs” the model
in the input space regarding the visual appearance of the
searched object(s). The network is then capable of predict-
ing for each prompt (i.e. visual template) all the locations at
which it is present in the image, if any. This is achieved with-
out any additional modules or carefully engineered structures
and feature filtering mechanisms (e.g. TSF [23] AirDet [26]).
Instead, we directly append the prompts to the object queries
of the decoder.

In summary, our main contributions are:

1. We propose a fine-tuning-free Few-Shot Detection
Prompting (FS-DETR) method which is capable of de-
tecting multiple novel objects at once, and can support
an arbitrary number of samples per class in an efficient
manner via soft visual prompting.

2. We show that all these features can be enabled by ex-
tending DETR based on two key ideas: (1) feed the
provided visual templates of novel classes as visual
prompts during test time, and (2) “stamp” these prompts
with (class agnostic) pseudo-class embeddings, which
are then predicted at the output of the decoder along
with bounding boxes (akin to soft-prompting).

3. We also propose a simple and efficient yet powerful
pipeline consisting of unsupervised pre-training fol-
lowed by prompt-like base class training.

4. In addition to being more flexible, our system matches
and outperforms state-of-the-art results on the standard
FSOD setting on PASCAL VOC and MSCOCO. Specif-
ically, FS-DETR outperforms the not re-trained meth-
ods of [14, 26] and most re-training based methods
on extreme few-shot settings (k = 1, 2), while being
competitive for more shots.

2. Related work
DEtection TRansformer (DETR) approaches: After revo-
lutionizing NLP [46, 37], Transformer-based architectures

have started making significant impact in computer vision
problems [6, 32]. In object detection, methods are typi-
cally grouped into two-stage (proposal-based) [39, 17, 2]
and single-stage (proposal-free)[28, 31, 44, 58, 24] methods.
In this field, a recent breakthrough is the DEtection TRans-
former (DETR) [3], which is a single-stage approach that
treats the task as a direct set prediction without requiring
hand-crafted components, like non-maximum suppression
or anchor generation. Specifically, DETR is trained in an
end-to-end manner using a set loss function which performs
bipartite matching between the predicted and the ground-
truth bounding boxes. Because DETR has slow training con-
vergence, several methods have been proposed to improve
it [34, 60, 5]. Conditional DETR [34] learns a conditional
spatial query from the decoder embeddings that are used
in the decoder for cross-attention with the image features.
Deformable DETR [60] proposes deformable attention in
which attention is performed only over a small set of key
sampling points around a reference point. Unsupervised pre-
training of DETR [5] (UP-DETR), improves its convergence,
where randomly cropped patches are summed to the object
queries and the model is then trained to detect them in the
original image. A follow-up work, DETReg [1], replaces the
random crops with proposals generated by Selective Search.
While our approach is agnostic to the exact variant of DETR,
due to its fast training convergence, we opted to use Condi-
tional DETR as the model that we build our FS-DETR ap-
proach upon. Beyond this, the above mentioned works are on
closed set recognition and while UP-DETR’s unsupervised
pre-training could be potentially used for few-shot detec-
tion, the experimental setting presented in their work doesn’t
match the standard settings for few-shot detection and no
code is provided for its training. We re-implemented UP-
DETR [5] for few-shot detection and found that our method
outperforms it. This is expected as their goal is unsupervised
pre-training and not FSOD.

Few Shot Object Detection (FSOD) methods can be cate-
gorised into re-training based and without re-training meth-
ods. Re-training based methods assume that during test time,
but before deployment, the provided samples of the novel
categories can be used to fine-tune the model. This setting is
restrictive as it requires training before deployment. Instead,
without re-training methods can be directly deployed on the
fly for the detection of novel examples.

Re-training based approaches can be divided into meta-
learning and fine-tuning approaches. Meta-learning based
approaches attempt to transfer knowledge from the base
classes to the novel classes through meta-learning [12, 13,
53, 49, 25, 52]. Fine-tuning based methods follow the
standard pre-train and fine-tune pipeline. They have been
shown to significantly outperform meta-learning approaches.
TFA [48] proposes fine-tuning the final classification layer
of a Faster R-CNN model (first trained on base classes), with



a balanced subset containing also the examples of the novel
classes. SRR-FSD [59] proposes to construct a semantic
space using word embeddings, and then train a FSOD by
projecting and aligning object visual features with their cor-
responding text embeddings. CME [27] proposes to learn a
feature embedding space where the margins between novel
classes are maximised. Retentive R-CNN [11] addresses the
problem of learning a FSOD without catastrophic forgetting
(i.e. without compromising base class accuracy). FSCE [42]
aims to decrease instance similarity between objects belong-
ing to different categories by adding a secondary branch to
the primary RoI head, which is trained via supervised con-
trastive learning. The method of [57] proposes a hallucinator
network to generate examples which can help the classifier
learn a better decision boundary for the novel classes. FSOD-
UP [50] proposes to construct universal prototypes capturing
invariant object characteristics which, via fine-tuning, are
adapted to the novel categories. DeFRCN [36] proposes to
perform stop-gradient between the RPN and the backbone,
and scale-gradient between RCNN and the backbone.

More recently, FSODMC [10] proposes to address base
class bias via novel class fine-tuning while calibrating the
RPN, detector and backbone components to preserve well-
learned prior knowledge. KFSOD [56] improves upon [9]
by replacing the class-specific average-pooling of features
with kernel-pooled representations that are meant to capture
non-linear patterns. TENET [55] extends KFSOD with a
multi-head attention transformer block on 2nd-, 3rd- and
4th-order pooling. FCT [16] extends [14] by incorporat-
ing a cross-transformer into both the feature backbone and
detection head to encourage query-support multi-level inter-
actions. Their approach is based on two-stage Faster-RCNN
trained with a binary cross-entropy loss, i.e. it is entirely
different from our architecture and training objective based
on pseudo-class prediction. Meta-DETR [54] proposes a cor-
relation aggregation module, which is then placed before a
standard DETR encoder-decoder, that filters the query image
tokens using the support images and tasks. In contrast, we
model the interactions directly via a novel visual template
prompting formulation, without any additional modules and
can process an arbitrary number of examples per-object and
object within the same forward pass. Moreover, their method
requires finetuning for FSOD deployment, while our doesn’t
require any retraining. TSF [23] proposes a transformer plu-
gin module for modelling interactions the input features f
and a set of learnable parameters θ representing base class in-
formation (i.e. prototypes). In contrast to [23], our approach
does not learn any type of base class prototypes and is fully
dynamic (interactions between data and data as opposed to
data and prototypes).

Without re-training approaches are primarily based on met-
ric learning [47, 41]. A standard approach is [19], which uses
cross-attention between the backbone’s and the query’s fea-

tures to refine the proposal generation, then re-uses the query
to re-weight the RoI features channel-wise (in a squeeze-
and-excitation manner) for novel class classification. A sim-
ilar approach for proposal generation is described in [9],
where the squeeze-and-excitation module is replaced with a
multi-relation network. QA-FewDet [14] extends [19, 9] by
modelling class-class, class-proposal and proposal-proposal
relationships using various GCNs. Finally, the concurrent
work of AirDet [26] attempts to learn a set of prototypes
and a cross-scale support guided proposal network, with the
association and regression performed at the end of the model
via a detection head. To our knowledge, AirDet represents
the state-of-the-art FSOD without re-training. We show that
the proposed FS-DETR outperforms it by a large margin.
Relation to our work: Our method is the first to perform re-
training free visual prompting for few shot object detection.
Different to many other works (e.g. TSF [23], AirDet [26]),
FS-DETR does not learn perform visual prompting nor learn
class-related prototypes (i.e. soft prompts-like). We empha-
size that the pseudo-class embeddings in FS-DETR are
class-agnostic Finally, there are methods which are trained
using metric learning [9, 14, 16] using a binary cross entropy
loss. In contrast, FS-DETR is trained to predict pseudo-
classes using cross entropy (in a class-agnostic way) which
is a more powerful training objective.

3. Method

Given a dataset where each image is annotated with a
set of bounding boxes representing the instantiations of C
known base classes, our goal is to train a model capable
of localizing objects belonging to novel classes, i.e. unseen
during training, using up to k examples per novel class. In
practice, we partition the available datasets into two disjoint
sets, one containing Cnovel classes for testing, and another
with Cbase classes for training (i.e. C = Cnovel ∪Cbase and
Cnovel ∩ Cbase = ∅).

3.1. Overview of FS-DETR

We build the proposed Few-Shot DEtection TRansformer
(FS-DETR) upon DETR’s architecture 1. FS-DETR’s archi-
tecture consists of: (1) the CNN backbone used to extract
visual features from the target image and the templates, (2)
a transformer encoder that performs self-attention on the
image tokens and cross-attention between the templates and
the image tokens, and (3) a transformer decoder that pro-
cesses object queries and templates to make predictions for
pseudo-classes (see also below) and bounding boxes. Con-
trary to the related works of [9, 14, 15], our system processes
an arbitrary number of templates (i.e. new classes) jointly,

1We note that, in practice, due to its superior convergence properties,
we used the Conditional DETR as the basis of our implementation but for
simplicity of exposition we will use the original DETR architecture.



Figure 1. In the proposed FS-DETR, the available templates are provided as additional visual prompts to the system in order to condition
and control the output. To train and test the system, these prompts are “stamped” with pseudo-class embeddings (see Sec. 3.2) which are
predicted at the output of the decoder along with bounding boxes (note, that there is no correlation between actual classes and pseudo-classes,
e.g. the cat could be of either class: “blue” or “red“ as there is no preferred order). FS-DETR naturally supports k−shot detection, as the
model can process multiple examples per class at once. Templates belonging to the same class will share the same pseudo-class embedding.
Red and blue colors denote the different pseudo-classes associated to the input templates.

in a single forward pass, i.e. without requiring batching,
significantly improving the efficiency of the process.
Key contributions: DETR re-formulates object detection as
a set prediction problem via prompting, making object pre-
dictions by “tuning” a set of N learnable queries O ∈ RN×d

to the image features through cross-attention. The queries O
are used as prompts in DETR for closed-set object detection.
To accommodate for open-set FSOD, we propose to provide
novel classes’ templates as additional visual prompts in or-
der to condition and control the detector’s output. To train
the system, we also propose to “stamp” these prompts with
pseudo-class embeddings, akin to soft-prompting, which are
then predicted by the decoder along with bounding boxes.
This can be viewed as an analogous component to the tradi-
tional positional embeddings. The proposed FS-DETR is
depicted in Fig. 1. Compared to [3], we highlight key differ-
ences in our mathematical formulation in red.

3.2. FS-DETR

The following subsections detail FS-DETR’s architec-
ture and main components.
Template encoding: Let Ti,j ∈ RHp×Wp×3, i ∈
{1, . . . ,m}, j ∈ {1, . . . , k} be the template images of the
available classes (sampled from Cbase during training) where
m is the number of classes at the current training iteration
(m can vary), and k is the number of examples per class (i.e.
k-shot detection; k can also vary). A CNN backbone (e.g.
ResNet-50) generates template features X = CNN(T), X ∈
Rmk×d using either average or attention pooling (see Sec. 5).
Pseudo-class embeddings: We propose to dynamically and
randomly associate, at each training iteration, the k template
prompts in X belonging to the i-th class (for that iteration)

with a pseudo-class represented by a pseudo-class embed-
ding csi ∈ Rd, which are added to the templates as follows:

Xs = X+Cs, (1)

where Cs ∈ Rmk×d contains the pseudo-class embeddings
for all templates at the current iteration. The pseudo-class
embeddings are initialised from a normal distribution and
learned during training. They are not determined by the
ground-truth categories and are class-agnostic. During each
inference step, we arbitrarily associate to a template prompt
(belonging to some class) the i-th embedding as described
by Eq. 1. The goal is to retrieve the pseudo-class i. Note
that the actual class information is not used. As the assigned
embedding changes at every iteration, there is no correlation
between the actual classes and the learned embeddings. See
also Fig. 1 that exemplifies this process. In the proposed
FS-DETR, each decoded object query oi in O will attempt
to predict a pseudo-class using a classifier. Pseudo-class
embeddings add a signature to each visual prompt allowing
the network to track the template within and dissociate it
from the rest of the templates belonging to a different class.
As transformers are permutation invariant, this vectors are
required in order to track the visual prompt within the model.
Templates as visual prompts: We propose to provide the
templates Xs as visual prompts to the system by prepending
them to the sequence of object queries fed to the decoder:

O′ = [Xs O], O′ ∈ R(mk+N)×d. (2)

As shown below, the templates will induce pseudo-class
related information into the object queries via attention. This
can be interpreted as a new form of training-aware soft-
prompting [30].



FS-DETR encoder: Given a target image I ∈ RH′×W ′×3,
the same CNN backbone used for template feature extrac-
tion first generates image features Z = CNN(I), Z ∈
RS×d, S = H ×W , which are enriched with positional in-
formation through positional encodings Z← Z+Ps, Ps ∈
RS×d. The features Z are then processed by FS-DETR’s
encoder layers in order to be enriched with global contex-
tual information. The l−th encoding layer processes the
output features of the previous layer Zl−1 using a series of
Multi-Head Self-Attention (MHSA), Layer Normalization
(LN), and MLP layers (typical in [46] and [3]), as well as a
newly proposed Multi-Head Cross-Attention (MHCA) layer
as follows 2:

Z′ = MHSA(LN(Zl−1)) + Zl−1, (3)
Z′′ = MHCA(LN(Z′),Xs) + Z′, (4)
Zl = MLP(LN(Z′′)) + Z′′. (5)

The purpose of the MHCA layer above is to filter and high-
light early on, before decoding, the image tokens of interest.
We have found that such a layer noticeably increases few-
shot accuracy (see also Section 5). FS-DETR’s encoder is
implemented by stacking L = 6 blocks, each following
Eq. (3)-(5). As image tokens are permutation invariant, we
followed [3] and used a fixed positional encoding. For the
templates, pseudo-class embeddings serve as positional en-
codings.
FS-DETR decoder: FS-DETR’s decoder accepts as input
the concatenated templates and learnable object queries O′

which are transformed by the decoder’s layers through self-
attention and cross-attention layers in order to be eventually
used for pseudo-class prediction and bounding box regres-
sion. The l−th decoding layer processes the output features
of the previous layer Vl−1 as follows:

V′ = MHSA(LN(Vl−1) +O′) +Vl−1, (6)
V′′ = MHCA(LN(V′) +O′,Zl) +V′, (7)
Vl = MLP(LN(V′′)) +V′′, (8)

where V0 = [Xs zeros(N, d)]. Notably, different
MLPs are used to process the decoder’s features V =
[VXs VO] corresponding to the templates VXs and the
object queries VO:

MLP(V) = [MLP(VXs) MLP(VO)]. (9)
FS-DETR’s decoder consists of L = 6 layers implemented
using Eqs. (6)-(9).
FS-DETR training and loss functions: For each base
class that exists in the target image, we create a template
for that class by randomly sampling and cropping an object
from that category using a different image (containing an

2We follow DETR’s notation where O′ is added to LN(Vl−1) and
then projected to form the query Q and key K for self-attention. Here, the
first layer Vl−1 is initialised as [Xs, zeros] while in DETR with zeros.

object of the same class) from the train set. After applying
image augmentation, the cropped object/template is passed
through the CNN backbone of FS-DETR. For each target
image and template i (depicted in that image), the ground
truth is yi = (csi , bi), where csi is the target pseudo-class
label (up to m classes in total) and bi ∈ [0, 1]4 are the nor-
malised bounding box coordinates. To calculate the loss for
training FS-DETR, only the N transformed object queries
VL

O ∈ RN×d from the output of the last decoding layer
are used for pseudo-class classification and bounding box
regression (i.e. VL

Xs is not used). To this end, pseudo-class
and bounding box prediction heads are used to produce a
set of N predictions {ŷi}Ni=1 consisting of the pseudo-class
probabilities p̂i(c

s) and the bounding box coordinates b̂i.
The heads are implemented using a 3-layer MLP and ReLU
activations. Similarly to [3], we used an additional special
pseudo-class ∅ to denote tokens without valid object predic-
tions. Note that as the training is done in a class-agnostic way
via mapping of the base class templates to pseudo-classes
(the actual class information is discarded) the model is capa-
ble to generalise to the unseen novel categories.

Following [3], bipartite matching is used to find an opti-
mal permutation {ŷσi}Ni=1. Finally, the loss is:

(10)L =

N∑
i=1

λ1LCE(c
s
i , p̂σ(i)(c

s))

+ λ2||bi − b̂σ(i)||1 + λ3IoU(bi, b̂σ(i)),

where IoU is the GIoU loss of [40] and λi are the loss
weights.
Pre-training: Transformers are generally more data hungry
than CNNs due to their lack of inductive bias [6]. There-
fore, building representations that generalise well to unseen
data, and prevent overfitting within the DETR framework,
requires larger amounts of data. To this end, we used images
from ImageNet-100 [43] and to some extent MSCOCO, for
unsupervised pre-training where the classes and the bound-
ing boxes are generated on-the-fly using an object proposal
system, without using any labels. Note, that unlike all prior
works, we make use of neg. templates as prompts, training
the network using our proposed loss. See also the appendix.

4. Experiments
Datasets: Experiments presented here were all conducted
using PASCAL VOC [8, 7] and MSCOCO [29] datasets.
Moreover, ImageNet100 [43], consisting of ∼125K images
and 100 categories, is used (without labels) to pre-train our
object detector. PASCAL VOC and MSCOCO are used to
train and evaluate few-shot experiments. Following previous
works [22, 48, 14], we evaluate the proposed method on
PASCAL VOC 2007+2012 and MSCOCO 2014, using the
same data splits provided by [22, 48]. Specifically, PASCAL



VOC is randomly divided into three different splits, each
consisting of 15 base and 5 novel classes; training is done on
the PASCAL VOC 2007+2012 train/val sets, and evaluation
on the PASCAL VOC 2007 test set. Similarly, MSCOCO is
split into base and novel categories, where the 20 overlap-
ping categories with PASCAL VOC are considered novel,
while the remainder are the base categories; following recent
convention [22, 48, 14], 5k samples from the validation set
are held out for testing, while the remaining samples from
both train and validation sets are used for training.
Evaluation setting: There are currently two widely-used
FSOD evaluation protocols. The first focuses exclusively
on novel classes while disregarding base class performance,
thus not monitoring catastrophic forgetting. The second,
more comprehensive protocol, called generalised few-shot
object detection (G-FSOD), considers both base and novel
classes. The choice of protocol and, hence, results interpreta-
tion, bears special importance for re-training based methods,
as base class generalizability might be compromised. With-
out re-training methods, as FS-DETR, adhere to the second
protocol (G-FSOD) by default, as base class catastrophic
forgetting is not applicable. As in [48], we report results
from several runs using different templates, and hence, report
competing results using a likewise setting when available.
Baselines: Existing FSOD methods can be broadly cate-
gorised into:

re-training based, and without re-training. The latter can
handle few-shot detection on the fly at deployment, while
re-training based FSOD methods generally tend to perform
better. Re-training based methods can be further subdivided
into “meta-learning” and “fine-tuning” approaches. “Re-
training based: meta-learning” approaches include: Xiao et
al. [52], DCNET [20], TIP [25] and QA-FewDet [14]. “Re-
training based: fine-tuning” methods include: Fan et al. [9],
CME [27], SRR-FSD [59], Zhang et al. [57], DeFRCN [36],
FCT [16], KFSOD [56], TENET [55], FSODMC [10], DE-
TReg [1], Meta-DETR [54] and tsf [23]. “Without re-
training” methods include: UP-DETR [5], Fan et al. [9],
QA-FewDet [14], Meta Faster R-CNN [15] and AirDet [26].
Note that these 4 last methods can also be re-trained, offering
improved accuracy.

4.1. Overview of Results

From our results below on both datasets, we can take
away two messages:
• Conclusion 1: FS-DETR outperforms all without re-

training based approaches by a large margin, i.e. those
directly comparable.

• Conclusion 2: FS-DETR outperforms the majority of
re-training based approaches (some by a large margin).
Importantly, on average across all novel sets from PAS-
CAL VOC, it outperforms all for k = 1, while at the same
time being more robust across splits, i.e. FS-DETR has

lower variance across novel sets. Similarly, in MSCOCO
with k = 1, 2 it outperforms nearly all re-trained methods.

• Conclusion 2: FS-DETR Shows strong and conistent
performance across a variable number of shots.

4.2. Results on PASCAL VOC

Table 1 summarises our results and compares them with
the current state-of-the-art on PASCAL VOC. Experiments
for k-shot detection were conducted for three data splits,
where k was set to 1, 2, 3, 4, 5, 10 and AP50 values are re-
ported. Note that Table 1 is split into two sections: Methods
at the top require an additional few-shot re-training stage,
while those at the bottom, including our method, do not re-
quire any re-training. Here, it can be appreciated that our
approach outperforms all without re-training methods by a
large margin, improving the current state-of-the-art [14, 5]
in any shot and all split experiments by up to 17.8 AP50
points, and, in most cases, by at least ∼10 AP50 points.
Moreover, and contrary to [14, 15], our method can pro-
cess multiple novel classes in a single forward pass. Finally,
we re-implemented UP-DETR [5] for few-shot detection on
PASCAL VOC (since there is no publicly available imple-
mentation for few-shot detection or results). Our method
largely outperforms it, perhaps unsurprisingly, as the latter
was not developed for few-shot detection, but for unsuper-
vised pre-training. Importantly, the proposed method pro-
vides competitive results or even outperforms re-training
based methods (meta-learned or fine-tuned), especially for
extreme low-shot, k = 1, 2 (e.g. [25, 27, 59, 36, 54, 23]).
Qualitative visualizations in appendix.

4.3. Results on MSCOCO

Table 2 shows evaluation results for FS-DETR and all
competing state-of-the-art methods on MSCOCO. Similarly
to above, Table 2 is split into methods requiring re-training at
the top and those that do not require re-training at the bottom.
There, it can be appreciated that FS-DETR outperforms all
comparable state-of-the-art methods [14, 9, 26] by up to
3.1 AP50 points (1-shot) and, in most cases, by at least
∼ 1.1 AP50 points. In our experiments UP-DETR failed to
converge on MSCOCO, hence, results are not included. We
speculate that this might be due to UP-DETR’s partitioning
the input queries by the number query patches, therefore,
limiting the number of tokens query patches interact with.
This appears to be too restrictive for MSCOCO. Moreover,
and in line with results observed on PASCAL VOC, FS-
DETR achieves competitive results to those of re-trained
based methods on MSCOCO, a far more challenging dataset.
FS-DETR outperforms nearly all re-training based methods,
for k = 1, 2 while performing comparably for k = 3, 5, 10.
This in itself is a promising results given our methods doesn’t
require retraining.



Table 1. FSOD performance (AP50) on the PASCAL VOC dataset. Results with † are from [14] while those with ‡ were produced by us.
Our approach outperforms all without re-training methods. Moreover, it provides competitive results compared with other re-training based
methods for k = 3, 5, 10, and even outperforms most for k = 1, 2, i.e. extreme few-shot settings.

Method / Shot Venue Backbone Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Re-training based methods (meta-learning or fine-tuning)

FSRW∗ [22] ICCV’19 YOLOv2 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet∗ [49] ICCV’19 VGG16 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN∗ [53] ICCV’19 RN-101 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
TFA w/fc [48] ICML’20 RN-101 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/cos [48] ICML’20 RN-101 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
TFA w/cos∗ [48] ICML’20 RN-101 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
Xiao et al. [52] ECCV’20 RN-101 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
MPSR∗ [51] ECCV’20 RN-101 41.7 42.5 51.4 55.2 61.8 24.4 29.3 39.2 39.9 47.8 35.6 41.8 42.3 48.0 49.7
Fan et al.† [9] CVPR’20 RN-101 37.8 43.6 51.6 56.5 58.6 22.5 30.6 40.7 43.1 47.6 31.0 37.9 43.7 51.3 49.8
DCNET [20] CVPR’21 RN-101 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
TIP [25] CVPR’21 RN-101 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9
CME [27] CVPR’21 RN-101 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
SRR-FSD [59] CVPR’21 RN-101 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
Zhang et al.∗ [57] CVPR’21 RN-101 47.0 44.9 46.5 54.7 54.7 26.3 31.8 37.4 37.4 41.2 40.4 42.1 43.3 51.4 49.6
QA-FewDet [14] ICCV’21 RN-101 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5
DeFRCN [36] ICCV’21 RN-101 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8
DeFRCN+TSF [23] ECCV’22 RN-101 43.6 57.4 61.2 65.1 65.9 31.0 40.3 45.3 49.6 52.5 39.3 51.4 54.8 59.8 62.1
DeFRCN∗ [36] ICCV’21 RN-101 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4
FCT [16] CVPR’22 PVTv2-B2-Li 38.5 49.6 53.5 59.8 64.3 25.9 34.2 40.1 44.9 47.4 34.7 43.9 49.3 53.1 56.3
KFSOD [56] CVPR’22 RN-50 44.6 - 54.4 60.9 65.8 37.8 - 43.1 48.1 50.4 34.8 - 44.1 52.7 53.9
TENET [55] ECCV’22 RN-50 46.7 - 55.4 62.3 66.9 40.3 - 44.7 49.3 52.1 35.5 - 46.0 54.4 54.6
Meta Faster R-CNN [15] AAAI’22 RN-101 43.0 54.5 60.6 66.1 65.4 27.7 35.5 46.1 47.8 51.4 40.6 46.4 53.4 59.9 58.6
Meta-DETR [54] TPAMI’22 DETR-R101 35.1 49.0 53.2 57.4 62.0 27.9 32.3 38.4 43.2 51.8 34.9 41.8 47.1 54.1 58.2

Without re-training methods

Fan et al.† [9] CVPR’20 RN-101 32.4 22.1 23.1 31.7 35.7 14.8 18.1 24.4 18.6 19.5 25.8 20.9 23.9 27.8 29.0
UP-DETR‡ [5] ICCV’21 DETR-R50 38.2 40.4 44.5 45.8 46.0 20.0 23.6 25.8 28.0 33.9 34.1 35.3 37.0 40.1 40.3
QA-FewDet [14] ICCV’21 RN-101 41.0 33.2 35.3 47.5 52.0 23.5 29.4 37.9 35.9 37.1 33.2 29.4 37.6 39.8 41.5
Meta Faster R-CNN [15] AAAI’22 RN-101 40.2 30.5 33.3 42.3 46.9 26.8 32.0 39.0 37.7 37.4 34.0 32.5 34.4 42.7 44.3
FS-DETR (Ours) this work DETR-R50 45.0 48.5 51.5 52.7 56.1 37.3 41.3 43.4 46.6 49.0 43.8 47.1 50.6 52.1 56.9

5. Ablation studies

Herein, we ablate different variations and components of
our method, analysing the impact of different design choices.
Unless otherwise specified, we report results on Novel Set 1
on PASCAL VOC. For more details see the appendix.

Design of the prompt template encoder: An important
component of our system is the extraction of discriminative
prompts from the novel classes’ templates. To this end, we
re-use FS-DETR’s input image CNN encoder. However, to
focus on the most important components we used attention-
based pooling instead of simple global average pooling. In
Table 3 we report the impact of: (a) resolution, (b) aug-
mentation level, and (c) pooling type. As the results show,
increasing the resolution from 128 to 192px yields no ad-
ditional gains. This suggests that, at least for the datasets
in question, fine grained details are not quintessential for
the identification of the targeted novel class and higher level
concepts suffice. While spatial augmentation generally helps
(i.e. for object recognition), we found that adding noise to
the ground truth bounding box of the template at train time
leads to lower accuracy. This makes the problem for the

object detector too hard, and impedes convergence. Finally,
attentive pooling, instead of global average, can further boost
performance.
Pre-training: Many FSOD systems use pre-trained back-
bones on ImageNet for classification. Deviating from this,
we pre-train our system in an unsupervised manner on Im-
ageNet images and parts of MSCOCO without using the
labels. We note that this is especially important for trans-
former based architectures which were shown to be more
prone to over-fitting due to the lack of inductive bias [6]. As
the results from Table 4 show, unsupervised pre-training, can
significantly boost the performance, preventing over-fitting
toward the base classes and improving overall discriminative
capacity. To reduce over-fitting the pre-training loss on Ima-
geNet data is applied during supervised training every 8th
iteration. Additional details and experiments in appendix.
Auxiliary losses: We explored the impact of using addi-
tional auxiliary losses applied to the object queries, an L2

feature loss and a contrastive loss, where the positive pairs
are formed by taking the input templates with all the object
query tokens assigned to it by the Hungarian assignment
algorithm. We did not observe any further gains from the



Table 2. FSOD performance on the MSCOCO dataset. Results with † are from [14]. Our method consistently outperforms the state-of-the-art
methods in most of the shots and metrics.

1-shot 2-shot 3-shot 5-shot 10-shot
Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Re-trained methods (meta-learning or fine-tuning)

FSRW∗ [22] – – – – – – – – – – – – 5.6 12.3 4.6
MetaDet∗ [49] – – – – – – – – – – – – 7.1 14.6 6.1
Meta R-CNN∗ [53] – – – – – – – – – – – – 8.7 19.1 6.6
TFA w/fc [48]† 2.9 5.7 2.8 4.3 8.5 4.1 6.7 12.6 6.6 8.4 16.0 8.4 10.0 19.2 9.2
TFA w/cos [48] 1.9 3.8 1.7 3.9 7.8 3.6 5.1 9.9 4.8 7.0 13.3 6.5 9.1 17.1 8.8
TFA w/cos∗† [48] 3.4 5.8 3.8 4.6 8.3 4.8 6.6 12.1 6.5 8.3 15.3 8.0 10.0 19.1 9.3
Xiao et al.† [52] 3.2 8.9 1.4 4.9 13.3 2.3 6.7 18.6 2.9 8.1 20.1 4.4 10.7 25.6 6.5
Fan et al.† [9] 4.2 9.1 3.0 5.6 14.0 3.9 6.6 15.9 4.9 8.0 18.5 6.3 9.6 20.7 7.7
TIP [25] - - - - - - - - - - - - 16.3 33.2 14.1
CME [20] - - - - - - - - - - - - 15.1 24.6 16.4
SRR-FSD [59] - - - - - - - - - - - - 11.3 23.0 9.8
Zhang et al. [57] 4.4 7.5 4.9 5.6 9.9 5.9 7.2 13.3 7.4 - - - - - -
QA-FewDet [14] 4.9 10.3 4.4 7.6 16.1 6.2 8.4 18.0 7.3 9.7 20.3 8.6 11.6 23.9 9.8
DeFRCN [36] 4.8 - - 8.5 - - 10.7 - - 13.6 - - 16.8 - -
DeFRCN+TSF [23] 5.0 - - 8.7 - - 10.9 - - 13.6 - - 16.6 - -
DetReg [1] - - - - - - - - - - - - 25.0 - 27.6
FCT [16] 5.1 - - 7.2 - - 9.8 - - 12.0 - - 15.3 - -
KFSOD [56] - - - - - - - - - - - - - 25.7 14.6
FSODMC [10] - - - - - - - - - 15.1 27.2 14.6 - - -
Meta Faster R-CNN [15] 5.1 10.7 4.3 7.6 16.3 6.2 - - - - - - 12.7 25.7 10.8
FCT [16] 5.1 - - 7.2 - - 9.8 - - 12.0 - - 15.3 - -
Meta-DETR [54] 7.5 12.5 7.7 - - - 13.5 21.7 14.0 15.4 25.0 15.8 19.0 30.5 19.7
AirDet [26] 6.10 11.40 6.04 8.73 16.24 8.35 9.95 19.39 9.09 10.81 20.75 10.27 13.0 23.9 12.4

Methods without re-training

Fan et al.† [9] 4.0 8.5 3.5 5.4 11.6 4.6 5.9 12.5 5.0 6.9 14.3 6.0 7.6 15.4 6.8
QA-FewDet [14] 5.1 10.5 4.5 7.8 16.4 6.6 8.6 17.7 7.5 9.5 19.3 8.5 10.2 20.4 9.0
Meta Faster R-CNN [15] 5.0 10.2 4.6 7.0 13.5 6.4 - - - - - - 9.7 18.5 9.0
AirDet [26] 5.97 10.52 5.98 6.58 12.02 6.33 7.00 12.95 6.71 7.76 14.28 7.31 8.7 15.3 8.8
FS-DETR (Ours) 7.0 13.6 7.5 8.9 17.5 9.0 10.0 18.8 10.0 10.9 20.7 10.8 11.3 21.7 11.1

Table 3. FSOD performance (AP50) on the PASCAL VOC dataset
Novel Set 1 for various template construction configurations. † - re-
sult produced using bounding-box jittering for the patch extraction.

Resolution Pool. type
Novel Set 1

1 2 3 5 10

128 global.avg. 42.9 46.0 49.4 50.5 54.0
128 attn. 45.0 48.5 51.5 52.7 56.1
128† attn. 39.0 42.8 44.6 46.4 50.3
96 attn. 43.2 45.7 49.0 50.1 52.9
192 attn. 45.1 48.3 51.0 52.9 57.0

Table 4. FSOD performance (AP50) on the PASCAL VOC dataset
on the Novel Set 1 for models with and without pre-training.

Pre-training
Novel Set 1

1 2 3 5 10

19.0 21.1 23.3 24.0 24.6
✓ 45.0 48.5 51.5 52.7 56.1

additional losses, suggesting that the pseudo-classification
loss alone suffices for guiding the network.
Impact on individual components: Herein, we analyse
the accuracy improvement obtained by two components of

FS-DETR namely the MHCA layer in FS-DETR’s encoder
(see Eq. 5), and the type-specific MLPs (TS-MLP) in FS-
DETR’s decoder (see Eq. 9). As Table 5 shows, while our
system, without both components, provides satisfactory re-
sults, unsurprisingly, the addition of TS-MLP further boosts
the accuracy. This is expected as the information carried by
the object queries and template tokens is semantically dif-
ferent, so ideally they should be transformed using different
functions. Finally, the MHCA within the encoder injects
template-related information early on to filter or highlight
certain image regions, and also helps increase the accuracy.

Table 5. Impact of various components on the FSOD performance
(AP50) on the PASCAL VOC dataset (Novel Set 1).

Approach
Novel Set 1

1 2 3 5 10

FS-DETR w/o TS-MLP 42.2 46.9 48.3 49.2 51.6
FS-DETR w/o MHCA of Eq. 4 38.1 40.6 41.7 42.2 45.6

FS-DETR 45.0 48.5 51.5 52.7 56.1



6. Conclusions
In this work we propose FS-DETR, a novel transformer

based few-shot architecture, that is simple, powerful and
flexible. FS-DETR outperforms all prior training-free meth-
ods, thus achieving a new state-of-the-art. In addition to the
outstanding results presented in Sec. 4, the proposed method
can simultaneously predict arbitrary number of classes, us-
ing variable-shots per class, in a single forward pass. These
results, in combination with the methods formulation, clearly
demonstrate not only its performance improvements but also
its high flexibility. Therefore, the visual prompting frame-
work proposed FS-DETR can uniquely satisfy the outlined
FSOD system desiderata (a) and (b), while also making big
improvements toward satisfying (c).
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A. Implementations details
FS-DETR extends Conditional DETR [34] (see Sec-

tion 3), and was pre-trained and trained on a single node with
8 P40 GPUs. Following [5], the ResNet50 [18] backbone
is initialized from SwAV [4] and kept frozen. Pre-training
makes use of ImageNet-100 without labels, with object pro-
posals detection as a pretext task.



Pre-training hyper-parameters were set to: Batch size of
32 per GPU, AdamW optimizer [33] with a learning rate of
10−4, frozen backbone CNN, path dropout of 0.1, training
for 60 epochs with the learning rate decreased by factor of 10
after 40 epochs. When using larger images for pre-training
(i.e. containing complex scenes) the batch size is decreased
to 2.

Training hyper-parameters were set to: Batch size of 2
per GPU, SGD with momentum (0.9) [35] with the learning
rate initially set to 5e−1, path dropout of 0.1, training for 30
epochs with the learning rate decreased by a factor of 10 after
20 epochs (and respectively 15 for COCO). Augmentation
followed DETR: input images were resized such that the
short axis is 480 at least and 800 pixels at most, and the long
side is, at most, 1333 pixels, and randomly cropped with 0.5
probability.

Patch augmentation hyper-parameters. The templates are
cropped tightly based on the bounding box and then rescaled
to a 128 × 128px image. During training we apply the
following augmentations: color jittering, with 0.8 probability
and 0.4 intensity, random gray scale (0.2 probability) and
Gaussian blur with a probability of 0.5.

B. Pre-training process

Transformer based architectures are known to generally
be more data-hungry than their homologous CNNs [6, 3]. To
alleviate this, we introduce a label-free pre-training step that
closely mimics the training stage.

More specifically, at train time, for any given input image,
we crop a set of patches according to the object proposals
produced by Selective Search [45] 3. Each of these patches
represents an object (belonging to some class) and can be
mapped to a pseudo-class, by associating it to a different
pseudo-class embedding. Note, that random patches can be
used too, but the former leads to faster convergence. The goal
of the network is to predict the location of these patches (i.e.
object templates). To make the task harder, the patches (tem-
plates) are augmented using a set of random transformations
before being passed to the backbone. Finally, the network
is trained using a regression (for the bounding boxes) and
a classification loss. As opposed to the supervised training
stage, the classification loss is reduced to a binary classi-
fication problem initially: object/no object and then to the
proposed loss, after this warm-up. The model is then trained
using the hyper-parameters described in Section A while the
ResNet based backone is initialised from a model pre-trained
on Imagenet without supervision (SwAV [4]). Note that
unlike [5, 1] that also make use of unsupervised detection-
centric training, our work concatentes a set of templates as

3Selective Search is a training-free generic region proposal algorithm
that computes a hierarchical grouping of image regions based on color,
texture, size and shape, and hence, has no notion of object classes.

prompts, instead of grouped-based summation, uses a dif-
fernt trainign objective and makes use of negative templates.
The process is illustrated in Fig. 2.
Pre-training dataset For our DETR pre-training, we used
the images belonging to the base classes from COCO (60
classes in total) and ImageNet-100 (a subset of ImageNet
introduced in [43]). We note the following: firstly, there is no
overlap between COCO base classes and VOC and COCO
novel classes. Secondly, ImageNet-100 contains classes that
can be matched to 7 out of 20 VOC classes (bird, cat, dog,
boat, car, motorcycle and chair). Specifically, split-1 of
VOC novel classes contains 2/5 classes (bird and motorbike)
that overlap with ImageNet-100, split-2 0/5 and split-3 3/5
(boat, cat and motorbike). Please note that NONE of the
labels in ImageNet-100 (or COCO) are used at any stage of
the pre-training. While we agree that the underlying data
distribution, even for unsupervised learning is important,
judging from the results from Tables 1 and 2 the gains in
absolute terms offered by our approach are consistent across
all 3 sets (note that split-2 has no overlap at all).

We note that, recent state-of-the-art methods (e.g. Fan
et al [9], QA-FewShot [14], DeFRCN [36]) make use of a
backbone pre-trained with full supervision on the entire Ima-
geNet, same which includes all VOC/COCO novel classes.
In this regard, we trained FS-DETR initialized from a back-
bone pre-trained on the entirety of Imagenet for classification
using full supervision (e.g. same as [9, 14, 36]). Preliminary
results shown in Tab. 6 (which could likely be improved
from hyper-parameter optimization) indicate an overall im-
provement of approx. 1.5%. This highlights that the pre-
training data used in the proposed work doesn’t offer any
advantage over prior art approaches that use fully supervised
pre-trained backbones. Further to this, DeFRCN [36] ex-
perimented with using a backbone pre-trained on ImageNet
without labels (SwAV weights - same as ours) which resulted
in substantially degraded performance of approx. 5.0%.

Table 6. Impact of different initialisation of backbone on the PAS-
CAL VOC dataset (Novel Set 1).

Approach Novel Set 1
1 2 3 5 10

FS-DETR (Swav) 45.0 48.5 51.5 52.7 56.1
FS-DETR (ImageNet) 47.1 49.9 52.5 53.8 57.0

C. Qualitative evaluation
Fig. 3 shows 1-shot detection examples of FS-DETR ,

with success cases shown on the first three columns, and fail
cases on the right-most column. The image on top-left of
the figure, illustrates an important and unique property of
FS-DETR : Two novel classes coexist in a single image, and
FS-DETR is able to successfully detect both of them at the
same time.
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Figure 2. FS-DETR pre-training stage. The pre-training process largely mimics the training stage, with a few notable differences: (1) no
annotations are used, (2) the target bounding boxes are proposed by selective search or sampled randomly, (3) the templates are sampled
from the target image itself and (4) only two classes are defined - object and no object.

Figure 3. Novel class 1-shot detection examples with FS-DETR.
First three columns depict success cases, while the right-most col-
umn failures. Green and red boxes indicate novel and base classes,
respectively. Note that in the top-left image two novel classes are
detected simultaneously.

Fig. 4 shows the effect of varying the 1-shot template
used during novel class detection. There, smaller images
refer to the templates used for 1-shot detection on the paired
larger image. From the left-most two pairs of columns, it
can be appreciated that even under large template visual
variability, FS-DETR proves to be extremely robust, with
detections hardly affected by the template change. The right-
most illustrates a failure case, where the sofa fails to be
detected.

Additionally, in Fig. 5 we visualise the attention weights
between the visual prompts and the encoded image features.
Notice that our network learns to attend to parts of the target
image that are semantically similar to the provided templates
that are present in the target image.

D. Discussion, challenges and limitations

Herein we offer a pertinent discussion on some things
we tried but didn’t work, defining some of the limitations
and challenges that arise within the proposed framework and
more so in general for FSOD using images within DETR
framework.

D.1. Few-shot object detection objective ambiguity

A general limitation of few shot object recognition sys-
tems, trained and/or tested using one or more visual ex-
amples is the ill-definess of what represents a class. For
example, presenting a template depicting a dog could re-
quire identifying the class “dog”, “bulldog”(i.e. find dogs
of a given bred), “a white dog” etc. While as the number
of examples increases the ambiguity decreases, the problem
is not fully solvable within the visual domain. A natural
solution to this problem could be provided by constructing
the templates using natural language. While an interesting
solution, this goes beyond the scope of this work.

That being said, to some extent, our approach alleviates
parts of this problem: As our model has to distinguish locally
within the set of provided positive (present in the image)
and negative (not present) templates, it can use them to
semantically ground the notion of a class, effectively defining
the semantic hierarchy. For example, if all templates are
representing different apple varieties, the model is expected
to differentiate between these varieties instead of detecting



Figure 4. Effect of different 1-shot template on detection with FS-DETR. Small images indicate the template used to detect the objects
on the larger images. The left-most two pairs of columns illustrate the robustness to template change, while the right-most column pair
illustrates a failure case.

any apple.

D.2. Challenges within the DETR framework

Despite its remarkable success and appealing formulation
that removes the need of an explicit object proposal compo-
nent or post-processing step (i.e. NMS), in the context of
few-shot detection some of this advantages pose additional
challenges, some of which we detail bellow. We believe
this aspects could represent potentially interesting future
exploration directions.
Semantic misalignment Traditional object detection sys-
tems, such as [39, 38, 17] preserve an exact feature alignment
between the regressed bounding box and the semantic infor-
mation (i.e. the ROI pooling extracts features at the location
given by the proposal). DETR derived approaches however
construct their representation gradually by adapting a set of
object queries via self-attention and cross-attention with the
encoded features. As each object query operates (attends) to
the entire image, as opposed to the local ROI, the query can
encode information outside of the predicted bounding box.
Thus, we can get to cases where the class may be correct
although the bounding box contains mostly objects of an
incorrect category.

Therefore, when we tried to use an external supervised
classifier, applied to the image region cropped based on the
predicted bounding box, surprisingly we noticed a deteriora-
tion of the performance. Upon visual inspection we observed
a manifestation of the above mentioned phenomena, where
the model was able to predict the correct class despite the fact
that the predicted bounding box contained predominantly
content of a different class, while the external supervised

classifier was unable to.
Reduced proposal diversity A key characteristic of DETR
systems is the removal of an a) external object proposal gen-
erator and b) implicit Non Maximum Suppression (NMS).
Upon close inspection of our system we noticed that as we
advance within the transformer based decoder, the bounding
boxes are pruned via self-attention. By the end, despite hav-
ing 100-300 object queries, most will point to a very small
set of distinct regions of the image, lacking the diversity
present in more traditional systems, such as in Fast RCNN.
The consequence of this is a higher likelihood of missing
unseen classes in limited data scenarios, making the pre-
training even more so important to train the built-in object
proposals system.



Figure 5. Attention weights between the visual prompts (templates) and the encoded image features for three randomly sampled target
images (left column) from VOC Pascal dataset. Notice that the network learns to attend to the parts of the image that are semantically close
to the presented templates. For each target image (left column), we show the attention weights generated by four templates. We observe that
for the target image of the first row, only the car template generates attention of high magnitude at several locations corresponding to the
location of the cars in the target image. Similarly, for the target image of the second row only the horse and the person templates fire at the
corresponding locations in the target image as expected. Similar conclusions can be drawn for the target image of the last row.


