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Abstract

Echocardiogram video segmentation plays an im-
portant role in cardiac disease diagnosis. This paper
studies the unsupervised domain adaption (UDA) for
echocardiogram video segmentation, where the goal is
to generalize the model trained on the source domain
to other unlabelled target domains. Existing UDA seg-
mentation methods are not suitable for this task be-
cause they do not model local information and the cycli-
cal consistency of heartbeat. In this paper, we in-
troduce a newly collected CardiacUDA dataset and a
novel GraphEcho method for cardiac structure segmen-
tation. Our GraphEcho comprises two innovative mod-
ules, the Spatial-wise Cross-domain Graph Matching
(SCGM) and the Temporal Cycle Consistency (TCC)
module, which utilize prior knowledge of echocardio-
gram videos, i.e., consistent cardiac structure across
patients and centers and the heartbeat cyclical con-
sistency, respectively. These two modules can better
align global and local features from source and target
domains, leading to improved UDA segmentation re-
sults. Experimental results showed that our GraphEcho
outperforms existing state-of-the-art UDA segmentation
methods. Our collected dataset and code will be pub-
licly released upon acceptance. This work will lay a new
and solid cornerstone for cardiac structure segmenta-
tion from echocardiogram videos. Code and dataset are
available at : https://github.com/xmed-lab/GraphEcho

1. Introduction

Echocardiography is a non-invasive diagnostic tool
that enables the observation of all the structures of the
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Figure 1. Examples of nine frames from our newly collected
CardiacUDA dataset, which serves as a new domain adap-
tation benchmark for cardiac structure segmentation from
echocardiogram videos.

heart. It can capture dynamic information on cardiac
motion and function [33, 11, 20], making it a safe
and cost-effective option for cardiac morphological and
functional analysis. Accurate segmentation of cardiac
structure, such as Left Ventricle (LV), Right Ventri-
cle (RV), Left Atrium (LA), and Right Atrium (RA),
is crucial for determining essential cardiac functional
parameters, such as ejection fraction and myocardial
strain. These parameters can assist physicians in identi-
fying heart diseases, planning treatments, and monitor-
ing progress [12, 32]. Therefore, the development of an
automated structure segmentation method for echocar-
diogram videos is of great significance. Nonetheless, a
model trained using data obtained from a specific med-
ical institution may not perform as effectively on data
collected from other institutions. For example, when a
model trained on site G is directly tested on site R, its
performance can significantly decrease to 48.5% Dice,
which is significantly lower than the performance of a
model trained directly on site R, which achieves 81.3%
Dice; see results of Without DA and Upper Bound in Ta-
ble 2. The result indicates that there are clear domain
gaps between echocardiogram videos collected on dif-
ferent sites; see (c-d) in Figure 2. Therefore, it is highly
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(a) CAMUS (b) Echonet (c) Site G (d) Site R

Figure 2. (a-b) two public datasets; (c-d) our newly collected
CardiacUDA from two sites: G and R. Red, green, blue, or-
ange and yellow refer to the segmentation contours for left
ventricle (LV), left atrium (RA), right Atrium (RA), right ven-
tricle (RV), and epicardium of left ventricle, respectively. Ta-
ble 1 outlines the advantages of our dataset over CAMUS and
Echonet.

desirable to develop an unsupervised domain adaptation
(UDA) method for cardiac structure segmentation from
echocardiogram videos.

To the best of our knowledge, the UDA segmenta-
tion for echocardiogram videos has not been explored
yet, and the most intuitive way is to adapt existing UDA
methods designed for natural image segmentation and
medical image segmentation to our task. In general,
existing methods can be grouped into 1). the image-
level alignment methods [21, 29, 43, 37] that focus on
aligning the style difference to minimize the domain
gaps, such as PLCA [21], PixMatch [29] and Fourier-
base UDA [43, 37]; 2). feature-level alignment meth-
ods [19, 23, 24], such as [23], use global class-wise
alignment to reduce the discrepancy between source
and target domains. However, applying these methods
directly to cardiac structure segmentation in echocar-
diogram videos generated unsatisfactory performance;
see results in Table 2 and Figure 5. We thus con-
sider two possible reasons: (1) Existing UDA meth-
ods [23, 21, 29, 43, 37] primarily focused on aligning
the global representations between the source and target
domain while neglecting local information, such as LV,
RV, LA, and RA; see (c-d) in Figure 2. The failure to
model local information during adaptation leads to re-
stricted cardiac structure segmentation results. (2) Most
existing methods [16, 23, 21, 29, 43, 37, 39, 44, 41] were
mainly designed for 2D or 3D images, which does not
consider the video sequences and the cyclic properties of
the cardiac cycle in our task. Given that heartbeat is a pe-
riodically recurring process, it is essential to ensure that
the extracted features exhibit cyclical consistency [7].

To address the above limitations, we present a novel
graph-driven UDA method, namely GraphEcho, for
echocardiogram video segmentation. Our proposed
GraphEcho consists of two novel designs: (1) Spatial-
wise Cross-domain Graph Matching (SCGM) mod-
ule and (2) Temporal Cycle Consistency (TCC) mod-

Table 1. The comparison of CardiacUDA, CAMUS, and
Echonet. †: 5 frames are labelled for each video in the training
set, and all frames are labelled for each video in the validation
and test dataset.

Dataset Our CardiacUDA CAMUS [22] EchoNet [32]
Video Num. 992 500 10,030

Frames Num. 102,796 10,000 1,755,250
Train/Test Labels 5 frames / Full † 2 frames / 2 frames 2 frames / 2 frames
Multiple Centers ✓ × ×
Cardiac Views 4 1 1

Resolution 720p 480p 120p
Annotated Regions LV, RV, LA, RA LV, LA LV

ule. SCGM is motivated by the fact that the struc-
ture/positions of the different cardiac structures are sim-
ilar across different patients and domains. For example,
the left ventricle’s appearance is typically visually alike
across different patients; see red contours in Figure 2.
Our SCGM approach reframes domain alignment as
a fine-grained graph-matching process that aligns both
class-specific representations (local information) and the
relationships between different classes (global informa-
tion). By doing so, we can simultaneously improve
intra-class coherence and inter-class distinctiveness.

Our TCC module is inspired by the observation the
recorded echocardiogram videos exhibit cyclical consis-
tency; see examples in Figure 1. Specifically, our TCC
module utilizes a series of recursive graph convolutional
cells to model the temporal relationships between graphs
across frames, generating a global temporal graph repre-
sentation for each patient. We then utilized a contrastive
objective that brings together representations from the
same video while pushing away those from different
videos, thereby enhancing temporal discrimination. By
integrating SCGM and TCC, our proposed method can
leverage prior knowledge in echocardiogram videos to
enhance inter-class differences and intra-class similari-
ties across source and target domains while preserving
temporal cyclical consistency, leading to a better UDA
segmentation result.

In addition, we collect a new dataset, called Car-
diacUDA from two clinical centers. As shown in Ta-
ble 1, compared to existing publicly available echocar-
diogram video datasets [22, 32], our new dataset has
higher resolutions, greater numbers of annotations, more
annotated structure types as well as more scanning
views. Our contribution can be summarized as follows:

• We will publicly release a newly collected echocar-
diogram video dataset, which can serve as a new
benchmark dataset for video-based cardiac struc-
ture segmentation.

• We propose GraphEcho for cardiac structure seg-
mentation, which incorporates a novel SCGM
module and a novel TCC module that are motivated



by prior knowledge. These modules effectively en-
hance both inter-class differences and intra-class
similarities while preserving temporal cyclical con-
sistency, resulting in superior UDA results.

• GraphEcho achieved superior performance com-
pared to state-of-the-art UDA methods in both the
computer vision and medical image analysis do-
mains.

2. Related Work

2.1. UDA for Segmentation

In this section, we review the existing UDA segmen-
tation methods for natural and medical images sepa-
rately.
Natural image segmentation. For natural image
segmentation, the adversarial-based domain adaptation
methods [14, 29, 34, 36, 46] and multi-stage self-
training methods, including single stage [5, 26, 28, 40,
47] and multi-stage [23, 24] are the most commonly
used training methods. The adversarial method aims
to align the distributions and reduce the discrepancy of
source and target domains through the Generative Ad-
versarial Networks (GAN) [15] framework. At the same
time, the self-training generate and update pseudo label
online during training, such as applying data augmenta-
tion or domain mix-up.
Medical image segmentation. For medical image seg-
mentation, the UDA segmentation methods can be clas-
sified into image-level [1, 39] that use GANs and dif-
ferent types of data augmentation to transfer source do-
main data to the target domain, and feature-level meth-
ods [16, 41], such as feature alignment methods that aim
to learn domain-invariant features across domains.

While existing methods tend to overlook the tempo-
ral consistency characteristics in heartbeat cycles and the
local relationships between different chambers across
domains, our proposed GraphEcho method effectively
learns both inter-class differences and intra-class coher-
ence while preserving temporal consistency. This leads
to superior UDA segmentation results.

2.2. Graph Neural Networks

Graph neural networks (GNNs) have the ability to
construct graphical representations to describe irregu-
lar objects of data [17]. Also, graphs can iteratively
aggregate the knowledge based on the broadcasting of
their neighbouring nodes in the graph, which is more
flexible for constructing the relationship among differ-
ent components [17]. The learned graph representations

can be used in various downstream tasks, such as classi-
fication [17], object detection [25], vision-language [2],
etc. Specifically, ViG [17] models an image as a graph
and uses GNN to extract high-level features for image
classification. Li et al. [25] apply graphical represen-
tation instead of the feature space to explore multiple
long-range contextual patterns from the different scales
for more accurate object detection. GOT [2] leverages
the graphs to conduct the vision and language alignment
for image-text retrieval. There also exist some works
that use the graph to conduct cross-domain alignment for
object detection [25] and classification [10, 27]. How-
ever, these methods only capture the global graph infor-
mation for images, which is insufficient for video seg-
mentation tasks. In this paper, our proposed GraphEcho
learns both local class-wise and temporal-wise graph
representations, which can reduce the domain gap in
a fine-grained approach and enhance temporal consis-
tency, leading to an enhanced result.

3. Method
As shown in Figure 3, our method consists of three

main components. First, a basic segmentation net-
work is used to extract features and obtain predic-
tion masks for both source and target domain data
(See Section 3.1). Then, a Spatial-wise Cross-domain
Graph Matching (SCGM) module and a Temporal-wise
Cycle Consistency (TCC) module are designed to re-
duce the domain gap in both spatial and temporal wise
for echocardiogram videos (See Section 3.2 and (See
Section 3.3)).

3.1. Basic Segmentation Network

In our UDA echocardiogram segmentation, we de-
note the source and target domain data as {X s,Ys} and
X t, respectively, where X s is the video set in the source
domain, and Ys is its corresponding label set. Note that
the videos set in the target domain X t is without the
label. For clarity, we sample a video frame with the la-
bel {xs,ys} from an example {Xs,Ys} of the source
domain data, where Xs ∈ X s is a video from X s and
Ys ∈ Ys is its corresponding label. Similarly, we can
also sample a video frame from the target domain, i.e.,
xt.

The basic segmentation network consists of a feature
extractor and a decoder. We first feed the xs or xt to
the feature extractor to obtain fs or fs, followed by a de-
coder that maps the features fs or f t to the correspond-
ing prediction mask, i.e., ŷs or ŷt. Then, we use the
segmentation loss to supervise the model on the pixel
classification task with the annotated source domain data
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Figure 3. The overview of our GraphEcho framework. The source/target videos are fed into a shared backbone, generate feature
maps, and produce the segmentation result from the decoder. Spatially, we extract feature nodes from each feature map based on
their corresponding ground truth and pseudo label and, subsequently, construct complete semantic graphs suitable for intra-domain
and inter-domain matching of cardiac structures. Temporally, we aggregate temporal messages by means of recurrent graph cells,
thereby clustering heartbeat representations and enforcing temporal cycle consistency. Additionally, our method incorporates the
temporal-spatial node attention module to establish a connection between the spatial and temporal domains. Finally, the trained
feature extractor and decoder are used for inference and generating the final result.

as follows:

Lseg = Lbce(ŷ
s,ys) + Ldice(ŷ

s,ys), (1)

where Lbce and Ldice are the binary cross-entropy loss
and dice loss [30].

3.2. Spatial-wise Cross-domain Graph Matching

In this section, we introduce the spatial-wise cross-
domain graph matching (SCGM), which aligns both
class-wise representations and their relations across the
source and target domains. To this end, we use the graph
to model each echocardiogram frame, where the nodes
represent the different chambers and the edges illustrate
the relations between them. Compared with the convo-
lution neural network, the graph can better construct the
relations among different classes explicitly [17].

In the following, we first illustrate how to convert the
features of source and target domains i.e., fs and fs to
the corresponding graph representation, which is defined
as gs and gt respectively. After that, we introduce the
graph matching method to align the generated graph to
reduce the domain gap.

Graph construction. The graph construction aims to
convert visual features to graphs. Since the construc-
tion process of the source domain and the target do-
main is the same, we take the source domain for illus-
tration. Formally, given the feature fs and its corre-
sponding pseudo labels ŷs for a video frame (see def-
initions in Section 3.1), we conduct graph sampling to
sample the graph nodes from fs based on ŷs, as shown
in Figure 3. Specifically, we first use the pseudo labels
ŷs to segment fs into different chamber regions, i.e.,
{fsi }. Then, in each chamber region, we uniformly sam-



ple m feature vectors fed into a projection layer to ob-
tain the node embedding vs. Based on vs, we define
the edge connections es, which is a learned matrix. Fi-
nally, the constructed semantic graph can be defined as
gs = {vs, es}. In this same way, we can also obtain the
semantic graph for the target domain, i.e., gt = {vt, et}.
Graph matching. We leverage graph matching to per-
form the alignment of the source and target domain
graph gs and gt, thus reducing the domain gap. Since
graph matching is an optimization problem for gs and
gt, the relations between the two graphs are essen-
tial for the optimal solution [2]. Hence, we use the
self-attention [35, 8] to capture the intra- and inter-
domain relations between the source and target graph
nodes, i.e., vs and vt, which can be formulated as
v̄s, v̄t = Attention(concat(vt,vs)), where concat in-
dicates the concatenation. To ensure the generated graph
nodes are classified into the correct classes, we introduce
the classification loss as follows:

Lcls = −αylog(h(v̄s))− βŷlog(h(v̄t)), (2)

where h is the classifier head followed by a softmax, and
α, β are the weights for two domains.

Then, graph matching can be implemented by max-
imising the similarity of graphs (including nodes and
edges) belonging to the same class but from two differ-
ent domains. Specifically, we first obtain the adjacency
matrix A from gs and gt following to represent the rela-
tions of graph nodes. Then, the maximizing process can
be transferred into optimizing the transport distance of
A. To this end, we use the Sinkhorn algorithm [6] to ob-
tain the transport cost matrix of graphs among chambers,
defined as A⃗ = Sinkhorn(A). Then, our optimization
target can be formulated as follows:

Lmat =
∑
p,q

I(ys
p = ŷt

q) ·min(A⃗(p, q))+

I(ys
p ̸= ŷt

q) ·max(A⃗(p, q)),

(3)

where A(p, q) is the p-th row and q-th column element
on A, I(·) is the indicator function. Eq. 3 aims to min-
imize the distance between samples of the same class
across different domains while increasing the distance
between samples of different classes across domains,
thus eliminating the influence of domain shift. Finally,
LSCGM = Lcls + Lmat is the overall loss of module
SCGM.

3.3. Temporal-wise Cycle Consistency

In this section, we propose the Temporal Cycle
Consistency (TCC) module to enhance the tempo-
ral graphic representation learning across frames, by
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leveraging the temporal morphology of echocardio-
grams, i.e., the discriminative heart cycle pattern across
different patients. The proposed TCC consists of three
parts: a temporal graph node construction to generate a
sequence of temporal graph nodes for each video; a re-
cursive graph convolutional cell to learn the global graph
representations for each video; a temporal consistency
loss to enhance the intra-video similarity and reduce the
inter-video similarity. Note that TCC is applied to both
source and target domains; we take the source domain
for clarity.
Temporal graph node construction. Given a video
Xs, we defines its features for frames as {fsi }Ni=1, where
fi is the feature of the i-th frame and N is the num-
ber of frames in Xs. Considering the computation cost,
we use an average pooling layer to compress the size of
{fsi }Ni=1. For each compressed feature fsi , we flatten it
and treat its pixels as graphical nodes, i.e., v̈s

i . Then, the
temporal graph nodes for the video Xs can be defined as
{v̈s

i }Ni=1.
Recursive graph convolutional cell. Inspired by [42],
we propose the recursive graph convolutional cell to
aggregate the semantics of the temporal graph nodes
{v̈s

i }Ni=1 for obtaining the global temporal representa-
tion of each video. For the p-th node v̈s

i (p) at v̈s
i , we find

its K nearest neighbors N (p) on the hidden state ht
1,

where N (p) ∈ ht. Then the edge ësi (q, p) can be added
directed from ht(q) to v̈s

i (p) for all ht(q) ∈ N (p). Af-
ter obtaining the edge ësi for v̈s

i , the message broadcast
from the i-th graph to the i + 1-th graph can be defined
as follows:

ht+1 = σwgcn(v̈
s
i , ë

s
i ) + bgcn, (4)

1ht is the learned parameters and the initial hidden state h0 is all
zero.



where the σ indicates the activation function, wgcn

and bgcn are the graph convolution weight and bias,
respectively. We conduct this message broadcast for
{v̈s

i , ë
s
i}Ni=1, and obtain the final hidden state hN . The

global representation for video Xs is the os, obtained by
os = FFN(hN ), where FFN is a feed forward net-
work. Hence, the whole process of recursive graph con-
volutional cell can be formulated as os = RGCC(Xs).
Similarly, we can obtain the temporal representation for
the target video Xt by ot = RGCC(Xt).
Temporal consistency loss. For better representation
learning, we leverage temporal consistency loss to make
features from the same video similar and features from
different videos dissimilar. In this paper, we use con-
trastive learning [18, 9], a mainstream method to pull
close the positive pairs and push away negative ones,
to achieve this goal. We regard the two consequent
clips Xs

k and Xs
+ that randomly sampled from a video

Xs as positive pairs. Then, we feed the positive clips
to the recursive graph convolutional cell to obtain the
global representations, i.e., os

k = RGCC(Xs
k) and

os
+ = RGCC(Xs

+). For negative pairs, we maintain
a memory bank B consisting of representations of clips
sampled from different videos. Then, the temporal con-
sistency loss for the source domain is defined as follows:

Ls
tc = −

∑
{os

k,o
s
+}∈Ps

log
exp(os

k · os
+)∑

os
−∈B exp(os

k · os
−)

, (5)

where Ps is the set of positive pairs. We here use the dot
product to measure the similarity and use InfoNCE [31]
as the specific contrastive learning objective. Similarly,
we can define the temporal consistency loss for the target
domain as Lt

tc, and the total temporal consistency loss is
Ltc = Ls

tc + Lt
tc.

Since Ltc is applied to two domains independently,
a gap between source and target domains still exists for
the learned global representation, i.e., os or ot. Hence,
we leverage the adversarial methods [13] to eliminate
the gap between os and ot, which can be formulated
as Ladv . The overall loss of temporal consistency is
LTCC = Ltc +Ladv , where Ladv is the global domain-
adversarial loss in our TCC module. To summarize, the
final loss of GraphEcho is LAll = LSCGM + LTCC +
Lseg , and the network is trained in end-to-end.

4. Experiments

4.1. Datasets.

We evaluate our method on three datasets, includ-
ing our collected dataset (CardiacUDA) and two public

datasets (CAMUS [22] and Echonet Dynamic [32]). Ta-
ble 1 shows the dataset details.
CardiacUDA. We collect CardiacUDA from our two
collaborating hospitals: site G and site R. In order
to guarantee all echocardiogram videos are standards-
compliant, all cases of CardiacUDA are collected, anno-
tated and approved by 5-6 experienced physicians. For
ethical issues, we have required approval from medical
institutions.

Each patient underwent four views during scan-
ning, which included parasternal left ventricle long
axis (LVLA), pulmonary artery long axis (PALA),
left ventricular short-axis (LVSA), and apical four-
chamber heart (A4C), resulting in four videos per pa-
tient. The resolution of each video was either 800x600
or 1024x768, depending on the scanner used (Philips
or HITACHI). A total of 516 and 476 videos were col-
lected from Site G and Site R, respectively, from ap-
proximately 100 different patients. Each video consists
of over 100 frames, covering at least one heartbeat cycle.

We have provided pixel-level annotations for each
view, including masks for the left ventricle (LV) and
right ventricle (RV) in the LVLA view, masks for the
pulmonary artery (PA) in the PALA view, masks for the
LV and RV in the LVSA view, and masks for the LV,
RV, left atrium (LA), and right atrium (RA) in the A4C
view. The videos in both Site R and Site G were divided
into a ratio of 8:1:1 for training, validation, and testing,
respectively. To lower annotation costs in the training
set, only five frames per video are provided with pixel-
level annotation masks. To better measure the model
performance, we provide pixel-level annotations for ev-
ery frame in each video in the validation and testing sets.
CAMUS [22] consists of 500 echocardiogram videos
with pixel-level annotations for the left ventricle, my-
ocardium, and left atrium. To save the annotation cost,
only 2 frames (end diastole and end systole) are la-
belled in each video. We randomly split the dataset into
8 : 1 : 1 for training, validation, and testing.
Echonet Dynamic [32] is the largest echocardiogram
video dataset, including 10,030 videos with human ex-
pert annotations. Similarly, we split videos into 8 : 1 : 1
for training, validation, and testing, respectively.

4.2. Implementation Details

Training. All methods are built on the “DeepLabv3” [3]
backbone for fair comparison. We trained the model
using the stochastic gradient descent (SGD) optimizer
with a weight decay of 0.0001 and a momentum of 0.9.
The model was trained for a total of 400 epochs with an
initial learning rate of 0.02, and the learning rate was



decreased by a factor of 0.1 every 100 epochs. The
batch size was set to 4. For spatial data augmentation,
each frame was resized to 384× 384 and then randomly
cropped to 256 × 256. The frames were also randomly
flipped vertically and horizontally. As for temporal data
augmentation, we randomly selected 40 frames from an
echocardiogram video and sampled 10 frames as input
equidistantly. We followed the same training and data
augmentation approach for the CAMUS and Echonet
dynamic datasets as we did for our dataset.
Validation and Testing. We chose the model with the
highest performance on the validation set and reported
its results on the testing set. During the inference stage,
we only used center cropping as the preprocessing.

4.3. Comparison with the State-of-the-Art Meth-
ods

Results on CardiacUDA. We compare our method with
existing state-of-the-art UDA methods [23, 24, 19, 21,
29, 43, 43, 37, 40] in the computer vision domain. Fur-
thermore, considering the similar visual appearances
of different domains, we also compare our method
with several state-of-the-art semi-supervised segmenta-
tion methods [4, 45, 38], where images in the source
domain are considered as labelled images, and images
from target domain are treated as unlabelled images.

The performance is evaluated on two settings, as
shown in Table 2. Our method demonstrated su-
perior performance compared to the best-performing
method [37], achieving a 3.9% and 6.2% improvement
on averaged Dice under two settings, respectively. No-
tably, our method can surpass the best semi-supervised
segmentation methods [38, 45] by 10% and 11.6% on
averaged Dice under two settings, respectively. This
comparison further highlights the significant domain
gaps between site G and site R, demonstrating the effec-
tiveness of our developed UDA method. Figure 5 shows
the visualization of the segmentation results, where our
method outperformed the other methods.
Results on our CardiacUDA, CAMUS, and Echonet.
Table 3 shows the results of our UDA methods under
six settings with three datasets. a → b indicates that
a is the source domain and b is the target domain. We
can see that our method can achieve excellent perfor-
mance under six settings. Notably, as shown in Echo
→ CAMUS, our method can achieve 87.6% and 82.4%
on Dice for EDV and ESV, respectively, which are very
close to the upper bound of this setting. We also com-
pare our method with state-of-the-art methods on differ-
ent settings in Table 3, which shows our method outper-
forms all other methods with significant improvement.

4.4. Ablation Study

Effectiveness of SCGM and TCC. Table 4 shows the
effectiveness of our proposed SCGM and TCC. “Base”
indicates the basic segmentation network. The results
show that adopting SCGM can largely improve the base
model from 48.5% to 74.3% under setting G→ R. How-
ever, only applying TCC shows limited improvements
over the base model. This is mainly because the TCC is
designed to jointly train unlabelled data and construct
better graphical representation in a temporal manner,
which does not include any operation that focuses on
narrowing the domain discrepancy, leading to limited
adaptation results. The combination of SCGM and TCC
can achieve the best performance.

Ablation study of SCGM. Since there are two loss
functions, i.e., Lcls (Eq. 2) and Lmat (Eq. 3) in SCGM,
we ablate their effects in Table 5. The results illustrate
that using Lcls and Lmat alone can only achieve lim-
ited improvements. This is because only using Lcls can
not align the representations from different domains well
while only usingLmat may perform the erroneous align-
ment, e.g., align the features of LV to those of RV. By
combining two losses, we can conduct the correct class-
wise alignment and achieve significant improvement.

Ablation study of TCC. We explore the effects of two
loss functions (Ltc (Eq. 5) and Ladv) in TCC in Table 6.
In this ablation study, we use SCGM as the baseline
model, which has been ablated. We can see that both
Ltc andLadv can benefit the model, and using two losses
can achieve the best performance. For the visualisation
of the effectiveness of the TCC module, figure 5 illus-
trates the segmentation result generated by our frame-
work with the TCC module is able to present more con-
sistent performance (marked by the red line) in a video.
The results without the TCC module or disabling the do-
main adaptation perform worse on segmentation consis-
tency.

Effect of the types of attention. As shown in Table 7,
we compare different node attention methods. The re-
sults show that inter-intra attention achieves the best per-
formance in our datasets, which indicates the relations
between different domains are important to improve the
performance.

TCC can learn temporal information. Figure 5 shows
the Dice score for each frame in a video example. Com-
pared to results without using TCC, our method pro-
duces better results with enhanced temporal consistency,
showing the effectiveness of the TCC module in learning
temporal information.



Table 2. Results on CardiacUDA dataset. “Without DA”: evaluating the model trained on the source domain directly on the target
domain. “Upper Bound”: evaluating the model trained on the target domain with labels directly on the same domain. “Avg.” refers
to the averaged Dice score over four views, including LVLA, PALA, LVSA, and A4C. All results are reported in Dice score (%)

Method site G (source) −→ site R (target) site R (source) −→ site G (target)
LVLA PALA LVSA A4C Avg. LVLA PALA LVSA A4C Avg.

Semi-Supervised Segmentation Methods
CPS [4] 63.2±0.9 60.5±1.1 57.0±0.8 64.2±1.0 61.2±0.7 64.9±1.4 63.3±1.1 59.8±0.6 61.0±1.9 62.2±1.4

PC2Seg [45] 64.1±0.8 58.2±0.6 70.2±0.9 63.9±1.2 64.1±1.1 63.7±1.0 64.4±1.0 65.2±1.3 67.0±0.9 65.1±0.8

U2PL [38] 66.2±1.2 62.9±1.5 69.1±0.9 64.4±1.4 65.6±1.6 62.1±1.2 61.5±1.1 61.9±1.0 65.0±0.5 62.7±0.9

Unsupervised Domain Adaptation Methods
Without DA 53.5±0.4 42.8±0.7 47.6±0.6 50.1±1.0 48.5±0.7 55.2±0.5 47.4±0.6 49.1±0.3 52.8±0.9 51.1±0.5

CCM [23] 13.5±2.6 10.3±3.8 13.0±3.2 20.7±2.9 22.3±3.5 17.8±4.0 14.2±3.1 25.7±2.9 16.6±3.2 18.6±3.0

Caco [19] 40.7±2.4 39.9±2.6 28.4±2.1 34.1±1.9 35.8±2.3 36.2±3.0 35.9±2.6 27.0±1.8 38.3±2.5 32.7±2.8

RIPU [40] 36.0±2.3 34.9±2.8 25.8±3.0 31.1±1.9 31.9±2.2 27.4±2.1 36.2±1.7 32.5±1.9 34.9±2.6 32.8±2.4

CPSL [24] 35.4±1.4 45.1±1.6 39.7±1.5 51.2±1.3 42.6±2.0 44.2±1.6 53.0±2.3 39.5±1.5 42.6±2.0 44.8±1.9

PLCA [21] 58.2±1.7 21.0±4.9 40.2±3.6 60.3±2.3 44.9±3.1 60.1±2.9 38.8±3.0 42.9±2.7 59.4±2.6 50.3±2.9

PixMatch [29] 60.8±1.8 52.7±1.6 56.0±1.8 66.5±1.5 59.0±1.7 62.9±2.0 49.0±3.2 63.2±2.1 69.9±1.8 61.3±1.8

FDA [43] 67.3±2.0 65.5±1.5 54.8±2.3 64.3±1.9 63.0±1.5 65.8±1.7 63.2±1.8 61.9±2.1 64.5±1.5 63.9±1.8

FDA-MBT [43] 64.4±0.9 65.1±0.8 61.7±1.1 70.1±1.3 65.3±1.2 66.3±0.9 64.9±1.4 67.2±0.6 71.3±0.9 67.4±0.8

FADA [37] 70.1±1.2 68.3±1.4 76.1±0.7 72.4±0.6 71.7±0.8 69.9±0.9 67.7±1.0 74.5±1.4 70.0±0.5 70.5±1.1

Ours 73.9±1.2 75.5±1.3 76.8±0.4 76.3±0.7 75.6±0.9 73.3±1.0 74.9±1.2 80.2±0.3 78.2±0.5 76.7±0.5

Upper Bound 79.1±0.4 82.4±0.6 82.1±1.0 81.4±1.2 81.3±0.5 80.5±1.4 79.2±0.8 83.3±1.6 83.9±0.2 81.7±0.8

Table 3. Results on CAMUS, Echonet dynamic and CardiacUDA datasets. As only LV segmentation labels are provided in these
three datasets, we report the results on the dice score of LV segmentation. “EDV” and “ESV” refers to the Dice score of LV
segmentation results at end-systole and end-diastole frames, respectively. All results are reported in Dice score (%)

Method CAMUS→Echo Echo→CAMUS Ours→Echo Ours→CAMUS Echo→Ours CAMUS→Ours
EDV ESV EDV ESV EDV ESV EDV ESV Avg. Avg.

Without DA. 69.2±1.4 66.2±2.2 64.3±0.9 59.6±1.7 34.1±1.4 33.8±2.2 31.0±0.9 32.4±1.7 22.9±1.6 19.2±1.4

U2PL [38] 63.2±0.9 67.8±0.9 57.2±1.1 60.1±1.2 49.5±0.9 51.3±0.7 43.1±0.9 46.7±1.2 36.5±1.0 34.3±0.8

Caco [19] 55.9±1.5 56.0±1.3 47.3±1.3 49.0±1.2 38.6±3.4 40.8±2.6 46.1±1.9 45.5±2.2 29.6±1.8 26.8±2.3

RIPU [40] 64.3±1.2 67.7±1.0 70.2±0.6 68.2±0.9 46.9±0.7 47.4±0.7 56.0±1.2 51.5±1.4 36.2±1.7 31.7±2.0

PLCA [21] 71.1±0.4 69.3±0.5 72.9±0.8 68.3±0.7 51.9±0.9 49.7±0.9 52.4±1.4 52.1±1.2 35.3±1.1 36.1±0.8

FDA [43] 78.8±1.1 75.4±1.0 76.2±0.4 74.1±0.5 55.6±0.4 54.0±0.6 56.8±0.5 56.1±0.3 38.4±1.5 37.9±1.2

FADA [37] 77.5±0.8 76.5±0.5 78.6±0.8 76.6±0.6 54.1±0.6 52.0±1.0 57.4±1.0 55.2±0.8 41.7±1.1 39.0±0.9

Ours 83.4±0.7 81.8±0.9 87.6±0.4 82.4±1.0 61.2±0.5 61.8±0.7 66.3±0.3 64.9±0.4 46.2±1.3 44.0±1.6

Upper Bound 93.4±0.6 90.5±1.3 89.3±1.1 87.9±0.8 93.4±0.6 90.5±1.3 89.3±1.1 87.9±0.8 81.3±0.9 81.3±0.6

Table 4. Effectiveness of SCGM and
TCC.

SCGM TCC Dice Scores (%)
G→R R→G

Base 48.5±0.7 51.1±0.5

Base + SCGM 74.3±1.0 71.3±0.7

Base + TCC 55.3±0.8 53.0±1.2

Ours 75.6±0.9 76.7±0.5

Table 5. Effect of Lcls (Eq. 2) and Lmat

(Eq. 3) in SCGM.

Lcls Lmat
Averaged Dice Score (%)
G→R R→G
48.5±0.7 51.1±0.5

51.9±1.2 53.7±1.3

53.4±1.6 54.0±1.5

74.3±1.0 71.3±0.7

Table 6. Effect of Ltc (Eq. 5) and Ladv in
TCC.

Ltc Ladv
Averaged Dice Score (%)
G→R R→G
74.3±0.7 71.3±0.5

74.4±1.1 75.6±0.9

74.1±0.9 73.5±1.0

75.6±0.9 76.7±0.5

5. Conclusion and Limitation
In this paper, we introduced a newly collected Car-

diacUDA dataset and a novel GraphEcho method for
cardiac structure segmentation from echocardiogram
videos. Our GraphEcho involved two innovative mod-
ules, the Spatial-wise Cross-domain Graph Matching
(SCGM) and the Temporal Cycle Consistency (TCC)
module. These two modules are motivated by the fact

that the structure of different cardiac structures is simi-
lar across different patients and domains and the cycli-
cal consistency property of echocardiogram videos. Our
approach enables improved UDA segmentation results
by effectively aligning global and local features from
both source and target domains, thereby preserving both
inter-class differences and intra-class similarities. Ex-
perimental results showed that our GraphEcho outper-
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Figure 5. We visualize three video frames to show the segmentation results. Red, green, blue, and cyan indicate refer to the
segmentation regions for the right Atrium (RA), left ventricle (LV), right ventricle (RV), and left atrium (LV), respectively.

Table 7. Analysis of different attentions. “None” denotes that
no attention module is applied in our framework, while the “In-
ter”, “Intra”, and “Inter-Intra” refers to cross-domain, internal
domain, and dual (cross+internal) attention, respectively.

Method Site G −→ Site R
LVLA PALA LVSA A4C Avg.

None 68.1±2.2 69.8±0.9 71.4±1.3 73.3±0.4 70.7±1.2

Inter 70.5±1.5 72.6±1.3 72.0±0.8 73.5±0.4 72.2±1.0

Intra 72.1±0.5 71.5±0.8 75.2±1.7 74.6±0.7 73.4±0.9

Inter-Intra 73.9±1.2 75.5±1.3 76.8±0.4 76.3±0.7 75.6±0.9
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Figure 6. Dice score of the segmentation result for each frame
in a video example. The x-axis represents the frame indexes in
the video, and the y-axis is the corresponding Dice score.

forms existing state-of-the-art UDA segmentation meth-
ods. In our future work, we will explore how to repre-
sent objects with complex contours in other medical do-
mains with more efficient representation and conducted
the graph-based method on more complicated scenarios
such as CT and MRI in future work.

Acknowledgement
This work was supported by a research grant from

the Beijing Institute of Collaborative Innovation (BICI)
under collaboration with the Hong Kong University of
Science and Technology under Grant HCIC-004.

References
[1] Cheng Chen, Qi Dou, Hao Chen, Jing Qin, and

Pheng Ann Heng. Unsupervised bidirectional cross-
modality adaptation via deeply synergistic image and
feature alignment for medical image segmentation. IEEE
TMI, 39(7):2494–2505, 2020.

[2] Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence
Carin, and Jingjing Liu. Graph optimal transport for
cross-domain alignment. In International Conference on
Machine Learning, pages 1542–1553. PMLR, 2020.

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff,
and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[4] Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jing-
dong Wang. Semi-supervised semantic segmentation
with cross pseudo supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2613–2622, 2021.

[5] Yining Chen, Colin Wei, Ananya Kumar, and Tengyu
Ma. Self-training avoids using spurious features under
domain shift. Advances in Neural Information Process-
ing Systems, 33:21061–21071, 2020.

[6] Marco Cuturi. Sinkhorn distances: Lightspeed computa-
tion of optimal transport. Advances in neural information
processing systems, 26, 2013.

[7] Weihang Dai, Xiaomeng Li, Xinpeng Ding, and Kwang-
Ting Cheng. Cyclical self-supervision for semi-
supervised ejection fraction prediction from echocardio-
gram videos. arXiv preprint arXiv:2210.11291, 2022.

[8] Xinpeng Ding and Xiaomeng Li. Exploring segment-
level semantics for online phase recognition from sur-
gical videos. IEEE Transactions on Medical Imaging,
41(11):3309–3319, 2022.

[9] Xinpeng Ding, Nannan Wang, Shiwei Zhang, De Cheng,
Xiaomeng Li, Ziyuan Huang, Mingqian Tang, and Xinbo
Gao. Support-set based cross-supervision for video
grounding. In Proceedings of the IEEE/CVF Interna-



tional Conference on Computer Vision, pages 11573–
11582, 2021.

[10] Zhengming Ding, Sheng Li, Ming Shao, and Yun Fu.
Graph adaptive knowledge transfer for unsupervised do-
main adaptation. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 37–52, 2018.

[11] Pamela S Douglas, Mario J Garcia, David E Haines,
Wyman W Lai, Warren J Manning, Ayan R Patel,
Michael H Picard, Donna M Polk, Michael Ragosta,
R Parker Ward, et al. 2011 appropriate use criteria
for echocardiography: a report of the american college
of cardiology foundation appropriate use criteria task
force. Journal of the American College of Cardiology,
57(9):1126–1166, 2011.

[12] Andrew J Fletcher, Winok Lapidaire, and Paul Leeson.
Machine learning augmented echocardiography for dias-
tolic function assessment. Frontiers in Cardiovascular
Medicine, page 879, 2021.

[13] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-
adversarial training of neural networks. The journal of
machine learning research, 17(1):2096–2030, 2016.

[14] Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool.
Dlow: Domain flow for adaptation and generalization.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2477–2486, 2019.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[16] Dayan Guan, Jiaxing Huang, Aoran Xiao, and Shijian
Lu. Domain adaptive video segmentation via tempo-
ral consistency regularization. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 8053–8064, 2021.

[17] Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and
Enhua Wu. Vision gnn: An image is worth graph of
nodes. arXiv preprint arXiv:2206.00272, 2022.

[18] Xiaoting Han, Lei Qi, Qian Yu, Ziqi Zhou, Yefeng
Zheng, Yinghuan Shi, and Yang Gao. Deep symmet-
ric adaptation network for cross-modality medical image
segmentation. IEEE TMI, 41(1):121–132, 2021.

[19] Jiaxing Huang, Dayan Guan, Aoran Xiao, Shijian Lu,
and Ling Shao. Category contrast for unsupervised do-
main adaptation in visual tasks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1203–1214, 2022.

[20] J Weston Hughes, Neal Yuan, Bryan He, Jiahong
Ouyang, Joseph Ebinger, Patrick Botting, Jasper Lee,
John Theurer, James E Tooley, Koen Nieman, et al. Deep
learning evaluation of biomarkers from echocardiogram
videos. EBioMedicine, 73:103613, 2021.

[21] Guoliang Kang, Yunchao Wei, Yi Yang, Yueting Zhuang,
and Alexander Hauptmann. Pixel-level cycle associa-
tion: A new perspective for domain adaptive semantic

segmentation. Advances in Neural Information Process-
ing Systems, 33:3569–3580, 2020.

[22] Sarah Leclerc, Erik Smistad, Joao Pedrosa, Andreas
Østvik, Frederic Cervenansky, Florian Espinosa, Torvald
Espeland, Erik Andreas Rye Berg, Pierre-Marc Jodoin,
Thomas Grenier, et al. Deep learning for segmentation
using an open large-scale dataset in 2d echocardiogra-
phy. IEEE transactions on medical imaging, 38(9):2198–
2210, 2019.

[23] Guangrui Li, Guoliang Kang, Wu Liu, Yunchao Wei, and
Yi Yang. Content-consistent matching for domain adap-
tive semantic segmentation. In European conference on
computer vision, pages 440–456. Springer, 2020.

[24] Ruihuang Li, Shuai Li, Chenhang He, Yabin Zhang,
Xu Jia, and Lei Zhang. Class-balanced pixel-level self-
labeling for domain adaptive semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11593–11603,
2022.

[25] Wuyang Li, Xinyu Liu, and Yixuan Yuan. Sigma:
Semantic-complete graph matching for domain adaptive
object detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 5291–5300, 2022.

[26] Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle
self-training for domain adaptation. Advances in Neu-
ral Information Processing Systems, 34:22968–22981,
2021.

[27] Xinhong Ma, Tianzhu Zhang, and Changsheng Xu.
Gcan: Graph convolutional adversarial network for un-
supervised domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8266–8276, 2019.

[28] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang.
Instance adaptive self-training for unsupervised domain
adaptation. In European conference on computer vision,
pages 415–430. Springer, 2020.

[29] Luke Melas-Kyriazi and Arjun K Manrai. Pixmatch: Un-
supervised domain adaptation via pixelwise consistency
training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12435–
12445, 2021.

[30] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ah-
madi. V-net: Fully convolutional neural networks for
volumetric medical image segmentation. In 2016 fourth
international conference on 3D vision (3DV), pages 565–
571. IEEE, 2016.

[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[32] David Ouyang, Bryan He, Amirata Ghorbani, Neal Yuan,
Joseph Ebinger, Curtis P Langlotz, Paul A Heidenreich,
Robert A Harrington, David H Liang, Euan A Ashley,
et al. Video-based ai for beat-to-beat assessment of car-
diac function. Nature, 580(7802):252–256, 2020.



[33] Alexander Papolos, Jagat Narula, Chirag Bavishi, Fa-
rooq A Chaudhry, and Partho P Sengupta. Us hospital
use of echocardiography: insights from the nationwide
inpatient sample. Journal of the American College of
Cardiology, 67(5):502–511, 2016.

[34] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-
hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chan-
draker. Learning to adapt structured output space for se-
mantic segmentation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
7472–7481, 2018.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[36] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher,
Matthieu Cord, and Patrick Pérez. Advent: Adversarial
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Appendix A: Algorithm Pipeline
Based on the GraphEcho that we have presented in

Section 3, the SGCM and TCC module can be formu-
lated as Algorithm 1 and Algorithm 2. Note that all the
superscript s and t of all variables represent both source
and target domains. For instance, xs,t indicate the input
from both source xs and target xt domains.

Appendix B: Visualization for sequences of
echocardiogram videos

In this supplementary, we provide more visualization
results (see figure 7 and 8) for the sequences of echocar-
diogram videos.



Algorithm 1: Spatial-wise Cross-domain Graph Matching Module (SGCM)
Output:
LSCGM : The overall loss of the SGCM;
Lcls : The classification loss of the SGCM;
Lmat : The graph matching loss of the SGCM;
Lseg : Supervised segmentation loss;
Lbce : Binary cross-entropy loss;
Ldice : Dice loss [30].

Input:
xs,t : Input video frames from source and target domains;
ys : The ground truth annotation of the source domain;
m : The number of the sampling feature;
C : The total classes number of segmentation region;
α, β : The classification loss weight for source and target domains;
Encoder(·) : The Parameter shared feature extractor;
Decoder(·) : The Parameter shared decoder for generating the segmentation result;
I(·) : Indicator function.

1: fs,t← Encoder(xs,t)
2: ŷs,t ← Decoder(fs,t)
3: Lseg ← Lbce(ŷ

s,ys) + Ldice(ŷ
s,ys)

(1).Node Sampling:
4: for i = 1 to in C do
5: {fs,ti } ← Get different chamber region {fs,ti } according to ys and ŷt.
6: vs,t← Uniformly sample m feature vectors from {fs,ti } as the node embedding vs,t.
7: end for

(2).Node Classification:
8: v̄s,t ← Attention(concat(vs,vt))
9: Lcls ← −αylog(h(v̄s))− βŷlog(h(v̄t))

(3).Graph Matching:
10: gs,t← Add the learned matrix as the edge connections es,t to vs,t and constructed semantic graph gs,t.
11: A← Obtain adjacency matrix A from gs and gt.
12: A⃗← Sinkhorn(A): Obtain transport cost matrix of graphs among chambers.
13: Minimize the transport distance of p-th row and q-th column element on A⃗.
Lmat ←

∑
p,q I(ys

p = ŷt
q) ·min(A⃗(p, q)) + I(ys

p ̸= ŷt
q) ·max(A⃗(p, q)).

Overall Loss:
14: LSCGM = Lcls + Lmat.



Algorithm 2: Temporal-wise Cycle Consistency Module (TCC)
Output:
Ls,t
tc : The temporal consistency loss for the source and target domains;
LTCC : The overall loss of temporal consistency.

Input:
Xs,t : Input video from source and target domains.
Ladv : The adversarial methods [13] to eliminate the domain gap with global feature alignment;
N : The number of frames in Xs,t;
ht : The hidden state, and the h0 is learned parameters with all zero in initial state;
wgcn,bgcn : The graph convolution weight and bias;
σ : The activation function;
FFN : Feed forward network;
Encoder(·) : The Parameter shared feature extractor;
RGCC(·) : Recursive graph convolutional cell.

(1).Temporal Graph Node Construction:
1: {fs,ti }Ni=1 ← Encoder(Xs,t), Where fi is the feature of the i-th frame.
2: {v̈s,t

i }Ni=1 ← Apply average pooling and node sampling (see algorithm 1.(1)) to feature map {fs,ti }Ni=1.

(2).Recursive Graph Convolutional Cell (RGCC):
3: for t = 0 to N do
4: {v̈s,t

t , ës,tt } ← Find K nearest neighbors on the hidden state ht for each node at v̈s,t
t .

5: hs,t
t+1 ← σwgcn(v̈

s,t
i , ës,ti ) + bgcn

6: end for
7: os,t ← FFN(hs,t

N )

(3).Temporal consistency loss (source domain as an example):
8: Ls

tc ← −
∑

{os
k,o

s
+}∈Ps log

exp(os
k·o

s
+)∑

os
−∈B exp(os

k·o
s
−)

where Ps is the set of positive pairs, os
k and os

+ are representations that randomly sampled from a video Xs as
positive pairs. For the negative samples, we maintain a memory bank B consisting of representations of clips
sampled from different videos.

Overall Loss:
9: LTCC = Ls,t

tc + Ladv
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Figure 7. We visualize a video sequence of parasternal left ventricle long axis view to show the segmentation results (GT denotes
the ground truth segmentation result). Red and cyan indicate refer to the segmentation regions for the right Atrium (RA) and left
atrium (LV), respectively. The {t1, ..., t6} denotes the frame order of a video sequence.
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Figure 8. We visualize a video sequence of an apical four-chamber heart view to show the segmentation results. Red, green, blue,
and cyan indicate refer to the segmentation regions for the right Atrium (RA), left ventricle (LV), right ventricle (RV), and left
atrium (LV), respectively. The {t1, ..., t6} denotes the frame order of a video sequence.


