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Abstract

Unsupervised domain adaptation (UDA) has proven to
be highly effective in transferring knowledge from a label-
rich source domain to a label-scarce target domain. How-
ever, the presence of additional novel categories in the
target domain has led to the development of open-set do-
main adaptation (ODA) and universal domain adaptation
(UNDA). Existing ODA and UNDA methods treat all novel
categories as a single, unified unknown class and attempt
to detect it during training. However, we found that domain
variance can lead to more significant view-noise in unsu-
pervised data augmentation, which affects the effectiveness
of contrastive learning (CL) and causes the model to be
overconfident in novel category discovery. To address these
issues, a framework named Soft-contrastive All-in-one Net-
work (SAN) is proposed for ODA and UNDA tasks. SAN
includes a novel data-augmentation-based soft contrastive
learning (SCL) loss to fine-tune the backbone for feature
transfer and a more human-intuitive classifier to improve
new class discovery capability. The SCL loss weakens the
adverse effects of the data augmentation view-noise prob-
lem which is amplified in domain transfer tasks. The All-in-
One (AIO) classifier overcomes the overconfidence problem
of current mainstream closed-set and open-set classifiers.
Visualization and ablation experiments demonstrate the ef-
fectiveness of the proposed innovations. Furthermore, ex-
tensive experiment results on ODA and UNDA show that
SAN outperforms existing state-of-the-art methods.

1. Introduction
Domain adaptation (DA) is a technique that transfers

knowledge from label-rich training domains to new do-

The ∗ indicates equal contribution, † indicates corresponding author.

mains where labels are scarce [1]. It addresses the prob-
lem of generalization of deep neural networks in new do-
mains. Traditional unsupervised domain adaptation (UDA)
assumes that the source domain and the target domain com-
pletely share the sets of categories, i.e., closed-set DA.
However, this assumption does not often hold in practice.
There are several possible situations, such as the target do-
main containing types absent in the source (unknown cate-
gories), i.e., open-set DA (ODA) [3, 27], the source domain
including classes absent in the target (source-private cate-
gories), i.e., partial DA (PDA) [4], or a mixture of ODA
and PDA, called open-partial DA (OPDA). Although many
approaches have been tailored to a specific setting, we can-
not know the category shift in advance, which is an actual
difficulty. To account for the uncertainty about the category
shift, the task of universal domain adaptation (UNDA) is
proposed [36, 25]. The assumption is that the label distribu-
tions of labeled and unlabeled data can differ, but we do not
know the difference in advance. UNDA is a uniform and
practical setting since estimating the label distributions of
unlabeled data is very hard in real applications.

The two main objectives of ODA and UNDA tasks are
feature transfer and novel category discovery. However,
the current methods have limitations in achieving both ob-
jectives, which hinders further improvement of these tasks.
Specific problems are depicted in Fig. 1.

The view-noise problem in data augmentation affects
the feature transfer. Recently, data-augmentation-based
contrastive learning (CL) has been used for unsupervised
fine-tune and has yielded excellent results in various down-
stream tasks [7, 41, 39]. Therefore, several studies [37, 6]
have attempted to enhance UNDA by introducing CL. How-
ever, these approaches are not based on data-augmentation-
based CL schemes but are based on neighbor relationships
of the original data. Although view noise in CL has started
to receive attention in network fine-tuning [9], the view
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Figure 1: Problem demonstration and solutions. (a) View-noise problem in the backbone network fine-tuned by the CL.
(a)-top shows the views generated by the same data augmentation scheme across three different domains. The difference in
content style of the Clipart domain causes the regular data augmentation to produce views with vastly different semantics,
producing noisy pairs. (b) Overconfidence problem of novel category classifiers. The dashed circle with a tick/cross means
the test samples are classified correctly/incorrectly.

noise problem in UNDA cannot be seen as similar to it.
Domain differences of data in UNDA introduce drastic and
persistent view noise and cause more severe damage.

As shown in the top of Fig. 1 (a), a more severe view-
noise problem occurs if the same augmentation scheme is
used in different domain data. In detail, view 1 (v1) and
view 2 (v2) are specific augmentation results across all
doamins. In ‘product’ domain and ‘art’ domain, v1 and
v2 have similar semantics, noted as positive pairs, but they
have different semantics in the ‘clipart’ domain, noted as
noise pairs. The noise pairs contradict the accurate semantic
information and, therefore, generate false gradients that cor-
rupt the network training. More importantly, other data aug-
mentation strategies, such as color perturbation, also lead to
divergent semantic changes in different domains, leading to
the view-noise problem. Addressing view-noise problem of
cross-domain data augmentation training can further release
the potential of CL on transfer learning.

Overconfidence problem of classifiers (closed-set clas-
sifier and open-set classifier) affects novel category
recognition performance. Recently, OVANet [26] and its
variants [34] have received much attention. These meth-
ods combine closed-set classifiers and open-set classifiers
to identify known and unknown classes. However, each of
the open-set classifiers only corresponds to a single known
class. When determining whether a sample belongs to a
novel class, the open-set classifier does not compete with
other open-set classifiers. It only determines whether the
output of this classifier is greater than a certain threshold.
This counter-intuitive strategy causes insufficient inter-class

competition, which in turn leads to classifiers that are more
likely to fall into overfitting and overconfidence. When la-
bel noise is present in the source domain, such data is almost
inevitable and the harmful effects of overconfidence are am-
plified. As shown at the top of Fig. 1 (b), even though the
closed-set classifier is not affected by label-noise, the classi-
fication boundary of the open-set classifier can become very
sharp due to label-noise and overfitting issues, which even-
tually causes the target domain samples to be misclassified.

To address the challenges mentioned above, we propose
the Soft-contrastive All-in-one Network (denoted as SAN)
for both UNDA and ODA.

For view-noise problem, we introduce a soft contrastive
learning (SCL) loss. Unlike the commonly used contrastive
learning (CL) loss, our SCL loss considers the similarity of
views in the latent space to assess the reliability of the view.
This enables us to construct a more effective loss function
by incorporating reliability. In Fig. 1(a), we compare our
SCL loss to the CL loss in dealing with noise pair data and
demonstrate that our SCL loss effectively reduces the influ-
ence of noise pairs on the model.

For overconfidence problem of independent classi-
fiers. An all-in-one (AIO) classifier is designed to re-
place the closed-set classifier and open-set classifier. The
decision-making process of the AIO classifier is closer to
that of humans. The AIO classifier assumes that identifying
a sample belonging to a novel category requires determin-
ing that it does not belong to any known classes. Based
on this assumption, a new loss function has been defined
to train the AIO classifier. As shown in (b3) and (b4) of



Figure 1, as a result, the AIO classifier has smoother classi-
fication boundaries and reduces the adverse effects of label
noise by introducing more comprehensive competition.

In experiments, we extensively evaluate our method on
ODA and UNDA benchmarks and vary the proportion of
unknown classes. The results show that the proposed SAN
outperforms all baseline methods on various datasets of the
ODA and UNDA tasks.

2. Related work
Unsupervised Domain Adaptation (UDA). The

UDA [24] aims to learn a classifier for a target domain
using labeled source data and unlabeled target data. UDA
includes closed-set domain adaptation (CDA), open-set do-
main adaptation (ODA), partial domain adaptation (PDA),
and universal domain adaptation (UNDA). For CDA, we
have Ls = Lt, where Ls and Lt are the label spaces of the
source and target domains [12, 29, 20]. For ODA [21, 27],
we have |Lt − Ls| > 0, |Lt ∩ Ls| = |Ls|, and the presence
of target-private classes in |Lt − Ls|. For PDA, we have
|Ls − Lt| > 0, |Lt ∩ Ls| = |Lt|, and the presence of
source-private classes in |Ls − Lt|.

Universal Domain Adaptation (UNDA). UNDA, also
known as open-partial domain adaptation (OPDA) in some
previous works, is proposed to handle the mixture of set-
tings where |Ls − Lt| > 0 and |Lt − Ls| > 0 [25]. They
emphasize the importance of measuring the robustness of a
model to various category shifts since the details of these
shifts cannot be known in advance. In [36] and [25], a con-
fidence score for known classes is computed, and samples
with a score lower than a threshold are considered unknown.
The paper [2] uses the mean of the confidence score as the
threshold, implicitly rejecting about half of the target data
as unknown. However, paper [25] sets a threshold based on
the number of classes in the source, which does not always
work well. In a recent study, paper [34] showed that ex-
ploiting inter-sample affinity can significantly improve the
performance of UNDA. They propose a knowability-aware
UNDA framework based on this idea.

Contrastive learning based UNDA. Recently, con-
trastive learning (CL), a kind of self-supervised learning
paradigm [19], has achieved impressively superior perfor-
mance in many computer vision tasks [7]. It aims to achieve
instance-level discrimination and invariance by pushing se-
mantically distinct samples away while pulling semanti-
cally consistent samples closer in the feature space [8, 32].
Paper [6] proposes to utilize mutual nearest neighbors as
positive pairs to achieve feature alignment between the two
domains. Paper [5] constructs the random walk-based MNN
pairs as positive anchors intra- and inter-domains and then
proposes a cross-domain subgraph-level CL objective to ag-
gregate local similar samples and separate different sam-
ples. To the best of our knowledge, no data-augmentation-

based CL schemes are used to solve the UNDA problem.

3. Methods
Notation. In ODA and UNDA, we are given a source

domain dataset Ds = {(xs
i , ŷ

s
i )}

Ns

i=1 and a target domain
dataset Dt = {(xt

i)}
Nt

i=1 which contains known categories
and ‘unknown’ categories. Ls and Lt denote the label
spaces of the source and target respectively. We assume
that there is unavoidable noise and errors in the labels, so
ŷsi is noted as sampling from the real label ysi . The class-
conditional random noise model is given by P (ŷsi ̸= ysi ) =
ρs. We aim to label the target samples with either one of
the Ls labels or the ‘unknown’ label. We train the model on
Ds ∪ Dt and evaluate on Dt.

Framework. Fig. 2 introduces the conceptual overview
of SAN. The proposed method includes a backbone net-
work F (·), a projection head network H(·), and an all-in-
one (AIO) classifier CAIO(·). The backbone network F (·)
and projection head network H(·) map the source domain
data xs

i and the target domain data xt
i into latent space,

zsi = H(ẑsi ) = H(F (xs
i )), zti = H(ẑti) = H(F (xt

i)).

3.1. View-noise and Soft Contrastive Learning Loss

Data-augmentation-based contrastive learning (CL) in-
volves binary classification over pairs of samples. Positive
pairs are from the joint distribution (xi, xj) ∼ Pxi,xj

, la-
beled as Hij = 1, while negative pairs are from the prod-
uct of marginals (xi, xj) ∼ PxiPxj , labeled as Hij = 0.
The CL learns representations by maximizing the similar-
ity between positive samples and minimizing the similarity
between negative samples using the InfoNCE loss [30].

LCL

(
xi, xj , {xk}NK

k=1

)
=−log

exp(zTi zj)∑NK

k=1exp(z
T
i zk)

=−log
exp(S(zi,zj))∑NK

k=1 exp(S(zi,zk))

(1)

where (xi, xj) is positive pair and (xi, xk) is negative pair,
and zi, zj , zk are the embedding of xi, xj , xk, NK is the
number of the negative pair. The similarity S(zi, zj) is typ-
ically defined by cosine similarity.

The typical contrastive learning (CL) loss assumes there
is one positive sample and multiple negative samples. To
design a smoother version of the CL loss, we transform it
into a form based on positive and negative sample labels
Hij . More details about the transformation from Eq. (1) to
Eq. (2) can be found in Appendix A.

LCL(xi,{xk}NK

k=1)=−
∑
j=1

{Hij logQij+(1−Hij) logQ̇ij} (2)

where Hij indicates whether i and j have been augmented
from the same data. If Hij = 1, it means that (xi, xj) is
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Figure 2: Framework of SAN. The proposed method includes a backbone network F (·), a projection head network H(·),
and an all-in-one (AIO) classifier C(·). The backbone network F (·) and projection head network H(·) map the source
domain data xs and the target domain data xt into latent space.

a positive pair, and if Hij = 0, it means that (xi, xj) is a
negative pair. The variable Qij = exp(S(zi, zj)) represents
the density ratio, which is defined in [30] and estimated by
the backbone network. In general, positive pairs are ob-
tained through stochastic data augmentation, which means
that the learning process inevitably introduces view-noise
(shown in Fig. 1(a)). As a result, view-noise introduces the
wrong gradient, which can corrupt the network’s training.
Furthermore, finding suitable data augmentation schemes
for all domains is challenging for UNDA data that exhibits
vast domain variance. This view-noise problem limits em-
ploying data-augmentation-based CL methods in UNDA.

To address the view-noise problem described above, we
propose Soft Contrastive Learning (SCL). SCL attenuates
the negative impact of incorrect samples by assigning dif-
ferent weights to different positive and negative samples,
which are estimated by calculating similarity through its
own backbone network. The loss function of SCL is as fol-
lows:

Lscl(xi, {xj}NK
j=1)

=−
∑
j=1

{Pij log (Qij)+ (1−Pij) log (1−Qij)}, (3)

where Pij is the weights, regarded as a soft version of Hij ,
and Qij is density ratio.

Pij =

{
eακ(yi, yj) if Hij = 1
κ(yi, yj) otherwise ,

Qij = κ(zi, zj).

(4)

where hyper-parameter α ∈ [0, 1] introduces prior knowl-
edge of data augmentation relationship Hij into the model

training. To map the high-dimensional embedding vec-
tor (such as (yi, yj)) to a probability value, a kernel func-
tion κ(·) is used. Commonly used kernel functions, includ-
ing Gaussian kernel functions [15], radial basis kernel func-
tions [28], and t-distribution kernel functions [39, 40], can
be employed. In this paper, we use the t-distribution ker-
nel function κν(·) because it exposes the degrees of free-
dom and allows us to adjust the closeness of the distribution
in the dimensionality reduction mapping [17, 38]. The t-
distribution kernel function is defined as follows,

κν(zi, zj) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + ∥zi − zj∥22
ν

)− ν+1
2

, (5)

where Γ(·) is the Gamma function. The degrees of freedom
ν control the shape of the kernel function. The different
degrees of freedom (νy, νz) is used in Ry and Rz for the
dimensional reduction mapping.

SCL loss uses a softened optimization target, as opposed
to the hard target of a typical CL loss, while avoiding the
strong misresponse to noise labels. A formal discussion of
the differences between the two losses is provided in Ap-
pendix A.3. Furthermore, we can prove that SCL loss can
maintain a higher signal-to-noise ratio when dealing with
view-noise. See Appendix A.3 for more details.

3.2. Overconfidence and All in One (AIO) Classifier

The current advanced UNDA methods [26, 34] com-
bines a closed-set classifier CA and open-set classifiers
{CB

k }k∈K to identify samples belonging to an unknown or
specific known class, where K is the set of known classes
K ∈ {1, . . . , NK} and NK is the number of known classes.



The inference process consists of two steps. First, CA iden-
tifies the most likely target class(k-th class). Second, the
corresponding sub-classifiers CB

k determines whether the
sample is a known or unknown class (see Fig. 1 (b) base-
line method). In training a single open-set classifier CB

k ,
samples with yi = k are defined as positive samples, while
samples with yi ̸= k are defined as negative samples. As a
result, the open-set classifier can become overconfident by
focusing on labels that only contain information from single
classes, and ignoring the competing relationships of differ-
ent known classes [34]. This overconfidence is manifested
in sharp category boundaries, and in failures to generalize
from the source domain to the target domain. In addition,
the noise in the labels compounds the damaging effects of
the overconfidence problem.

To address the problem described above, we attribute the
cause to the inadequate competition of a single open-set
classifier. Specifically, each open-set classifier only com-
pletes binary classification and neglects to observe more
diverse labels. As a result, the classifier overfits and pro-
duces exceptionally sharp classification boundaries, guided
by the simple learning task. Another important reason is
that it is inconsistent with human common sense for open-
set classifiers to consider only one known class when iden-
tifying new classes. Humans need to judge whether new
classes belong to known classes before identifying them as
new classes. To this end, we propose the All-in-One (AIO)
classifier CAIO (·). The AIO classifier assigns two output
neurons to each known category, representing if samples
belong to the specific category or not respectively. The for-
ward propagation of CAIO (·) is,

Cxi
=
{
ckxi

, c̃kxi
|k ∈ K

}
= σ

(
CAIO (zxi

)
)
, (6)

The ckxi
and c̃kxi

are the probability of xi being identified as
k-th category or not. The σ(·) is a ‘top n softmax’ func-
tion to ensure

∑
k∈T N {ckxi

+ c̃kxi
} = 1, T N is the top

N = 20 item of Cxi . The ‘top n softmax’ is employed to
balance the loss scale of different category numbers (check
Appendix C.3 for more details).

We propose two principles for designing an intuitive
UNDA classifier to train the AIO classifier to solve the
dilemma in the previous section. (a) If the classifier as-
signs sample xi to a known class ys, it needs to make
sure that the sample does not belong to other known classes
cy

s

xi
> max{ckxi

}k∈K/ys , and does not belong to an un-
known class, cy

s

xi
> max{c̃kxi

}k∈K. (b) If the classifier
assigns sample xi to an unknown class, it needs to con-
firm that the sample does not belong to all known classes,
max{c̃kxi

}k∈K > max{ckxi
}k∈K.

Next, we combine the two principles to obtain the fol-
lowing objective. For a sample of the source domain,

cy
s

xi
> max{c̃kxi

}k∈K > max{ckxi
}k∈K/ys , (7)

Based on Eq. (7), we formulate the loss function as,

LAIO(x
s, ys) = −[log(cy

s

xi
) + min{log(c̃kx)}k∈K/ys

+ log
(
cy

s

xi
−max{c̃kxi

}k∈K

)
],

(8)

where the first and second terms of LAIO maximize cy
s

xi
and

{c̃kx}k∈K/ys , thus guarantee that they have sufficiently pos-
itive predictions and are larger than {ckxi

}k∈K/ys . Also, the
third term guarantees that cy

s

xi
> max{c̃kxi

}k∈K. Implicitly,
{ckxi

}k∈K/ys is guided to have the lowest activation.

3.3. Learning & Inference

Learning. We combine the SCL loss and AIO loss to
train the SAN. The overall loss is

E(xs
i ,y

s
i )
{Lce(x

s
i , y

s
i )+βLAIO(x

s
i , y

s
i )}+ Ext

i
{λLscl(x

t
i)}. (9)

where Lce represents the cross entropy loss. The network
parameters are optimized by minimizing this loss. The hy-
perparameters λ and β are weighted. In comparison to
existing ODA and UNDA methods [25, 16], our proposed
method does not require more hyperparameters or loss func-
tions. Instead, we design new feature alignment and classi-
fier training schemes based on our theoretical analysis.

Inference. Based on the fine-tuned model, the recogni-
tion results of the target domain can be obtained by forward
propagation of the network. If ckxi

is greater than others,
then the sample xi is identified as a known class k. If any
of {c̃kxi

}k∈K of the AIO classifier achieves the maximum
value, then the sample is identified as an unknown class.

4. Results
We evaluate our method in ODA and UNDA settings

along with ablation studies. In addition, we assess the ro-
bustness with respect to the change of unknown target cate-
gory size by varying the number of unknown categories.

Datasets. We utilize popular datasets in DA: Office [24],
OfficeHome [31], VisDA [23], and DomainNet [22]. Unless
otherwise noted, we follow existing protocols [26] to split
the datasets into source-private (|Ls − Lt|), target-private
(|Lt − Ls|) and shared categories (|Ls ∩ Lt|).

Baselines. We aim to compare methods of universal
domain adaptation (UNDA), which can reject unknown
samples, such as, CMU [11], DANCE [25], DCC [18],
OVANet [26], TNT [6], GATE [5] and D+SPA [16].
We are looking at some contemporaneous work such as
KUADA [34], UACP [33] and UEPS [35], which we did not
include in the comparison because the source code was not
available and some of these works were not peer-reviewed.
Instead of reproducing the results of these papers, we di-
rectly used the results reported in the papers with the same
configuration.



Table 1: H-score comparison of Office and DomainNet datasets in the UNDA setting. Single SAN indicates that uniform
settings, and SAN⋇ indicates selecting the best hyperpatameters using the grid search. Bolded means best performance,
underlined means 2% better than other methods. The brackets after the dataset indicate (|Ls − Lt|, |Lt − Ls|, |Ls ∩ Lt|).

Method REF Office (10 / 10 / 11) Avg DomainNet (150 / 50 / 145)) AvgA2D A2W D2A D2W W2D W2A P2R R2P P2S S2P R2S S2R
DANCE NeurIPS2020 [25] 78.6 71.5 79.9 91.4 87.9 72.2 80.3 21.0 47.3 37.0 27.7 46.7 21.0 33.5
DCC CVPR2021 [18] 88.5 78.5 70.2 79.3 88.6 75.9 80.2 56.9 50.3 43.7 44.9 43.3 56.2 49.2
OVANet ICCV2021 [26] 85.8 79.4 80.1 95.4 94.3 84.0 86.5 56.0 51.7 47.1 47.4 44.9 57.2 50.7
TNT AAAI2022 [6] 85.7 80.4 83.8 92.0 91.2 79.1 85.4 — — — — — — —
GATE CVPR2022 [5] 87.7 81.6 84.2 94.8 94.1 83.4 87.6 — — — — — — —
D+SPA NeurIPS2022[16] 90.4 83.8 83.1 90.5 88.6 86.5 87.2 59.1 52.7 47.6 45.4 46.9 56.7 51.4
SAN ours 89.9 87.6 87.6 98.4 98.3 89.0 91.8 57.4 52.9 47.9 48.2 47.0 57.9 52.0
SAN⋇ ours 90.4 89.9 87.8 98.9 98.3 95.6 93.5 57.8 52.9 47.9 48.4 47.2 57.9 52.1

Table 2: H-score comparison of OfficeHome datasets in the UNDA setting. (D+SPA means DCC+SPA) Single SAN
indicates that uniform settings, and SAN⋇ indicates selecting the best hyperparameters using the grid search. Bolded means
best performance, underlined means 2% better than others.

Method REF OfficeHome (10 / 5 / 50)
A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg

DANCE NeurIPS2020 [25] 61.0 60.4 64.9 65.7 58.8 61.8 73.1 61.2 66.6 67.7 62.4 63.7 63.9
DCC CVPR2021 [18] 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2
OVANet ICCV2021 [26] 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8
TNT AAAI2022 [6] 61.9 74.6 80.2 73.5 71.4 79.6 74.2 69.5 82.7 77.3 70.1 81.2 74.7
GATE CVPR2022 [5] 63.8 75.9 81.4 74.0 72.1 79.8 74.7 70.3 82.7 79.1 71.5 81.7 75.6
D+SPA NeurIPS2022 [16] 59.3 79.5 81.5 74.7 71.7 82.0 68.0 74.7 75.8 74.5 75.8 81.3 74.9
SAN ours 66.7 79.4 86.6 73.2 73.0 79.5 75.7 64.0 82.6 79.4 66.8 80.0 75.9
SAN⋇ ours 68.2 80.6 86.7 73.4 73.0 79.8 76.5 64.9 83.3 80.1 67.1 80.1 76.1

Implementation. Following previous works, such as
OVANet [26] and GATE[5], we employ ResNet50 [13] pre-
trained on ImageNet [10] as our backbone network. We
train our models with inverse learning rate decay schedul-
ing. The performance of the proposed SAN in uniform set-
tings is listed in the penultimate row of the table. A grid
hyperparameter search is performed for each setup, and the
optimal results obtained are marked with ⋇. The selected
hyperparameters for searching include λ, β, and α. For
all experiments, νy = 100 and νz = 10. The network
H(·) uses a two-layer MLP network with 2048 neurons. In
summary, our method outperforms or is comparable to the
baseline method in all different settings. More details of the
implementation are in the Appendix.

Evaluation Metric. The H-score is usually used to
evaluate standard or ODA methods because it considers
the trade-off between the accuracy of known and unknown
classes [2]. H-score is the harmonic mean of the accuracy
on common classes Ac and the accuracy on “unknown”
classes At, H-score = (2Ac · At)/(Ac + At). The evalua-
tion metric is high only when both the Ac and At are high.
So, H-score can measure both accuracies of UNDA meth-
ods well. However, we find concerns about the fairness of

Table 3: H-score of Office datasets in the ODA setting.

Method Office (10 / 0 / 11) AvgA2D A2W D2A D2W W2D W2A
DANCE 84.9 78.8 79.1 78.8 88.9 68.3 79.8
DCC 58.3 54.8 67.2 89.4 80.9 85.3 72.6
OVANet 90.5 88.3 86.7 98.2 98.4 88.3 91.7
TNT 85.8 82.3 80.7 91.2 96.2 81.5 86.3
GATE 88.4 86.5 84.2 95.0 96.7 86.1 89.5
D+SPA 92.3 91.7 90.0 96.0 97.4 91.5 93.2
SAN 90.5 93.5 91.7 98.9 100 92.8 94.6
SAN⋇ 90.5 93.8 92.7 99.3 100 93.7 95.0

the Hscore when the sample sizes of the known and un-
known classes of the dataset differ significantly. For exam-
ple, when the number of samples in the unknown category
is much larger than the known category (e.g., the Office-
Home dataset), pairing one more sample from the known
category leads Ac to increase more significantly than the un-
known category. Moreover, if Ac increases, the H-score will
greatly increase, which leads to unfairness about the known
and unknown categories. So, to achieve a higher h-score,
the model will sacrifice the unknown category’s accuracy
to exchange for the common category’s accuracy, which



Figure 3: Ablation study. OVANet v.s. SAN w/o. SCL v.s. SAN. H-score and Balance H-score Comparisons of Office
datasets in the UNDA setting. The horizontal coordinate indicates the addition of a specified percentage of noise to the
original domain, and the vertical coordinate indicates the performance of the different methods.
Table 4: H-score of VisDA in UNDA and ODA setting.

Method VisDA VisDA
ODA UNDA

(6 / 0 / 6) (6 / 3 / 3)
CMU 54.2 34.6
DANCE 67.5 42.8
DCC 59.6 43.0
OVANet 66.1 53.1
TNT 71.6 55.3
GATE 70.8 56.4
SAN 72.0 60.1

is unfair and impracticable in the real world. Therefore,
inspired by the idea of Weighted Harmonic Means [14],
we propose the Balance H-score as a more equitable met-
ric (the proof is shown in Appendix B). For the dataset
where the number of unknown categories in the sample is θ
times the number of common, we define Balence H-score =
(1 + θ)Ac · At/(θAc + At). This paper selects the Hscore
as an evaluation metric for convenient comparison with the
baseline approach. Meanwhile, the Balance H-score is used
in the more profound analysis of the relative advantages of
the proposed method.

Performance comparisons on UNDA setting. From
the results in Table 1, Table 2, and Table 4, SAN achieves a
new state-of-the-art (SOTA) on all four datasets in the most
challenging UNDA setting. Concerning H-score, SAN out-
performs the previous SOTA UNDA method on Office by
4.2% and on OfficeHome by 0.3%. On large-scale datasets,
SAN also gives more than 0.6% improvement on Domain-
Net and more than 3.7% on VisDA compared to all other
methods in terms of H-score. In VisDA and DomainNet,
the number of samples and/or classes differs greatly from
those of Office and OfficeHome.

Performance Comparisons on ODA setting. For the
ODA setting, the H-score comparison results are presented
in Table 3 and Table 4. Our method performs better than
all the UNDA baselines on Office and VisDA datasets, with
1.4% and 1.2% H-score improvement.

Table 5: Ablation study. H-score comparison on all four
datasets in UNDA setting.

Method
Office OfficeHome DomainNet VisDA

(10/10/11) (10/5/50) (150/50/145) (6/3/3)

SAN 91.8 75.9 52.0 60.1
w/o. AIO 90.5 74.6 51.0 57.2
w/o. SCL 78.9 73.0 50.7 55.2
w. CL 78.2 73.3 50.5 52.7
OVANet 77.9 71.8 50.7 53.1

Overview of Results. Under these two scenarios with
”unknown” samples, SAN shows a more robust capability
for separating common and private categories, which ben-
efits from the SCL loss function and AIO classifier. Com-
pared with GATE, a previous SOTA method tailored for the
ODA setting, SAN is also superior on all datasets. This
evidence shows that SAN gains a better trade-off between
common categories classification and private samples iden-
tification.

4.1. Analysis in Universal Domain Adaptation

Ablation study, the effect of SCL Loss. We con-
duct controlled experiments to verify the necessity of the
soft contrastive learning (SCL) Loss on all four datasets
in UNDA settings, and the results are shown in Table 5.
The SAN shows the performance of the proposed method.
The w/o. SCL shows the performance of the SCL loss
with LSCL(x

t
i, yi

t) removed from the overall loss of SAN.
The w. CL shows the performance of the SCL loss with
LSCL(x

t
i, yi

t) replaced by the CL loss LCL in Eq. (1). The
OVANet shows the performance of OVANet. The above ex-
periences indicate that the SCL Loss significantly outper-
forms typical CL loss. We attribute the failure of LCL to
the fact that the view-noise caused by domain bias cannot
be ignored. In addition, SCL loss can better alleviate this
problem.

Ablation study, the effect of AIO classifier. We fur-
ther conduct controlled experiments to verify the necessity
of the All in one (AIO) classifier. In Table. 5, the w/o. AIO
shows the performance of the AIO classifier replaced by the



Figure 4: Feature Visualization, OVANet V.S. SAN (colors represent categories). The t-SNE embeddings visualization
of backbone network are shown in (a) and (b). For (a), source domain is webcam and the target domain is dslr. For (b),
source domain is dslr and the target domain is webcam. We observed that the OVANet make more mistakes due to the
overconfidence classification boundaries, while SAN is better. We attribute this improvement to the fact that SAN overcomes
the problem of overconfidence.

Figure 5: H-score and Balance H-score comparison of Office dataset in ODA. We vary the number of unknown classes
using Office (Ls ∩Lt| = 10, |Ls −Lt| = 0). The left and right parts, respectively, show H-score and Balance H-score. SAN
shows stable performance across different unknown class numbers, while baselines degrade performance in some settings.

open-set and closed-set classifier. The control experiments
on all four datasets indicate that the AIO Classifier brings
improvements. The improvement from the AIO classifier is
not as significant as that from SCL, probably because the
label noise in the dataset is not significant. We further ver-
ify this idea by manually adding some label noise, and the
experiment results are shown in Fig. 3. The results show
that the SAN and SAN w/o. SCL exceed the baseline more
significantly as the proportion of noise increases.

The overconfidence problem and its mitigation by
SAN. Many current approaches are based on a combination
of open-set classifiers and closed-set classifiers. We con-
sider that they fail to achieve further improvements because
the strategy of open-set classifiers leads to overconfidence.
One direct evidence is that SAN achieves a more significant
advantage in datasets with fewer samples (e.g., Office). To
explore the adverse effects of overconfidence, we perform
a visual analysis of the W2D and D2W settings of the Of-
fice dataset in Fig. 4. We find that the open set classifier
of OVANet make mistake in some novel class in target do-
main (e.g. the scatters marked by cross). It can be attributed
to the overconfidence classifier causing the over-sharp clas-
sification boundaries thus wrong testing results are output.

We consider this is the result of overconfidence. Contrast-
ingly, the same class is handled well by SAN.

The effect of the proportion of unknown samples on
H-score, and the advantage of SAN on Balance H-score.
H-score introduces fairness bias if there is a large quanti-
tative difference between the sample size of unknown and
known. To explore the fairness of the H-score, we changed
the number of unknown classes in the target domain and
then tested the performance of the H-score and balance H-
score (in Fig. 5). The results show that changing the number
of unknown classes dramatically changes the H-score. In
contrast, the balance H-score exhibits higher stability. This
suggests that the balance H-score is a more stable indicator
for the proportion of unknown class samples. Its fairness is
demonstrated in Appendix B. In addition, Fig.3 and Fig.5
show that the proposed SAN has more evident advantages
in both the H-score and Balance H-score.

5. Conclusion
ODA and UNDA tasks aim to transfer the knowledge

learned from a label-rich source domain to a label-scarce
target domain without any constraints on the label space.
In this paper, to solve the view-noise problem of data-



augmentation-based CL and the overconfidence problem
of novel category classifier, a framework named Soft-
contrastive All-in-one Network (SAN) is proposed. SAN
includes SCL loss which can avoid the over-response of
typical CL loss and enable data augmentation-based con-
trastive loss to improve the performance of ODA and
UNDA. In addition, SAN includes an all-in-one (AIO) clas-
sifier to improve the robustness of novel category discovery.
Extensive experimental results on UNDA and ODA demon-
strate the advantages of SAN over existing methods.
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Supplementary Materials:
Boosting Novel Category Discovery Over Domains

with Soft Contrastive Learning and All-in-One Classifier

A. Details of SCL loss
A.1. Details of the transformation from Eq. (1) to Eq. (2)

We start with LCL = − log
exp(S(zi,zj))∑NK

k=1 exp(S(zi,zk))
(Eq. (1)), then

LCL = logNK − log
exp(S(zi, zj))

1
NK

∑NK

k=1 exp(S(zi, zk))
.

We are only concerned with the second term that has the gradient. Let (i, j) are positive pair and (i, k1), · · · , (i, kN ) are
negative pairs. The overall loss associated with point i is:

− log
exp(S(zi, zj))

1
NK

∑NK

k=1 exp(S(zi, zk))

=−

[
log exp(S(zi, zj))− log

1

NK

NK∑
k=1

exp(S(zi, zk))

]

=−

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk)) +

NK∑
k=1

log exp(S(zi, zk))− log
1

NK

NK∑
k=1

exp(S(zi, zk))

]

=−

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk)) + logΠNK

k=1 exp(S(zi, zk))− log
1

NK

NK∑
k=1

exp(S(zi, zk))

]

=−

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk)) + log
ΠNK

k=1 exp(S(zi, zk))
1

NK

∑NK

k=1 exp(S(zi, zk))

]
We focus on the case where the similarity is normalized, S(zi, zk) ∈ [0, 1]. The data i and data k is the negative samples,

then S(zi, zk) is near to 0, exp(S(zi, zk)) is near to 1, thus the Π
NK
k=1 exp(S(zi,zk))

1
N

∑NK
k=1 exp(S(zi,zk))

is near to 1, and log
Π

NK
k=1 exp(S(zi,zk))

1
N

∑NK
k=1 exp(S(zi,zk))

near to 0. We have

LCL ≈ −

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk))

]
We denote ij and ik by a uniform index and use Hij to denote the homology relation of ij.

LCL ≈ −

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk))

]

≈ −

Hij log exp(S(zi, zj))−
NK∑
j=1

(1−Hij) log exp(S(zi, zj))


≈ −

NK+1∑
j=1

{Hij log exp(S(zi, zj)) + (1−Hij) log{exp(−S(zi, zj))}}





we define the similarity of data i and data j as Qij = exp(S(zi, zj)) and the dissimilarity of data i and data j as
Q̇ij = exp(−S(zi, zj)).

LCL ≈ −

NK+1∑
j=1

{
Hij logQij + (1−Hij) log Q̇ij

}
A.2. The proposed SCL loss is a smoother CL loss

This proof tries to indicate that the proposed SCL loss is a smoother CL loss. We discuss the differences by comparing
the two losses to prove this point. the forward propagation of the network is, zi = H(ẑi), ẑi = F (xi), zj = H(ẑj), ẑj =
F (xj). We found that we mix y and ẑ in the main text, and we will correct this in the new version. So, in this section
zi = H(yi), yi = F (xi), zj = H(yj), yj = F (xj) is also correct.

Let H(·) satisfy K-Lipschitz continuity, then dzij = k∗dyij , k
∗ ∈ [1/K,K], where k∗ is a Lipschitz constant. The

difference between LSCL loss and LCL loss is,

LCL − LSCL ≈
∑
j

[(
Hij − [1 + (eα − 1)Hij ]κ

(
dyij
))

log

(
1

κ
(
dzij
) − 1

)]
. (10)

Because the α > 0, the proposed SCL loss is the soft version of the CL loss. if Hij = 1, we have:

(LCL − LSCL)|Hij=1 =
∑[(

(1− eα)κ
(
k∗dzij

))
log

(
1

κ
(
dzij
) − 1

)]
(11)

then:

lim
α→0

(LCL − LSCL)|Hij=1 = lim
α→0

∑[(
(1− eα)κ

(
k∗dzij

))
log

(
1

κ
(
dzij
) − 1

)]
= 0 (12)

Based on Eq.(12), we find that if i, j is neighbor (Hij = 1) and α → 0, there is no difference between the CL loss LCL
and SCL loss LSCL. When if Hij = 0, the difference between the loss functions will be the function of dzij . The CL loss LCL
only minimizes the distance between adjacent nodes and does not maintain any structural information. The proposed SCL
loss considers the knowledge both comes from the output of the current bottleneck and data augmentation, thus less affected
by view noise.

Details of Eq. (10). Due to the very similar gradient direction, we assume Q̇ij = 1 −Qij . The contrastive learning loss
is written as,

LCL ≈−
∑

{Hij logQij + (1−Hij) log (1−Qij)} (13)

where Hij indicates whether i and j are augmented from the same original data.
The SCL loss is written as:

LSCL = −
∑

{Pij logQij + (1− Pij) log (1−Qij)} (14)

According to Eq. (4) and Eq. (5), we have

Pij = Rijκ(d
y
ij) = Rijκ(yi, yj), Rij =

{
eα if H(xi, xj) = 1
1 otherwise ,

Qij = κ(dzij) = κ(zi, zj),

(15)

For ease of writing, we use distance as the independent variable, dyij = ∥yi − yj∥2, dzij = ∥zi − zj∥2.
The difference between the two loss functions is:



LCL − LSCL

=−
∑[

Hij log κ
(
dzij
)
+ (1−Hij) log

(
1− κ

(
dzij
))

−Rijκ
(
dyij
)
log κ

(
dzij
)
−
(
1−Rijκ

(
dyij
))

log
(
1− κ

(
dzij
)) ]

=−
∑[(

Hij −Rijκ
(
dyij
))

log κ
(
dzij
)
+
(
1−Hij − 1 +Rijκ

(
dyij
))

log
(
1− κ

(
dzij
)) ]

=−
∑[(

Hij −Rijκ
(
dyij
))

log κ
(
dzij
)
+
(
Rijκ

(
dyij
)
−Hij

)
log
(
1− κ

(
dzij
)) ]

=−
∑[(

Hij −Rijκ
(
dyij
)) (

log κ
(
dzij
)
− log

(
1− κ

(
dzij
))) ]

=
∑[(

Hij −Rijκ
(
dyij
))

log

(
1

κ
(
dzij
) − 1

)]
(16)

Substituting the relationship between Hij and Rij , Rij = 1 + (eα − 1)Hij , we have

LCL − LSCL =
∑[(

Hij − [1 + (eα − 1)Hij ]κ
(
dyij
))

log

(
1

κ
(
dzij
) − 1

)]
(17)

We assume that network H(·) to be a Lipschitz continuity function, then

1

K
H(dzij) ≤ dyij ≤ KH(dzij) ∀i, j ∈ {1, 2, · · · , N} (18)

We construct the inverse mapping of H(·) to H−1(·),

1

K
dzij ≤ dyij ≤ Kdzij ∀i, j ∈ {1, 2, · · · , N} (19)

and then there exists k∗:
dyij = k∗dzij k∗ ∈ [1/K,K] ∀i, j ∈ {1, 2, · · · , N} (20)

Substituting the Eq.(20) into Eq.(17).

LCL − LSCL =
∑[(

Hij − [1 + (eα − 1)Hij ]κ
(
k∗dzij

))
log

(
1

κ
(
dzij
) − 1

)]
(21)



A.3. SCL is better than CL in view-noise

To demonstrate that compared to contrastive learning, the proposed SCL Loss has better results, we first define the signal-
to-noise ratio (SNR) as an evaluation metric.

SNR =
PL

NL
(22)

where PL means the expectation of positive pair loss, NL means the expectation of noisy pair loss.
This metric indicates the noise-robust of the model, and obviously, the bigger this metric is, the better.
In order to prove the soft contrastive learning’s SNR is larger than contrastive learning’s, we should prove:

PLcl

NLcl
<

PLscl

NLscl
(23)

Obviously, when it is the positive pair case, S (zi, zj) is large if H (xi, xj) = 1 and small if H (xi, xj) = 0. Anyway,
when it is the noisy pair case, S (zi, zj) is small if H (xi, xj) = 1 and large if H (xi, xj) = 0.
First, we organize the PLscl and PLcl into 2 cases, H (xi, xj) = 1 and H (xi, xj) = 0, for writing convenience, we write
S (zi, zj) as S and S′, respectively.

PLscl = −M {(1− S′) log (1− S′) + S′ logS′} − {(1− eαS) log(1− S) + eαS logS} (24)

PLcl = −M log (1− S′)− logS (25)

M is the ratio of the number of occurrences of H = 1 to H = 0. So, we could get:

PLscl − PLcl

= −M {(1− S′ − 1) log (1− S′) + S′ logS′} − {(1− eαS) log(1− S) + (eαS − 1) logS}
= −M {S′ (logS′ − log (1− S′))} − {(eαS − 1) (logS − log(1− S))}

= −M

{
S′log

S′

(1− S′)

}
−
{
(eαS − 1)log

S

(1− S)

} (26)

In the case of positive pair, S converges to 1 and S′ converges to 0.
Because we have bounded that eαS <= 1, so we could easily get:

(eαS − 1)log
S

(1− S)
<= 0 (27)

Also, we could get:

−M

{
S′log

S′

(1− S′)

}
> 0 (28)

So we get:
PLscl − PLcl > 0 (29)

And for the case of noise pair, the values of S and S′ are of opposite magnitude, so obviously, there is NLscl −NLcl < 0.
So the formula Eq. (23) has been proved.



B. Details of Balance Hscore
Inspired by the idea of Weighted Harmonic Means, the proposed Balance Hscore is,

Balance Hscore = B =
1 + θ
1
Ac

+ θ
At

=
AtAc

At + θAc
(1 + θ) (30)

where θ is the ratio of unknown and known samples, The Ac is the accuracy of known classes, and At is the accuracy of
unknown classes.

Why Balance Hscore is balance for known classes and unknown classes. To avoid sacrificing a category’s accuracy in
exchange for another category’s accuracy, we assume that the change in the number of the correct categories and the number
of the unknown categories has the same impact on the evaluation metric.

Let M be the number of the samples of known classes, and Nc be the number of the correct samples of known classes,
with Ac = Nc/M . The impact of Balance Hscore from the known class is,

∂B

∂Nc
=

∂B

∂Ac
· ∂Ac

∂Nc

= At(1 + θ) · θAc +At − θAc

(θAc +At)2
· 1

M

=
(1 + θ)A2

t

M(θAc +At)2

(31)

Let Mt be the number of the samples of known classes, and Nt be the number of the correct samples of known classes,
with At = Nt/Mt = Nt/(θM). The impact of a Balance Hscore from the unknown class is,

∂B

∂Nt
=

∂B

∂At
· ∂At

∂Nt

= Ac(1 + θ) · (θAc +At)−At

(θAc +At)2
· 1

θM
=

(1 + θ)A2
c

M(θAc +At)2

(32)

So if Ac = At, we have
∂B

∂Nc
=

∂B

∂Nt
,

it indicates that the metric gets the same influence as the correct classification. Thus the Balance Hscore is balance for known
and unknown classes.

Why Hscore is unbalance for known classes and unknown classes. However, for the

Hscore = (2 ·Ac ·At)/(Ac +At).

The impact of the Hscore by the known class is

∂H

∂Nc
=

∂H

∂Ac
· ∂Ac

∂Nc

= 2At ·
At +Ac −Ac

(Ac +At)2
· 1

M

=
2A2

t

M(Ac +At)2

(33)

The impact of the Hscore by the unknown class is

∂H

∂Nt
=

∂H

∂At
· ∂At

∂Nt

= 2Ac ·
Ac +At −At

(Ac +At)2
· 1

θM

=
2A2

c

θM(ActAt)2

(34)

So when Ac = At, we could get ∂B
∂Nc

̸= ∂B
∂Nt

, we think it’s not balance.



C. Experimental setups
C.1. Baseline Methods

We aim to compare methods of universal domain adaptation (UNDA), which can reject unknown samples, such as,
CMU [11], DANCE [25], DCC [18], OVANet [26], TNT [6], GATE [5] and D+SPA [16]. We are looking at some con-
temporaneous work such as KUADA [34], UACP [33] and UEPS [35], which we did not include in the comparison because
the source code was not available and some of these works were not peer-reviewed. Instead of reproducing the results of
these papers, we directly used the results reported in the papers with the same configuration.

C.2. Datasets

We utilize popular datasets in DA: Office [24], OfficeHome [31], VisDA [23], and DomainNet [22]. Unless otherwise
noted, we follow existing protocols [26] to split the datasets into source-private (|Ls − Lt|), target-private (|Lt − Ls|) and
shared categories (|Ls ∩ Lt|).

Table 6: The division on label sets in each setting

Tasks Datasets |Ls ∩ Lt| |Ls − Lt| |Lt − Ls|

ODA Office-31 10 0 11
VisDA 6 0 6

UNDA

Office-31 10 10 11
Office-Home 10 5 50
VisDA 6 3 3
DomainNet 150 50 145

C.3. Top n softmax in AIO

The forward propagation of CAIO (·) is

Cxi
=
{
ckxi

, c̃kxi
|k ∈ K

}
= σ

(
CAIO (zxi

)
)
, (35)

The ckxi
and c̃kxi

are the probability of xi being identified as a known and unknown class by kth category,
∑

k

{
ckxi

+ c̃kxi

}
= 1.

The σ(·) is a ‘top n softmax’ function to ensure
∑

k∈T N {ckxi
+ c̃kxi

} = 1, T N is the top N = 20 item of Cxi . We deploy
‘top n softmax’ to balance the loss scale of different category numbers. For example, in UNDA setting, there are 200 known
categories in DomainNet, while only 20 known categories in Office. If deploying a simple softmax, the loss scale will vary
over a wide range with different datasets.
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