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Abstract

Recent research in language-guided visual navigation
has demonstrated a significant demand for the diversity
of traversable environments and the quantity of supervi-
sion for training generalizable agents. To tackle the com-
mon data scarcity issue in existing vision-and-language
navigation datasets, we propose an effective paradigm
for generating large-scale data for learning, which ap-
plies 1200+ photo-realistic environments from HM3D and
Gibson datasets and synthesizes 4.9 million instruction-
trajectory pairs using fully-accessible resources on the web.
Importantly, we investigate the influence of each component
in this paradigm on the agent’s performance and study how
to adequately apply the augmented data to pre-train and
fine-tune an agent. Thanks to our large-scale dataset, the
performance of an existing agent can be pushed up (+11%
absolute with regard to previous SoTA) to a significantly
new best of 80% single-run success rate on the R2R test
split by simple imitation learning. The long-lasting gener-
alization gap between navigating in seen and unseen envi-
ronments is also reduced to less than 1% (versus 8% in the
previous best method). Moreover, our paradigm also facil-
itates different models to achieve new state-of-the-art navi-
gation results on CVDN, REVERIE, and R2R in continuous
environments.

1. Introduction
Vision-and-Language Navigation (VLN) [10] is a chal-

lenging task that requires an agent to navigate in photo-
realistic environments, following human natural language
instructions such as “Walk downstairs, move towards the
dining table, turn left to the kitchen, and stop in front
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Figure 1: Agent success rate with increasing data size
on addressing the R2R navigation task. Our proposed
method creates 4.9M instruction-trajectories pairs for learn-
ing, which greatly boosts the agent’s performance, and for
the first time approaching human results.

of the fridge.” Addressing VLN relies heavily on cor-
rectly interpreting the instructions, perceiving the envi-
ronments, and learning from interaction, which demands
a large amount of diverse visual-language data for learn-
ing. Recent research shows that scaling up the diver-
sity of environments and the quantity of demonstration for
training VLN agents are promising in improving gener-
alization to unseen scenes [17, 37]. Compared to previ-
ous approaches of addressing data scarcity by augmenting
agent’s observations [47, 74] or employing large vision-
linguistic models pre-trained with image-text data from the
web [27, 31, 54, 71, 72], utilizing additional traversable
environments allows the agents to learn from in-domain
visual-language data and physical interaction in the space.

In light of this, recent large datasets which contain hun-
dreds of interactive scenes have been created [20, 66, 84], as
well as a vast amount of human demonstrations have been
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collected [45, 67] for learning visual navigation, leading
to significant improvement in agent’s performance. How-
ever, the process towards such large-scale training involves
solving a series of key sub-problems such as how to build
navigation graphs [10, 30, 37], how to recover corrupted
rendered images [8, 43], and how to generate navigational
instructions [23, 25, 78, 83], which significantly influ-
ence the quality of collected data and should be investi-
gated thoroughly. Meanwhile, an agent capable of under-
standing human natural language and navigating in photo-
realistic environments is a complex and modularized sys-
tem [3, 14, 18, 32, 76, 79, 90, 93], and it is important to
study how to effectively utilize the large-scale data to bene-
fit the training of navigational agents adequately.

In this paper, we propose an effective paradigm for large-
scale vision-and-language navigation (VLN) training and
quantitatively evaluate the influence of each component in
the pipeline. Specifically, we utilize environments in both
the HM3D [66] and the Gibson [84] datasets, build nav-
igation graphs for the environments based on the Habitat
simulator [70], sample new trajectories and generate cor-
responding instructions [74], and train agents [16, 18] for
solving downstream navigation tasks [10, 35, 44, 60, 75].
Different from previous methods such as AutoVLN [17]
and MARVAL [37], we build navigation graphs using an
excessive viewpoint sampling and aggregation algorithm,
following the graph construction heuristic proposed in [30],
which results in fully-connected graphs with high coverage
in open space. Additionally, we address the issue of cor-
rupted rendered images from HM3D and Gibson environ-
ments with the Co-Modulated GAN [87], which we train
to generate photo-realistic images from the faulty rendered
images with broken, distorted, or missing regions, to miti-
gate the noise in visual data. Unlike MARVAL, which uses
a non-public language generation model Marky [78] and
visual encoder MURAL [34], as well as synthesizes ob-
servations from novel viewpoints with an image-to-image
GAN [40], our large-scale training regime is fully repro-
ducible and straightforward to execute, while leading to a
significant improvement on agent’s performance.

Through comprehensive experiments, we find that a
fully traversable navigation graph is crucial to improve the
agent’s performance for downstream tasks with detailed
instructions like R2R. Besides, we show that recovering
photo-realistic images from the rendered images is very
beneficial, especially for the low-quality 3D scans from the
Gibson environments. Results also suggest that an agent
can consistently benefit from having more diverse visual
data, and learning from additional scenes helps agents to
generalize better to unseen environments than simply learn-
ing from more data. Moreover, we validate that an agent
trained with augmented instructions generated by a simple
LSTM-based model [74] can achieve good performance on

multiple navigation tasks [10, 60, 75]. Last but not least, we
find that appropriately combining our augmented data with
the original data in pre-training and fine-tuning can benefit
the agent’s generalization ability.

Remarkably, by following the above analysis as data
augmentation and agent training guidelines, our result-
ing VLN model achieves 80% success rate (SR) on the
R2R test split by simple imitation learning without pre-
exploration [26, 74, 92], beam search [25, 54, 85] or
model ensembling [63], and successfully eliminates the
gap between navigating in seen and unseen environments.
This result significantly outperforms previous best method
(73%) [3], and reduces the difference towards human per-
formance (86% SR3) [10] to 6%. Our method also achieves
new state-of-the-art results on different language-guided
visual navigation problems, including CVDN [75] and
REVERIE [60]. Moreover, although the augmented data is
discrete, it helps boost VLN performance in continuous en-
vironments (R2R-CE) [5, 30, 44], a much more realistic but
difficult scenario, by 5% SR. All the results demonstrate the
great effectiveness and generalization potential of our train-
ing regime. In summary, our main contributions include:

1. A simple, effective, fully automated and reproducible
large-scale training paradigm for vision-and-language
navigation.

2. Comprehensive analysis of the entire data augmenta-
tion pipeline and utilizing the large data for training.

3. New state-of-the-art results on navigation tasks includ-
ing R2R, CVDN, REVERIE, and R2R-CE.

2. Related Works
Vision-and-Language Navigation Learning to navigate
in unvisited environments following natural language in-
structions is an important step toward intelligent robots that
can assist humans with daily activities. In the past years,
a great variety of scenarios have been proposed for VLN
research, such as navigation with comprehensive language
guidance [10, 35, 45], navigation by interpreting dialog his-
tory [19, 56, 75], grounding remote objects with high-level
instructions [60, 91], and navigation in continuous environ-
ments that closely approximate the real world [41, 44]. To
address the problem, early research mainly focuses on de-
veloping task-specific models and training methods to bet-
ter exploit visual-textual correspondence for decision mak-
ing [2, 7, 21, 38, 48, 52, 58, 59, 77].

Large-Scale Visual Navigation Learning Due to the ex-
pensive navigational data collection process, learning to
navigate usually faces a data scarcity issue [1, 10, 11, 12, 24,
45, 60, 75]. Many works have been proposed to scale up the

3Note that human followers only have egocentric views, while our
model follows the common approach of applying panoramic observations.



training data by collecting more human annotations [67] or
creating new environments [20, 66]. Moreover, recent stud-
ies tend to establish a scalable regime, utilizing extensive
automatically-generated data to push the limit of agent per-
formance [17, 37], or introducing large-scale pre-training
approaches to improve the generalizing ability [16, 36, 62].
In this paper, we create a simple paradigm for scaling VLN
training, and through comprehensive analysis, we seek a
valuable guideline for data acquisition and agent training
for future research.

3. Scaling Data for Learning VLN

We outline the necessary resources for learning VLN,
followed by the details of our method for creating the large-
scale augmented dataset from additional environments.
Note that in this section, we only present our method to
generate instruction-path pairs in R2R-style, which will be
shared to address downstream R2R [10], CVDN [75] and
R2R-CE [44] tasks. We refer to the Appendix A for data
collection and model training details for REVERIE, whose
data requires trajectories that lead to a specific object [60].

3.1. Resources for VLN Training

Most existing research on VLN is established over the
discrete Matterport 3D environments (MP3D) [13] where
an agent’s positions and observations are constrained on
viewpoints of predefined navigation graphs. The trajectory-
instruction pairs are sampled and annotated based on these
discrete graphs. Compared to navigation in continuous
environments [44, 70], such simplification enables effi-
cient learning and execution while remaining to be prac-
tical, because, essentially, VLN agents make decisions by
executing a vision-and-language grounding process [10].
There are also some recent works that attempt to transfer
agents designed for discrete scenarios to continuous envi-
ronments [9, 30, 42, 43]. Our data augmentation paradigm
produces discrete supervisions, whereas we show in exper-
iments that it also facilitates VLN learning in continuous
scenes. In summary, scaling VLN data typically requires
collecting new visual environments, discretizing the envi-
ronments by building navigation graphs, sampling trajecto-
ries (sequences of images) on the graphs, and generating
corresponding instructions. Following this procedure, we
specify our data augmentation paradigm below.

3.2. Generating Augmented Data

Collecting Environments We adopt environments from
HM3D [66] and Gibson [84] as the source of our visual
data. Both datasets contain abundant, traversable, and sim-
ulated indoor 3D scans collected from real-world build-
ings, which support the learning of various visual naviga-
tion problems [12, 44, 55, 70]. Specifically, we employ 800

training scenes from HM3D, and 491 training and valida-
tion scenes from Gibson (same as MARVAL [37]), resulting
in more than 150k m2 navigable area, which is around ˆ7.5
times larger than the training scenes of downstream MP3D
environments (20k m2, 61 scans).

Constructing Navigation Graphs We argue that a high-
quality navigation graph needs to satisfy a number of cri-
teria, including high coverage of the space to maximize
visual diversity and fully traversable edges in appropri-
ate lengths with nodes positioned close to the center of
open space for sampling reasonable trajectories. Previous
work AutoVLN [17] builds graphs with very sparse nodes
and with edges that go across obstacles, limiting the quan-
tity of sampled data and leading to impractical trajectories,
while MARVAL [37] trains a model to predict navigable di-
rections, which could make errors and overcomplicate the
problem. In this work, we propose a very simple but accu-
rate heuristic for building the graph: we first apply the ex-
isting navigable position sampling function in Habitat sim-
ulator [70] to sample an excessive amount of viewpoints
which almost covers the entire open space while limiting the
geodesic distance between any two viewpoints to be greater
than 0.4 m. Then, we apply the Agglomerative Clustering
algorithm to group adjacent viewpoints to a single view-
point with a distance threshold of 1.0 m, automatically pro-
ducing positions close to the center of open space. We
create a rough graph by randomly connecting viewpoints
within 5.0 m separation while capping the maximal edges
of a viewpoint to be five, and use the existing graph refine-
ment approach [30] to obtain the final fully-connected and
fully-traversable navigation graphs. We use this method to
construct graphs for the 800+491 environments; the average
edge length in the graphs is 1.41 m, and the average node
degree is 4.55. We visualize the graphs in Appendix C.

Recovering Faulty Rendered Images Although HM3D
and Gibson provide a large amount of diverse indoor envi-
ronments, the quality of the images rendered from their 3D
meshes is often much worse than the camera-captured im-
ages (as shown in Figure 2). Previous work has shown that
navigation agents trained with rendered views will perform
significantly worse than agents trained with high-quality
images [43]. As a result, we consider recovery of faulty
rendered images as a process in our ScaleVLN paradigm.

We formulate this task as an image-to-image translation
problem, where the model takes a rendered image as input
and learns to recover the broken, distorted, or missing re-
gions. Specifically, we adopt the Co-Modulated GAN (Co-
Mod GAN) [88], a generative model that can leverage con-
ditional information and retain the stochastic in uncondi-
tional generation. We train Co-Mod GAN on the rendered-
and-camera-image pairs in Matterport3D datasets and use
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Figure 2: Our proposed paradigm (ScaleVLN) for generating large-scale augmented VLN data. ScaleVLN applies 1200+
unannotated 3D scans from the HM3D [66] and Gibson [84] environments, builds navigation graphs for each scene, recovers
faulty rendered images with a Co-Mod GAN [87], samples trajectories and generates corresponding instructions, resulting in
4.9M augmented data to facilitate learning various downstream language-guided navigation tasks [10, 44, 60, 75].

the trained model to recover the rendered images in HM3D
and Gibson environments.

Sample Trajectories We sample trajectories on the navi-
gation graphs of HM3D and Gibson environments. For nav-
igation tasks with detailed instructions, we follow PREVA-
LENT [28] and collect all possible shortest routes between
any two viewpoints connected by three to five intermediate
nodes. This sampling strategy yields a total of 2,890,267
paths and 2,051,443 paths for the HM3D and Gibson envi-
ronments, respectively.

Generate Navigational Instructions Finally, we apply
the off-the-shelf EnvDrop Speaker [74], a simple LSTM-
based language generation model trained on instruction-
path pairs in R2R [10], to produce a navigational instruc-
tion for each sampled trajectory for navigation tasks with
detailed instructions. Compared to the more powerful lan-
guage model GPT-2 [65], EnvDrop Speaker generates less
diverse descriptions, but the resulting data can lead to simi-
lar improvement on agents addressing R2R task (see §4.2).

Following the procedure above, our large-scale data
augmentation paradigm creates 4,941,710 instruction-
trajectory pairs for learning VLN. This size is ˆ352 larger
than the R2R dataset and ˆ4.62 larger than the commonly
applied augmented PREVALENT dataset [28].

4. Experiments
In this section, we present a comprehensive evaluation

of the effect of each component in our data augmentation
paradigm, investigate how to appropriately use the data for
learning, and test agents [18, 16] pre-trained with our data
on multiple VLN downstream tasks [10, 44, 60, 75].

4.1. Experimental Setup

Datasets We perform analysis mainly on the R2R
dataset [10], while evaluating the generalization potential
of our augmented data on REVERIE [60], CVDN [75] and
R2R-CE [44]. The datasets are outlined as follows:

• R2R consists of 22k human-annotated navigational in-
structions, each describing a trajectory that traverses
multiple rooms in MP3D [13]. On average, an instruc-
tion contains 32 words, and each ground-truth path is
formed by seven nodes with a total length of 10 m.

• REVERIE inherits the trajectories in R2R but pro-
vides high-level instructions which describe a target
object. The task for an agent is first to find the object,
and localize it in observation.

• CVDN provides dialogues between a navigator who
tries to find a target by asking for guidance and an or-
acle with a privileged view of the best next step. An
agent who addresses the task needs to find the way by
interpreting the dialogue history.

• R2R-CE transfers the discrete trajectories in R2R
to continuous 3D scans rendered by Habitat simula-
tor [70], where an agent can freely travel in the open
space and need to interact with obstacles. The dataset
contains 16k instruction-trajectory pairs after remov-
ing non-transferable paths.

Besides, we also adopt the widely applied augmented
R2R dataset PREVALENT [28] in our experiments, which
only has 178,270 samples created from MP3D scenes.
For simplicity, we use PREV, HM-E, and Gib-E to de-
note PREVALENT data, our augmented data from HM3D
and Gibson scenes with instructions generated by EnvDrop
Speaker [74], respectively, and use the term ScaleVLN data
for all our HM-E and Gib-E data in the following sections.



Baseline VLN Models We employ the recently proposed
VLN agents, Dual-Scale Graph Transformer (DUET) [18]
and History Aware Multimodal Transformer (HAMT) [16]
as the baseline models in our experiments. The primary
idea of DUET is to build a topological map on the fly,
which extends the agent’s action space from its current
viewpoint to all navigable directions encountered during
navigation, therefore, greatly facilitating planning and error
correction. HAMT explicitly stores the observations at each
navigational step, which benefits the learning of sequence-
to-sequence alignment between vision and instruction. We
refer readers to their original papers for more technical de-
tails. In our experiments, we apply the DUET agent in R2R,
CVDN and REVERIE, whereas using the HAMT agent in
R2R-CE, since the two models report the best results on
these datasets, respectively.

Training We use the augmented data for a two-stage VLN
agent training, i.e., pre-training and fine-tuning. In pre-
training, we consider the most widely applied proxy tasks
in previous work, Masked Language Modeling (MLM),
Masked Region Modeling (MRM), and Single-Action Pre-
diction (SAP) [16, 18, 28, 61, 62], to enhance agent’s
language understanding, visual perception, and to benefit
cross-modal grounding between instruction and observation
(whose effect will be studied in §4.3). We refer to Ap-
pendix A for their implementation details.

After pre-training, similar to AutoVLN [18] and MAR-
VAL [37], we fine-tune the model simply with imitation
learning (IL) method DAGGER [69]. Specifically, at each
time step, an agent performs an action sampled from the
predicted probability of its action space, and minimizes the
loss between the sampled action and the ground truth. This
method allows an agent to learn from paths that cover wide
space and reduces the exposure bias caused by teacher forc-
ing [46].

Implementation Details We apply CLIP ViT-B/16 [64],
a visual transformer [22] pre-trained to align millions of
image-text pairs from the web, as the visual encoder in all
our experiments if not specified otherwise. We refer to Ap-
pendix A for more details.

To address R2R and CVDN, we pre-train DUET for
20k iterations with a batch size of 256 and learning rate
of 5 ˆ 10´5 on two NVIDIA Tesla A100 GPUs for about
72 GPU hours. We select one of the models logged in pre-
training for fine-tuning according to the accuracy in solving
proxy tasks and the performance in following R2R instruc-
tions. The selected model is then fine-tuned for 200k it-
erations with batch size 16 on a single GPU on both R2R
and ScaleVLN datasets, which takes about 48 GPU hours
to reach the peak performance. For CVDN, we directly
fine-tune the pre-trained DUET model on the dataset with

Methods HM3D Nav Graphs R2R Val-Seen R2R Val-Unseen
Density Collision NEÓ SRÒ SPLÒ NEÓ SRÒ SPLÒ

None – – 2.51 76.89 69.71 3.06 72.92 62.82
AutoVLN 0.36 29.35% 1.90 84.43 79.10 3.08 72.75 62.56
Ours 1.16 0.00% 2.25 79.82 75.06 2.75 76.01 66.94

Table 1: Comparison on navigation graphs. Density is com-
puted as the number of nodes per navigable area (node/m2),
and Collision is the ratio of edges that go through obsta-
cles. None means the agent only learn from R2R and PREV
data).

the same configurations as fine-tuning on R2R. For R2R-
CE, we pre-train a single HAMT model with the same data
and configurations, then fine-tune the model on the dataset.
Similar to prior work [4, 5, 81], our HAMT agent in R2R-
CE leverages a candidate waypoint predictor [30] which
predicts navigable locations to support agent’s high-level
decision-making process.

Evaluation Metrics Standard metrics [10] are applied to
assess the agent’s performance, including Trajectory Length
(TL) which is the average length of the agent’s predicted
path in meters, Navigation Error (NE) which is the average
distance between the agent’s final position and the target in
meters, Success Rate (SR) which is the ratio of agents that
stop within 3 meters to the target viewpoint, and Success pe-
nalized by Path Length (SPL) [6]. For R2R-CE, normalized
Dynamic Time Warping (nDTW) is an additional metric
that measures the step-wise alignment between the ground
truths and the agent-predicted paths [33]. For CVDN, Goal
Progress (GP) is the only metric; it measures the average
difference between the length of the completed trajectory
and the remaining distance to goal [75].

4.2. Scale VLN Data, What Really Matters?

Effect of Navigation Graphs We first study the effect of
different navigation graphs in Table 1, where we compare
the graphs from our method to AutoVLN [17]. For fairness,
both methods only use 800 HM3D scenes without recov-
ering faulty rendered images. We can see that generating
augmented data from AutoVLN’s graph cannot benefit the
agent’s performance in unseen environments. We suspect
this is mainly due to a high ratio of edges that go through
obstacles, resulting in noisy and misleading trajectories that
do not exist in the downstream navigation graph. On the
contrary, our fully traversable graphs with a high density of
viewpoints produce effective data, which greatly improves
the results, suggesting the importance of graph quality in
sampling discrete augmented data.

Effect of More Data Table 2 shows the influence of the
quantity of additional environments and training data. We
can see that with the same amount of augmented scenes



HM-E Aug R2R Val-Seen R2R Val-Unseen
#Scenes #Samples TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

800 2890k 12.63 2.27 79.24 73.34 12.83 2.62 76.59 67.74
800 1400k 12.21 2.18 80.71 75.92 12.97 2.71 76.01 66.56
800 700k 12.63 1.86 83.35 77.97 13.83 2.69 76.25 66.00
400 700k 12.76 1.87 82.96 77.05 13.80 2.78 75.22 65.32
200 700k 11.95 1.95 82.66 77.97 13.29 2.73 74.84 64.59

0 0 13.28 2.51 76.89 69.71 13.53 3.06 72.92 62.82

Table 2: Comparison of the quantity of augmented scene
and samples. Here each experiment is pre-trained on data
from R2R, PREV, and HM-E, and fine-tuned on R2R.

Pre-Train Fine-Tune R2R Val-Seen R2R Val-Unseen
NEÓ SRÒ SPLÒ NEÓ SRÒ SPLÒ

R2R, PREV R2R 2.51 76.89 69.71 3.06 72.92 62.82
R2R, PREV + HM-E R2R 2.27 79.24 73.34 2.62 76.59 67.74
R2R, PREV + ScaleVLN R2R 2.02 80.51 74.88 2.53 78.08 68.31
R2R, PREV – 3.77 67.19 64.49 5.80 47.42 45.30
R2R, PREV + HM-E – 4.04 64.64 62.00 5.03 55.09 52.23
R2R, PREV + ScaleVLN – 3.64 71.11 68.53 4.90 57.00 54.03

Table 3: Results of adding more augmented data and the
pre-trained model performance without fine-tuning.

(800), agent performance in val-unseen gradually increases
with higher sampling density. On the other hand, generat-
ing the same amount of samples (700k) from more environ-
ments leads to better results. And it is clear that #Scenes
has a stronger impact than #Samples, which suggests the
importance of having more diverse environments for learn-
ing VLN. Then, in Table 3, we further increase the quantity
of training samples from Gibson environments for compar-
ison and evaluate the pre-trained model’s performance on
R2R without fine-tuning. Conclusions from the previous
table still hold: adding more scenes and data can bring a
steady performance gain to the agent.

Effect of Image Quality We evaluate the influence of
image quality in augmented data on agent performance in
Table 4. We can see that for data from both HM3D and
Gibson, recovering the rendered raw images can provide
a noticeable benefit to the agent’s results. Such improve-
ment is more apparent for Gib-E because a large portion
of 3D meshes for reconstructing Gibson scenes is in low-
quality [84], which leads to largely broken or distorted ren-
dered views. In fact, HM-E (R) + Gib-E (F) leads to worse
results than HM-E (R) alone even with 61% more differ-
ent environments, suggesting the great importance of hav-
ing data with high visual quality.

Effect of Augmented Instruction By comparing differ-
ent speakers in Table 5, we found that a simple LSTM-
based model (EnvDrop [74]) trained from-scratch results in
a higher Bleu-4 score [57] than a fine-tuned GPT-2 [65].
However, we are aware that producing high-fidelity and de-
tailed navigational instructions is a long-lasting and chal-
lenging problem [23, 25, 53, 74, 78, 90], but we only exper-

Scenes R2R Val-Seen R2R Val-Unseen
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

HM-E (F) 12.17 2.25 79.82 75.06 12.64 2.75 76.01 66.94
HM-E (R) 12.63 2.27 79.24 73.34 12.83 2.62 76.59 67.74
HM-E (R) + Gib-E (F) 12.74 2.17 81.00 75.44 13.57 2.65 76.33 66.97
HM-E (R) + Gib-E (R) 12.41 2.02 80.51 74.88 13.16 2.53 78.08 68.31

Table 4: Effect of augmented image quality. (F) denotes
faulty rendered images and (R) denotes recovered images.

Speaker Instruction Quality R2R Val-Unseen
Bleu-4Ò TL NEÓ SRÒ SPLÒ

GPT-2 24.36 13.98 2.74 75.82 66.08
EnvDrop 27.66 12.83 2.62 76.59 67.74

Table 5: Quality of generated instructions and their influ-
ence on agent’s performance on the R2R dataset.

imented with two simple models. Numbers in Table 5 indi-
cate that the generated instructions are of low quality while
showing a large influence on learning to navigate, implying
that pairing the augmented trajectories with better instruc-
tions could be promising future work.

4.3. How to Utilize Large-Scale Data?

Data for Pre-Training and Fine-Tuning Pre-training
and fine-tuning are two essential stages where augmented
data can directly impact. In Table 6, we investigate how
to effectively apply the original R2R dataset, PREV [28],
and our HM-E data in the two processes. First, compar-
ing applying PREV and HM-E (Method#2 and #3) in pre-
training, it is unsurprisingly that an agent benefits more
from learning in environments different from downstream
scenes. A better result of Method#4 shows that PREV and
our HM-E complement each other in the pre-training phase.
Then, we investigate the effect of applying augmented data
in fine-tuning, in which the motivation is to avoid over-
fitting the small downstream dataset. Compare Method#4
to Method#5, #6, and #7; it is clear that it is very benefi-
cial to keep the data augmented from the addition environ-
ments (HM-E) in fine-tuning (+2.51% SR in Val-Unseen).
Moreover, by doing so, the generalization gap between nav-
igating in seen and unseen environments has been reduced
to less than 1% SR (80.02% vs. 79.10%), reflecting the
importance of maintaining high visual diversity in train-
ing. Compare Method#6 and Method#7, including PREV
in fine-tuning harms the performance likely because it will
cause the learning to overfit the 61 MP3D scenes. In addi-
tion to Table 6, our experiment shows that adding Gib-E to
the pre-training phrase can improve the result, while apply-
ing it in fine-tuning does not show a noticeable difference.
This is likely because the generated instruction-trajectory
pairs from Gibson environments have a larger gap to the
Matterport scenes, which will introduce noise and is unsuit-
able for fine-tuning.



Method # Pre-training Data Fine-tuning Data R2R Val-Seen R2R Val-Unseen
R2R PREV HM-E (ours) R2R PREV HM-E (ours) TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

1 ✓ ✓ 12.02 3.39 69.83 64.30 12.45 4.04 65.26 56.91
2 ✓ ✓ ✓ 13.28 2.51 76.89 69.71 13.53 3.06 72.92 62.82
3 ✓ ✓ ✓ 12.80 2.69 75.02 68.71 12.66 2.79 74.96 65.90
4 ✓ ✓ ✓ ✓ 12.63 2.27 79.24 73.34 12.83 2.62 76.59 67.74
5 ✓ ✓ ✓ ✓ ✓ 12.31 2.20 80.51 75.75 12.86 2.65 75.78 66.36
6 ✓ ✓ ✓ ✓ ✓ 13.38 2.12 80.02 73.52 13.32 2.46 79.10 68.66
7 ✓ ✓ ✓ ✓ ✓ ✓ 12.62 2.18 80.71 75.29 13.22 2.58 77.10 67.23

Table 6: Influence of applying augmented data in pre-training and fine-tuning on agent’s performance.

Pre-training Tasks R2R Val-Seen R2R Val-Unseen
MLM SAP MRM TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

11.96 3.61 66.01 60.66 14.47 4.26 62.62 51.25
✓ 14.13 2.91 74.93 65.95 15.75 3.62 69.14 57.47

✓ 12.20 1.99 80.61 75.07 12.89 2.89 74.20 65.40
✓ ✓ 12.63 2.27 79.24 73.34 12.83 2.62 76.59 67.74
✓ ✓ ✓ 12.37 1.97 81.88 75.72 13.69 2.73 75.82 66.62

Table 7: Influence of pre-training tasks. MLM, SAP,
and MRM denote masked language modeling, single-action
prediction, and masked region modeling.

Methods Val-Unseen Test-Unseen
OSRÒ SRÒ SPLÒ OSRÒ SRÒ SPLÒ

RecBERT [31] 27.66 25.53 21.06 26.67 24.62 19.48
SIA [49] 44.67 31.53 16.28 44.56 30.80 14.85
HAMT [16] 36.84 32.95 30.20 33.41 30.40 26.67
DUET [18] 51.07 46.98 33.73 56.91 52.51 36.06
AutoVLN [17] 62.14 55.89 40.85 62.30 55.17 38.88
DUET+ScaleVLN (ours) 63.85 56.97 41.84 62.65 56.13 39.52

Table 8: Navigation performance on REVERIE dataset.

Effect of Pre-training Tasks In Table 7, we further in-
vestigate the effect of three proxy tasks, MLM, SAP, and
MRM, on pre-training the best performing model in Table 6
(Method#6). Results show that both MLM and SAP are
very effective pre-training tasks that can greatly enhance
the agent’s performance when applied alone, and they are
complementary since combining the two tasks can lead to
a larger improvement (+16.49% SPL higher than without
pre-training). However, learning MRM with the other two
proxy tasks slightly degenerates the results. We suspect this
is because an agent can already learn very rich and general-
izable semantic representations from large and diverse aug-
mented data, whereas predicting the probability distribution
of object categories for masked images introduces too much
noise to the learning process.

Based on the findings from our experiments, we pre-train
our agent with MLM and SAP on R2R, PREV, and our
ScaleVLN datasets to get the best pre-trained model, and
fine-tune on R2R and HM-E for best performance.

4.4. Evaluate on Various VLN Tasks

R2R Table 9 compares agents’ single-run performance on
the R2R dataset. We can see that training DUET model with
our ScaleVLN data results in 8% SR and 8% SPL absolute
improvement on the test split4, which also greatly outper-
forms the previous best method BEVbert [3]. As suggested
in MARVAL [37], we also experiment with applying a more
powerful visual encoder, CLIP ViT-H/14 [64], and the im-
age augmentation method EnvEdit [47] to our approach,
leading to a remarkable 80% SR, and reducing the long-
lasting generalization gap between seen and unseen envi-
ronments [86] to less than 1%. It is interesting to notice that
the remaining gap towards human performance (6% SR) is
similar to the difference between the agent’s OSR and SR
(6~7%), which suggests that it might be important for future
work to improve the policy network to tackle the stopping
problem given large-scale data.

REVERIE We show in Table 8 that our method achieves
the new state-of-the-art results in all metrics on the
REVERIE task. Our method surpasses AutoVLN, which
uses all the 1000 HM3D environments for pre-training, by
0.94% in success rate and 0.64% in SPL on the test leader-
board with only 800 HM3D scenes and 491 Gibson low-
quality environments. This again validates the effectiveness
of our high-quality connectivity graphs and image recovery
in our large-scale training paradigm.

CVDN As shown in Table 10, our method achieves the
new state-of-the-art performance on the CVDN test-unseen
split, which largely improves the goal progress (GP) of the
previous SoTA by 1.41 meters (a relative gain of 25.26%).
This result shows that our R2R-style augmented data can
generalize to a different VLN task with a distinct type of
instructions, likely because visual scarcity is the major bot-
tleneck in learning VLN, as suggested in Table 2.

4On the R2R test-unseen leaderboard: https://eval.ai/web/
challenges/challenge-page/97/leaderboard/270, our
method surpasses all single-run results and outperforms all previous
models applying beam-search or pre-exploration (see Appendix B).

https://eval.ai/web/challenges/challenge-page/97/leaderboard/270
https://eval.ai/web/challenges/challenge-page/97/leaderboard/270


Methods R2R Val-Seen R2R Val-Unseen R2R Test-Unseen
TL NEÓ OSRÒ SRÒ SPLÒ TL NEÓ OSRÒ SRÒ SPLÒ TL NEÓ OSRÒ SRÒ SPLÒ

Human – – – – – – – – – – 11.85 1.61 90 86 76
Seq2Seq [10] 11.33 6.01 53 39 – 8.39 7.81 28 21 – 8.13 7.85 27 20 –
Speaker Follower [25] – 3.36 74 66 – – 6.62 45 36 – 14.82 6.62 - 35 28
RCM [79] 10.65 3.53 75 67 – 11.46 6.09 50 43 – 11.97 6.12 50 43 38
SSM [76] 14.70 3.10 80 71 62 20.70 4.32 73 62 45 20.40 4.57 70 61 46
EnvDrop [74] 11.00 3.99 – 62 59 10.70 5.22 – 52 48 11.66 5.23 59 51 47
PREVALENT [28] : 10.32 3.67 – 69 65 10.19 4.71 – 58 53 10.51 5.30 61 54 51
EntityGraph [29] 10.13 3.47 – 67 65 9.99 4.73 – 57 53 10.29 4.75 61 55 52
NvEM [2] 11.09 3.44 – 69 65 11.83 4.27 – 60 55 12.98 4.37 66 58 54
AirBert [27] :; 11.09 2.68 – 75 70 11.78 4.10 – 62 56 12.41 4.13 – 62 57
VLNœ BERT [31] : 11.13 2.90 – 72 68 12.01 3.93 – 63 57 12.35 4.09 70 63 57
MARVAL [37] :; 10.60 2.99 – 73 69 10.15 4.06 – 65 61 10.22 4.18 67 62 58
EnvMix [51] : 10.88 2.48 – 75 72 12.44 3.89 – 64 58 13.11 3.87 72 65 59
HAMT [16] : 11.15 2.51 – 76 72 11.46 2.29 – 66 61 12.27 3.93 72 65 60
SnapEnsemble [63] :˝ – – – – – 12.05 3.63 – 67 60 12.71 3.82 – 65 60
HOP+ [62] : 11.31 2.33 – 78 73 11.76 3.49 – 67 61 12.67 3.71 – 66 60
TD-STP [89] : – 2.34 83 77 73 – 3.22 76 70 63 – 3.73 72 67 61
DUET [18] : 12.32 2.28 86 79 73 13.94 3.31 81 72 60 14.73 3.65 76 69 59
BEVBert [3] : 13.56 2.17 88 81 74 14.55 2.81 84 75 64 15.87 3.13 81 73 62
DUET+ScaleVLN (ours) :; 11.90 2.16 87 80 75 12.40 2.34 87 79 70 14.27 2.73 83 77 68
DUET*+ScaleVLN (ours) :; 13.24 2.12 87 81 75 14.09 2.09 88 81 70 13.93 2.27 86 80 70

Table 9: Comparison of single-run performance on R2R dataset. :: Methods that apply vision-language-action pre-training.
;: Methods that use additional visual data than MP3D. ˝: Model ensemble. *: Applying EnvEdit as image augmentation and
CLIP ViT-H14 as image features.

Methods Val-Seen Val-Unseen Test-Unseen
GPÒ GPÒ GPÒ

PREVALENT [28] – 3.15 2.44
MT-RCM+EnvAg [80] 5.07 4.65 3.91
NDH-Full [39] - 5.51 5.27
HAMT [16] 6.91 5.13 5.58
MTVM [48] – 5.15 4.82
DUET+ScaleVLN (Ours) 8.13 6.12 6.97

Table 10: Navigation performance on CVDN dataset.

Methods R2R-CE Val-Unseen R2R-CE Test-Unseen
NEÓ nDTWÒ SRÒ SPLÒ NEÓ SRÒ SPLÒ

CMA [44] 7.37 40 32 30 7.91 28 25
LAW [68] – – 35 31 – – –
Waypoint Models [42] 6.31 – 36 34 6.65 32 30
WS-MGMap [15] 6.28 - 39 34 7.11 35 28
VLNœ BERT: [30] 5.74 53 44 39 5.89 42 36
Sim2Sim [43] 6.07 - 43 36 6.17 44 37
VLNœ BERT+Ego2-Map: [32] 4.94 60 52 46 5.54 47 41
HAMT+InternVideo: [81] 4.95 62 53 48 – – –
HAMT+ScaleVLN: (ours) 4.80 64 55 51 5.11 55 50

Table 11: Navigation performance on the R2R-CE datasets.
:: Methods that applies candidate waypoint predictor [30]
to support high-level action space.

R2R-CE Although our augmented ScaleVLN data only
contains discrete instruction-trajectory pairs, it can benefit
the agent’s performance in continuous environments with
the support of the candidate waypoint predictor [30] (Ta-
ble 11). Compared to the previous method, which applies
very strong pre-trained visual representations [32, 81], our
method still demonstrates obvious improvement, which re-
flects the effectiveness of generating in-domain data for
learning VLN.

5. Conclusion
In this paper, we introduce a simple but effective large-

scale data generation paradigm for learning vision-and-
language navigation (ScaleVLN). The method applies thou-
sands of photo-realistic environments from HM3D and Gib-
son datasets, and creates millions of instruction-trajectory
pairs for training. Apart from the unsurprising improvement
of learning from abundant visual data in agent performance,
we demonstrate the effectiveness of building high-quality
navigation graphs and using camera-quality images through
comprehensive experiments. Moreover, we investigate how
to properly utilize the augmented data in pre-training and
fine-tuning an agent, as well as the influence of different
pre-training tasks on the downstream navigation results.
By following our findings as data augmentation and agent
training guidelines, we achieve new state-of-the-art results
on several VLN benchmarking datasets that cover distinct
styles of instructions (R2R, REVERIE, CVDN) and action
spaces (R2R-CE). We believe our ScaleVLN paradigm can
be easily applied as a tool to facilitate data augmentation for
VLN and other visual navigation problems, and the experi-
ments presented in the paper can provide useful insights for
future research in creating and utilizing large-scale data.
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Appendices
We first describe the implementation details of our ex-

periments in Sec. A, including pre-training objectives and
details of REVERIE experiments. In Sec. B, we pro-
vide additional experiments about the effects of visual en-
coders, model initialization, and adding depth features. We
then discuss the impact of ScaleVLN on different VLN
agents and on learning the long-horizon VLN task (R4R).
Leaderboard results of R2R and object grounding results
for REVERIE are also included. Sec. C and Sec. D visual-
ize our navigability graphs and the recovered images from
Co-Modulated GAN [87].

A. Implementation Details (§45)
A.1. Pre-Training Objectives (§4.1)

We mainly employ three proxy tasks, MLM, MRM, and
SAP, for pre-training the agent. Here we describe these
proxy tasks in detail. The inputs for these tasks are in-
struction W and demonstration path P . During training,
we randomly sample one task for each iteration with equal
probability.

Masked Language Modeling (MLM) involves predict-
ing masked words based on textual context and the full tra-
jectory. A special [mask] token is used to randomly mask
out 15% of the tokens in W . We predict the masked word
distribution ppwi|Wzi,Pq “ fMLMpx1

iq through a two-layer
fully-connected network, where Wzi is the masked instruc-
tion and x1

i is the output embedding of the masked word wi.
The objective is to minimize the negative log-likelihood of
predicting the original words: LMLM “ ´log ppwi|Wzi,Pq.

Masked Region Modeling (MRM) is to predict labels
for masked regions in history observations based on instruc-
tions and neighboring regions. To achieve this, we ran-
domly remove view images in P with a 15% probability.
For view images, the target labels are determined by an im-
age classification model [22] pre-trained on ImageNet. To
predict semantic labels for each masked visual token, we
use a two-layer fully-connected network. The objective is
to minimize the KL-divergence between the predicted and
target probability distribution.

Single Action Prediction (SAP) aims to predict the next
action based on the instruction and the given path. Fol-
lowing [18], we predict the probability for each candi-
date action in the action space via a two-layer fully-
connected network. The objective is to minimize the neg-
ative log probability of the target view action LSAP “

´log ptpa
˚
t |W,Pătq.

5Link to Section 4 in Main Paper.

A.2. Implementation Details of REVERIE (§4.1)

REVERIE data contains trajectories that lead to target
objects specified by high-level instructions. Following Au-
toVLN [17], for every visible object at a viewpoint, we sam-
ple paths with an edge length between 4 and 9 that end at the
viewpoint. We filter out objects that are more than 3 meters
away from the central of the viewpoint, resulting in 518,233
paths from HM3D, and 311,976 paths from the Gibson en-
vironments. To generate instructions in REVERIE-style,
we modify the GPT-2 architecture used in AutoVLN [17]
by only encoding the target object in the final viewpoint
as the prompt to generate the instructions. Our large-scale
data augmentation paradigm creates 830,209 instruction-
trajectory pairs for training. This size is ˆ38 larger than
the original REVERIE dataset, and ˆ3.81 larger than the
augmented dataset in AutoVLN [17].

We follow DUET and SIA [50] to pre-train the model
with an additional Object Grounding (OG) task, which re-
quires selecting a target from object candidates based on
high-level instruction and observations along the path. We
use CLIP ViT-H/14 [64] to extract the image features, and
ViT-B/16 [22] pre-trained on ImageNet to extract the ob-
ject features. We pre-train DUET for 100k iterations with a
batch size of 128 and a learning rate of 5 ˆ 10´5 on both
HM3D and Gibson environments. We compare three model
checkpoints at 30k, 40k, and 50k and pick the one with the
highest fine-tuning performance. Then we fine-tune DUET
for 150k iterations, with batch size 32 and learning rate
2 ˆ 10´5 on a single NVIDIA A100 GPU.

B. Additional Experiments (§4)
Here we provide additional experiments to investigate

the effect of visual encoder, model initialization, and depth
features. We also experiment with different model architec-
tures (i.e., HAMT [16]) on R2R dataset, and show object
grounding results for the REVERIE task.

B.1. Effect of Visual Encoders (§4.2)

We study the effect of visual encoders in Table 12. Here
we adopt CLIP’s ViT backbone with different model sizes
and input patches (i.e., Base/16, Large/14, and Huge/14).
We can see that the vision encoder has a major influence on
SPL, suggesting the agent can make fewer wrong steps and
is capable of efficient navigation.

Visual Encoders R2R Val-Seen R2R Val-Unseen
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

CLIP-ViT-B/16 12.41 2.02 80.51 74.88 13.16 2.53 78.08 68.31
CLIP-ViT-L/14 12.62 2.16 80.04 74.06 13.13 2.50 78.08 68.97
CLIP-ViT-H/14 12.53 2.15 81.19 76.83 12.61 2.49 78.20 69.71

Table 12: Effect of visual encoders.



B.2. Effect of Initialization (§4.2)

Table 13 presents the performance of initializing the
navigation agent with different pre-trained models in pre-
training. We discovered that utilizing BERT to initialize
the language encoder does not enhance downstream perfor-
mance, and even harms the performance on the validation
unseen set. We attribute this to the vast domain gap between
uni-modal BERT’s language representations and CLIP’s vi-
sual representation. Results could be improved by initializ-
ing the model with LXMERT’s language encoder [73], and
even more by utilizing both the language encoder and cross-
modal encoder from LXMERT, indicating that incorporat-
ing pre-trained vision-and-language models could benefit
agent performance.

Language Encoder
Initialization

R2R Val-Seen R2R Val-Unseen
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

Random 12.87 2.29 78.75 72.61 12.69 2.72 75.65 67.00
BERT 12.43 2.29 79.04 73.72 12.95 2.76 75.01 66.57
LXMERT (lang.) 11.73 2.07 80.22 75.65 13.17 2.67 75.86 67.36
LXMERT (lang.+cross.) 12.63 2.27 79.24 73.34 12.83 2.62 76.59 67.74

Table 13: Effect of different initialization, where LXMERT
(lang.) means only initialize the language encoder with
LXMERT, and LXMERT (lang.+cross.) means initialize
both the langauge encoder and cross modal encoder with
LXMERT.

B.3. Effect of Depth Modality (§4.2)

We also explored leveraging depth information to im-
prove visual representations as described in Table 14. In
line with previous methods such as [44, 42, 30, 5], we di-
rectly concatenate the depth features from DDPPO [82] (a
ResNet backbone pre-trained on PointGoal navigation with
depth inputs) and the RGB features (from CLIP ViT-B/16)
to create the visual representations. Our findings indicate
that when not using HM3D as the augmented environment,
the agent’s SR is significantly better if learning from the
additional depth input. However, this conclusion changes
when HM3D environments are involved: the agent’s SR
with RGBD was slightly lower than with RGB-only. We
suspect that as the data is scaled up with more visual obser-
vations and language instructions, the agent may not require
additional depth information to assist decision-making.

HM3D Aug Sensor R2R Val-Seen R2R Val-Unseen
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

ˆ
RGB 13.28 2.51 76.89 69.71 13.53 3.06 72.92 62.82

RGBD 14.16 2.54 77.18 69.76 15.14 3.02 74.12 62.54

✓
RGB 12.63 2.27 79.24 73.34 12.83 2.62 76.59 67.74

RGBD 11.24 2.12 79.73 75.45 12.93 2.63 76.46 68.52

Table 14: Effect of adding depth modality.

B.4. ScaleVLN with Different VLN Models (§4.2)

To evaluate the generalization ability of our ScaleVLN
dataset, we also apply the augmented data to train differ-
ent VLN agents, including Seq2Seq [10], EnvDrop [74],
and HAMT [16]. The HAMT model is pre-trained and
fine-tuned with the same data and configurations as we pre-
trained the DUET model, while we follow similar config-
urations of Seq2Seq and Envdrop to the original papers.
All three agents are trained with the CLIP ViT-B-16 fea-
ture. The results are shown in Table 15. Compared to using
only PREVALENT [28] for augmentation, All three mod-
els significantly benefit from incorporating the ScaleVLN
dataset, with 12.2%, 3.8%, 5.5% absolute increase in SR for
Seq2Seq, EnvDrop, and HAMT, respectively. This shows
that ScaleVLN strengthens models’ generalization ability.
Note that Seq2Seq and Envdrop perform better on Val-Seen
when using PREVALENT, mainly caused by overfitting the
training environments.

Model Pre-Train Data Fine-Tune Data R2R Val-Seen R2R Val-Unseen
NEÓ SRÒ SPLÒ NEÓ SRÒ SPLÒ

Seq2Seq [10] - R2R, PREV 3.89 58.18 38.49 6.32 37.34 23.21
- R2R, ScaleVLN 4.78 49.85 36.32 5.20 47.51 34.81

Envdrop [74] - R2R, PREV 3.65 66.12 61.72 4.41 59.22 52.35
- R2R, ScaleVLN 3.70 65.23 59.06 3.99 63.01 54.93

HAMT [16]
R2R, PREV R2R, PREV 2.58 74.93 71.52 3.69 64.90 60.11

R2R, PREV, ScaleVLN R2R 2.15 79.53 76.64 3.43 67.56 62.32
R2R, PREV, ScaleVLN R2R, ScaleVLN 2.43 76.40 73.30 3.07 70.46 65.12

Table 15: Influence of ScaleVLN on different VLN models.

B.5. ScaleVLN for Long-Horizon VLN (§4.2)

We evaluate the impact of our dataset on a long-horizon
VLN dataset, R4R [35]. R4R extends the R2R dataset by
concatenating two adjacent trajectories in R2R, resulting in
longer navigation trajectories not biased by the shortest path
prior. We directly fine-tune our pre-trained HAMT mod-
els from Table 15 on R4R. Compared to pre-training with
only R2R and PREVALENT, adding our ScaleVLN dataset
in the pre-training stage leads to a consistent gain, yield-
ing +2.7% SR, +1.5% nDTW and +2.7% SDTW [33]. As
suggested by the large improvement in nDTW between the
ground-truth path and the executed path, our ScaleVLN data
not only facilitate the model to reach the target but also fol-
low the path described by the given instruction.

Pre-Train Data Fine-Tune Data R4R Val-Unseen
NEÓ SRÒ CLSÓ NDTWÒ SDTWÒ

R2R, PREV R4R 6.19 41.52 57.89 51.21 30.00
R2R, PREV, ScaleVLN R4R 6.09 44.20 59.55 52.77 32.73

Table 16: Effect of ScaleVLN on learning R4R.



B.6. Leaderboard Results of R2R (§4.4)

We report the top seven submissions on the test-unseen
leaderboard of R2R6 (Table 17). When ranking with suc-
cess rate, we can see that (a) most methods have extremely
low SPL (1%) due to using beam search to find the optimal
paths. Even so, our single-run result (EarlyToBed) outper-
forms them by a large margin. When ranking with SPL (b),
some methods pre-explored the test environments but their
results are still much worse than ours. Apart from human
followers, we are currently ranked first on the leaderboard.

Team NEÓ SRÒ SPLÒ

human 1.61 86 76
EarlyToBed (ours) 2.27 80 70
LILY˝ 2.54 78 1
Airbert˝ 2.50 78 1
Shortest-Path-Prior˝ 3.55 74 1
UU_77 3.00 74 63
TAIIC˝ 2.99 74 1

(a) Top 7 in SR.

Team NEÓ SRÒ SPLÒ

human 1.61 86 76
EarlyToBed (ours) 2.27 80 70
TAIICX: 3.00 73 69
Active Exploration: 3.30 70 68
sponge 3.26 71 67
Auxiliary Reasoning: 3.96 68 65
SE-Mixed 3.52 70 65

(b) Top 7 in SPL.

Table 17: R2R leaderboard results (28.JUL.2023). ˝: Beam
search. :: Pre-exploration.

B.7. REVERIE Object Grounding Result (§4.4)

We report the success rate of remote object grounding
(RGS) and its path length-weighted result (RGSPL). As
shown in Table 18, ScaleVLN achieves state-of-the-art per-
formance on object grounding task on the test leaderboard,
comparable to the previous best method AutoVLN [17].

Models REVERIE Val-Unseen REVERIE Test-Unseen
SRÒ SPLÒ RGSÒ RGSPLÒ SRÒ SPLÒ RGSÒ RGSPLÒ

SIA [50] 31.53 16.28 22.41 11.56 30.80 14.85 19.02 9.20
HAMT [16] 32.95 30.20 18.92 17.28 30.40 26.67 14.88 13.08
DUET [18] 46.98 33.73 32.15 23.03 52.51 36.06 31.88 22.06
AutoVLN [17] 55.89 40.85 36.58 26.76 55.17 38.88 32.23 22.68
DUET+ScaleVLN(ours) 56.97 41.84 35.76 26.05 56.13 39.52 32.53 22.78

Table 18: Object grounding performance on REVERIE.

C. Comparison of Navigability Graphs (§3.2)
We visualize the navigability graphs produced by Au-

toVLN [17] and our method for several HM3D environ-
ments in Figure 3. We can see that our graphs are denser,
covering more regions, have viewpoints away from obsta-
cles, and are fully traversable in open space.

D. Recover High Quality Images (§3.2)
As introduced in Main Paper §3.2, we apply the Co-

Modulated GAN [87] to recover the corrupted images ren-
dered from the HM3D and Gibson environments. Specifi-
cally, we first render a panorama of shape 512ˆ1024 from

6R2R test server: https://eval.ai/web/challenges/
challenge-page/97/leaderboard/270.

the 3D mesh at each viewpoint. Then, we crop four images
of shape 512ˆ512 centered at 0˝, 90˝, 180˝ and 270˝ of the
panorama (with overlapping), and recover them separately.
Note that, in VLN, the panoramic observation at a view-
point is represented by 36 single-view images at 12 viewing
angles and three elevations [10]. We directly extract their
corresponding regions from the four recovered images to
obtain these single-view images for pre-training an agent.

Table 19 visualizes the difference between the rendered
images and our recovered images. First, we can see that
our method can recover missing regions, including outdoor
scenes such as sky and trees (Example 1 & 4) and indoor
scenes such as floor and walls (Example 6). Besides, the re-
covered images usually have less blurry or distorted areas,
and the object boundaries are much clearer and sharper. For
instance, the ceiling light in Example 2, the chairs in Exam-
ple 3, and the door frames in Example 5. Even for the highly
corrupted images from Gibson (Examples 4–6), we can see
that the method can still recover the scene to a reasonable
quality.

https://eval.ai/web/challenges/challenge-page/97/leaderboard/270
https://eval.ai/web/challenges/challenge-page/97/leaderboard/270


AutoVLN Graphs Our Graphs

Figure 3: Comparison of navigability graphs between AutoVLN [17] and our ScaleVLN.



Examples Environments Rendered Recovered

1 HM3D

2 HM3D

3 HM3D

4 Gibson

5 Gibson

6 Gibson

Table 19: Qualitative examples of our recovered images from HM3D and Gibson environments. The vertical line at the
middle of panorama is caused by directly sticking two independently recovered images at 0˝ and 180˝, which will not appear
in the resulting augmented data, as explained in Appendix §D.


