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Abstract

Retouching images is an essential aspect of enhancing
the visual appeal of photos. Although users often share
common aesthetic preferences, their retouching methods
may vary based on their individual preferences. Therefore,
there is a need for white-box approaches that produce sat-
isfying results and enable users to conveniently edit their
images simultaneously. Recent white-box retouching meth-
ods rely on cascaded global filters that provide image-level
filter arguments but cannot perform fine-grained retouch-
ing. In contrast, colorists typically employ a divide-and-
conquer approach, performing a series of region-specific
fine-grained enhancements when using traditional tools like
Davinci Resolve. We draw on this insight to develop a
white-box framework for photo retouching using parallel
region-specific filters, called RSFNet. Our model generates
filter arguments (e.g., saturation, contrast, hue) and atten-
tion maps of regions for each filter simultaneously. Instead
of cascading filters, RSFNet employs linear summations of
filters, allowing for a more diverse range of filter classes
that can be trained more easily. Our experiments demon-
strate that RSFNet achieves state-of-the-art results, offer-
ing satisfying aesthetic appeal and increased user conve-
nience for editable white-box retouching. Code is available
at https://github.com/Vicky0522/RSFNet.

1. Introduction

Photos and videos recorded by the camera usually lack
aesthetic quality due to poor shooting condition and inexpe-
rienced photographer. Artists often use professional-grade
softwares (e.g., PhotoShop for image, Davinci Resolve for
video) to enhance image and video quality. However, it re-
quires professional retouching skills to conduct a series of
sophisticated manual adjustments. The use of fool-proof
applications that present various style templates simplifies
the retouching procedure, but it is unable to achieve opti-

Figure 1: Architecture of our white-box retouching frame-
work. Our model generates filter arguments (e.g., satura-
tion, midtones, highlights) and attention maps of regions for
corrsponding filter simultaneously. Final result is obtained
by conducting linear summations on filtered results.

mal results due to the lack of enhancement capability.

Recent learning-based methods have demonstrated the
strong capability of deep neural nets for automatic photo
retouching. Automatic systems are established to generate
the optimal result end-to-end. However, one of the most
significant considerations is that retouching is not a problem
with an exclusive solution. People have different retouching
preferences. Even the same artist may retouch the same im-
age in different styles to meet various demands. In order to
provide convenience for manual edits, automatic retouching
systems must provide not only the suggested result, but also
the retouching strategy in a way understandable by humans.

Taking these considerations into account, we propose
a white-box framework that uses the divide-and-conquer
strategy employed by artists in traditional retouching tools.
Our model generates attention maps of regions as well as
filter arguments for traditional edits for these regions. This
allows users to alter the suggested results to their prefer-
ences.

The main contributions of this work are as follows:

* We redefine the retouching problem according to the


https://github.com/Vicky0522/RSFNet

divide-and-conquer strategy, focusing on finding atten-
tion maps for regions and human-understandable filter
adjustments per map to achieve the best results.

* We propose RSFNet, which generates pixel-level at-
tention maps of regions and filter arguments simulta-
neously. By conducting linear summations on the fil-
tered results, our model demonstrates superior perfor-
mance to global white-box retouching methods, with a
wider range of filter classes for fine-grained enhance-
ment and a simpler training procedure.

* We propose a scheme that allows users to edit RSFNet
suggested results, demonstrating its effectiveness and
convenience in image applications.

2. Related Works

Deep Image Enhancement. Many attempts have been
made in image enhancement using learning-based meth-
ods. These methods can broadly be classified into two
categories: deep-convolutional-based models and physical-
inspired models. The former [3, 4, 6, 27, 32] view enhance-
ment as a synthesis problem and use fully convolutional
generators [15] to achieve dense image-to-image transla-
tion. While these methods exhibit strong capability for
generating and enhancing details, they suffer from heavy
structure and low inference speed. The latter category of
works defines enhancement as the parameter prediction of
a physical model and uses deep learning strategies to fit
the model. These models include 3D-LUT [23, 31, 30],
parametric filters [17], conditional sequential global mod-
ulation [8], affine color transformations [7, 22], 1D map-
ping curves [20, 12, 18]. Their enhancement capabilities de-
pend on the range of transformation functions the physical
model covers. Among those, models based on global 3D-
LUT [30, 31] are well-designed for retouching and could
achieve high performance with fast inference speed. How-
ever, they suffer from uneven transitions in smooth areas
due to lack of fine-grained local adjustment. Spatial-Aware
3D-LUT [23] alleviate the problem of global 3D-LUT by
computing pixel-level weight maps. All these methods have
a black-box structure or unintuitive parameters that are hard
for humans to understand. DeepLPF [17] has been a sig-
nificant milestone in the field of region-specific color en-
hancement via local parametric filters but suffers from low
inference speed and limited filter shapes. The three types of
filters with three implementations each results in complex
maps that are hard to understand.

White-box Image Editing. Recent white-box meth-
ods [10, 11,29, 33] have decoupled image editing into a se-
ries of human understandable operations and deep learning
strategies to predict them. Of these, our work is most related
to [11, 10]. However, they train networks with cascaded fil-
ter argument prediction modules to perform global retouch-
ing step-by-step. Our model utilizes pixel-wise region-

specific filters to capture local features and employs linear
summations to combine filters, thus having stronger capa-
bility to cover a wider range of color transformation func-
tions.

3. Method
3.1. Design Motivation

Traditional Retouching Strategy. In the traditional re-
touching process, local adjustments for different regions are
conducted separately and then aggregated together to ac-
complish fine-grained enhancement. All the adjustments
could be accomplished in one Layer, where filters are all
conducted on the same image instead of results from pre-
vious filters. We adopt this divide-and-conquer strategy
to build our framework. We select 10 commonly used re-
touching filters from traditional tools(e.g., Davinci Resolve)
to represent adjustment manipulations, including contrast,
saturation, hue, temperature, shadows, midtones, highlights
and shift. For more details about filters, please refer to
Appendix A . Therefore, retouching is defined as finding
pixel-level attention maps and corresponding adjustments
for each map to achieve the most desirable result. We adopt
this convention and represent retouching result Y as adding
linear summations of increments resulted by filters to the
original image as:

Y =X+ (Funlmn X) = X) 0 M (1)

Where 6,, , and F,,, , € {contrast, ..., shift} are the
argument value and filter function of the nth filter for the
mth attention map of input image X respectively, M,, is the
mth attention map for image X. It should be noticed that
this linear representation makes our optimization process
much simpler than other white-box methods.

3.2. Architecture

Our model consists of two modules, the parameter pre-
dictor and the renderer. The architecture of the parameter
predictor shares a similar overall structure with previous
segmentation models [24, 25]. As illustrated in Figure 2,
the network g is composed of a backbone gyqckbone, @ FPN
neck gneck, a map generator N, for attention map pre-
diction and an argument regressor hg,., for arguments re-
gression. We set the last layer of map generator Ayy,q;, to
sigmoid, followed by an upsampling layer to match the size
of the original input image. We use f(X) to represent the
output features of FPN neck. Maps generated by h,,,, after
upsampling are:

Mm = hmap(f(X))mam S {1, 7K} (2)
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Figure 2: Our network comprises two modules: the parameter predictor and renderer. The input image is transformed into
feature embeddings f(X) through a backbone gpacibone and FPN neck gycck, which are then utilized by the map generator
hmap and argument regressor h,,4 to generate region maps and filter arguments (e.g. contrast, hue, saturation), respectively.
The renderer applies the filter arguments to each region map and aggregates them to produce the final retouching result.

K is the number of output channels of the last layer. The
argument regressor ;.4 consists of 4 units of convolutional
modules. Each module consists of a convolution layer fol-
lowed by group normalization, relu activation and average
pooling. Output feature f(X) is finally reduced by hgrg
to a K x N vector representing arguments of all filters for
every map:

Omn = harg(f(X)mm,me{l,...K},ne{l,..,N}
3)
K is the number of color filters per map. Given the maps
and arguments from the parameter predictor, the renderer
applies filter functions F,, ,, € {contrast, ..., shift} to the
input image and merges filtered results via linear summa-
tions of increments. The final output image Y in Equation 1
is:
K N
m=1n=1

In our implementation, we set the number of filters per map
as N = 1, indicating that there is one specific filter assigned
to each map. This is illustrated in the second row of filter
boxes depicted in Figure 2. We also consider the filter Shift
as a global function that is applied to the entire image with-
out an attention map. Through our experimentation, we ob-
serve that this configuration is sufficient for generating sat-
isfactory results while also providing convenience for users
to edit.

Training Loss. The overall framework can be trained
end-to-end. Our training loss function is defined as follows:
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Figure 3: A variation of RSFNet could be used to gener-
ate masks with controlled shapes. We generate ground truth
masks for training via three types of region masks derived
from off-the-shelf models: palette-based segmentation, se-
mantic segmentation, and saliency detection.

Ground Truth

Msemantic = {Msema, -
Image

L= Lrecon7 (5)

where L, c.on 18 the [1 loss for reconstruction.

3.3. A Variation of RSFNet with Controlled Region
Shape

Our proposed framework has the capability to generate
region masks with controlled shapes, with minimal mod-
ifications to the training data and loss function. In our
observation, artists tend to select regions based on their
main color, saliency, or other high-level semantic informa-
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Figure 4: Editable white-box retouching. The second column illustrates the arguments and masks generated by RSFNet-
saliency that is trained with saliency masks. The third column displays the retouched result. On the right-hand side, the
figure showcases three versions of adjustments conducted on the retouched results, with numbers denoted in green boxes

indicating the relative incremental value of filters.

tion. To leverage this insight, we utilize palette-based meth-
ods [2], saliency detection [14], and panoptic segmentation
networks [5] to generate palette-based, saliency, and seman-
tic masks of the input images used for training, as depicted
in Figure 3. Further implementation details can be found
in Appendix B. Our training loss function in Equation 5 is
modified as follows:

L= L'recon + /\Lmaslm (6)

where L,.ccon 18 the [1 loss for reconstruction. When train-
ing with palette-based masks and saliency masks, L;,qsk
is the Dice Loss for mask prediction following loss func-
tions in [24, 25]. We change it to the Cross Entropy Loss
when training with semantic masks, at the time map gener-
ator hy,qp ends with a softmax layer.

The model generates region masks and corresponding
filter arguments for the input image simultaneously. Users
can select region maps and adjust filter arguments to edit re-
sults. We show an example of RSFNet-saliency trained with
saliency masks in Figure 4.

4. Experiments
4.1. Datasets and Application Settings

We conduct experiments on two publicly available
datasets: MIT-Adobe FiveK [1] and PPR10K [13]. The
MIT-Adobe FiveK consists of 5,000 RAW images with their
retouched versions. We follow prior works [8, 12, 31, 30]
to adopt images retouched by expert C as ground truths and
split the dataset into 4,500 pairs for training and 500 pairs
for validation. Images are resized to 480p during training
stage, whereas both of 480p resolution and original reso-
lution are used during validation. We follow the official
split [13] to split PPR10K dataset into 8,875 pairs for train-
ing and 2,286 pairs for testing. Images are resized to 360p
resolution for training and validation.

For the MIT-Adobe FiveK dataset, we conduct exper-
iments on two input settings: input zeroed with expertC
white balance and input zeroed as shot. The second set of
inputs is more challenging as it also deteriorates in white
balance. Therefore, to restore its visual appeal, our frame-
work’s ability to perform color temperature correction and
hue adjustment is required.



mask as
input mask type PSNRT  SSIM?
w/ saliency(1) 23.83 0.906 mask
w/ palette(5) 2345 0.903 masktype ‘ PSNRT  SSIM?T downscaling .
w/ semantic(10) 21.65 0.866 first backbone factor PSNRT  Runtime)
w/ semantic(5) 21.77 0.867 w/ saliency(1) 23.26 0.890
wlo saliency(1) 2401 0.909 wlo  saliency(1) | 24.01  0.909 resnetl8 X8 24.65 9.98
wlo palette(5) 24.14 0.906 resnetl8 x4 24.83 12.38
wlo semantic(10) | 24.09  0.908 resnet10 x8 24.50 7.98
w/o semantic(5) 24.17 0.909 (b) Analysis of training order. “Mask first” resnet10 x4 24.38 8.71
w/o semantic(133) | 23.75 0.905 refers to building model on pre-trained Pool-

(c) Trade off between speed and accuracy.

. . . . Net [14].
(a) Analysis on using mask as input and dif-

ferent mask types. Bracket after “mask type”
indicates number of masks.

Table 1: Ablation analysis of our framework. Models are trained on the FiveK dataset [ 1] with inputs zeroed as shot.
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Figure 5: Comparison between sequential and parallel
methods under the same filter functions and network struc-
tures.

4.2. Implementation Details

To implement our proposed framework as described in
Section 3.2, we employ ResNetl8 [9] as the backbone and
utilize the output features of layer (0,1,2,3) as concate-
nated input with 256 x 4 channels for the FPN neck. The
FPN neck reduces the features to 64 x 4 channels and feeds
them into the map generator and argument regressor. We
set the output numbers K of region maps to 10 and 16 for
the Adobe-MIT FiveK and PPR10K datasets, respectively.
The number of filters per map N is set to N = 1, with
10 filters used for MIT-Adobe FiveK, 1 each for shadow,
midtones, highlights, where arguments for RGB channels
are set equal. For PPR10K, we use 16 filters, with 3 each
for shadow, midtones, highlights, where arguments for RGB
channels are set differently.

To implement the variation of RSFNet with controlled
region shapes, as described in Section 3.3, we gener-
ate ground truth masks for the MIT-Adobe FiveK dataset.
Specifically, we generate five palette-based masks, one
saliency mask, and five semantic masks for each image.
For the PPR10K dataset, we directly use the human-region
masks provided in the dataset as ground truth masks for

egy to gradually decay the learning rate every 250,000 it-
erations. All experiments are conducted on NVIDIA Tesla
V100 GPU.

In the following sections, we denote our main model in
Section 3.2 as RSFNet-map. Variations depicted in Sec-
tion 3.3 are denoted as RSFNet-palette, RSFNet-saliency
and RSFNet-semantic.

4.3. Ablation Studies

In this section, we evaluate the ability of our frameworks
in different settings.

Comparative study of parallel and sequential ap-
proaches. We conduct experiments to compare parallel and
sequential approaches under the same set of filter functions
and backbone structures. For sequential implementations,
we modify the network structure to mimic artistic work-
flows and resemble Harmonizer [1 1]. We train the network
using randomly shuffled 20 unique sequences of filter func-
tions. The results are shown in Figure 5. The parallel ap-
proach shows Pareto-optimality with near-maximum PSNR
and a lower PSNR standard deviation (std). It also outper-
forms all sequential approaches in terms of SSIM and SSIM
std. We find that altering the sequence of applying filters
can lead to considerable changes in performance. Nearly
half of these sequences fail to produce satisfactory results.
Moreover, during training, the parallel approach converges
faster than its sequential counterparts. In addition, the par-
allel method can be faster than the sequential one.



480p 480p Full Resolution
Method zeroed with C’s zeroed as shot zeroed as shot
PSNRT SSIMtT AFE.,, | PSNRT SSIMtT AFEg | Runtime|l PSNR?T SSIM1T Runtimel
UPE [22] 21.88* 0.853* 10.80* / / / / / / /
DPE [4] 23.75% 0.908*  9.34* / / / / / / /
HDRNet [7] 24.66* 0.915*  8.06* / / / / / / /
DeepLPF [17] 24.73* 0.916* 7.99* 2338 0.880 10.03 44.25 2340 0.863 1133.90
CSRNet [8] 25.17* 0.924*  7.75% 2424 0910 9.70 3.49 23.04 0.874 80.6
SA-3DLUT [23] 25.50* / / / / / / / / /
3D-LUT [31] 25.29* 0.923*  7.55% / / / / / / /
3D-LUT+Adalnt [30] 25.49*% 0.926*% 7.47* 2450 0.912 9.22 1.59 2424  0.857 1.80
Harmonizer [11] 24.11 0.904 8.23 23.23 0.893 10.14 16.74 22.57 0.870 27.98
RSFNet-map 2549  0.924 7.23 24.64 0915 9.16 9.98 2439 0.894 12.35

RSFNet-palette 25.01 0914 7.62 2422 0911 9.52 19.76 23.88 0.888 68.57
RSFNet-saliency 2478 0916 7.86 2420 0912 942 14.09 24.00 0.890 59.42
RSFNet-semantic 2476 0915 7.77 24.19 0912 945 24.07 23.89  0.891 71.18

RSFNet-global 2431 00911 8.21 2343 0904 10.16 9.42 23.26  0.885 10.99

Table 2: Quantitative comparisons for retouching tasks on FiveK dataset [1]. Runtime is measured in miliseconds. “*”
means the result is adopted from the paper [30]. “/” means the result is not available. Runtime shown in previous works
are not adopted due to different hardware settings. Results with the first and second performance are colored as red and
blue respectively. White-box methods are colored as violet. Full resolution images results are evaluated using Python, while
others are evaluated on Matlab.

360p 360p 360p
Method expert a expert b expert ¢

PSNRT SSIMt PSNRT SSIMt PSNRT  SSIMt

DeepLPF [17] 23.47 0.892 22.77 0.875 23.73 0.896
CSRNet [8] 24.01 0.936 2391 0.938 24.31 0.931
3D-LUT+Adalnt [30]  25.98 0.947 2491 0.936 25.48 0.919
Harmonizer [11] 24.76 0.929 22.79 0.885 24.56 0.902

RSFNet-map 25.58 0.949 24.81 0.945 25.52 0.939

RSFNet-saliency 25.53 0.946 24.72 0.944 25.11 0.939

Table 3: Quantitative comparisons for retouching tasks on PPR10K dataset [ 13]. All the models are trained on data without

augmentations. White-box methods are colored as violet.

Training map generation and arguments regression
separately. To train models with controlled region shapes,
we experiment with using pre-trained PoolNet [14] and
adding an FPN neck followed by an argument regressor to
the backbone instead of training from scratch. During train-
ing, we fix the weights of the backbone to keep the saliency
mask generated by the network unchanged. The quantita-
tive results are shown in Table 1b, which indicates that there
is no superiority over training from scratch. The reason for
this might be that a network trained only on semantic data
lacks sufficient information for retouching. Therefore, it is
better to train the map generation and arguments regression
tasks simultaneously.

Using Masks as Input. For training models with con-
trolled region shapes, we can use masks concatenated with
the image as input for our model. We train three models
using three sets of masks as input, respectively. The results
are shown in Table 1a. The retouching results evaluated on
PSNR and SSIM [26] are lower than in other settings. This
may be because the ground truth masks are generated by
off-the-shelf models, which may differ from the underly-
ing real masks of the dataset. Masks are slightly modified
by the map generator in the inference stage to achieve bet-
ter retouching results. Therefore, simple concatenation of
masks with the input image can lead to worse performance
compared to our design of the variant of RSFNet, which
generates masks and filter arguments simultaneously.
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Figure 7: Boxplot of user study. The dashed green line and
the solid black line inside the box are the mean and the me-
dian preference percentage respectively.

Trade Off Between Speed and Accuracy. As we de-
crease the number of downsample operations in the back-
bone, the feature size grows larger and time costs increase.
However, quantitative results of retouching also become
better, as shown in lc. Speed is measured in miliseconds.

4.4. Comparison with State-of-the-Art

We compare our methods with the state-of-the-art for
black-box and white-box image retouching tasks. The se-
lected methods are compared on PSNR, SSIM [26], the
Lo-distance in CIE LAB color space (A FE,y) and the infer-
ence speed. We follow the practice in [30] to measure the
GPU inference time on 100 images and report the average.
Quantitative results are shown in Table 2 and 3. RSFNet-
map refers to our main model in Section 3.2, RSFNet-
saliency, RSFNet-palette and RSFNet-semantic refers to
models trained with three sets of masks respectively in
Section 3.3. In addition, we evaluate a global retouch-
ing model without the map generator, denoted as RSFNet-
global. Other models are trained using their official public
codes and default configurations. All experiments are exe-
cuted on an NVIDIA Tesla V100 GPU.

Our proposed method, RSFNet-map, demonstrates its ef-
fectiveness in temperature correction and color enhance-
ment, especially for the second set of inputs under more
deteriorating shooting conditions. Although RSFNet-map
achieves state-of-the-art results with negligible increase,
while other RSFNet variations lag behind the state of the
art, it is important to note that our white-box framework
provides human-understandable ways for retouching, which
makes it more convenient for users to edit and assess re-
touching results compared to other black-box methods.
When compared with state-of-the-art white-box methods
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Figure 8: Editable image retouching. “RSFNet-saliency”, “RSFNet-semantic” means RSFNet trained with saliency masks

and semantic masks respectively.

such as Harmonizer [11], all of our models exhibit bet-
ter performance with faster speed. Furthermore, using 3D-
LUTs to encode filter functions could potentially accelerate
our models, a technique commonly implemented in tradi-
tional retouching tools. For PPR10K [13], we also evaluate
our methods using a random split setup. The results are
provided in Appendix C, consistently reinforcing the con-
clusions drawn from previous experiments.

The qualitative results presented in Figure 6 demonstrate
that our proposed method, RSFNet-map, exhibits superior
performance in handling color transitions across regions,
particularly in highlight areas, compared to 3D-LUT based
methods such as Adalnt, as shown in the first row of the
figure. Furthermore, we conduct a comparison with Harmo-
nizer [| 1] on editable retouching, as shown in Figure 8. Our
white-box framework offers more degrees of freedom than
global-retouching manipulations to achieve region-specific
retouching. For instance, when the temperature is adjusted
globally using Harmonizer, the sky in the first image turns
yellow. On the other hand, our RSFNet-saliency model can
modify the temperature of the foreground girl while leav-

ing other regions unaffected. In the second image, global
temperature adjustment by Harmonizer turns the lake and
mountains blue. In contrast, RSFNet-semantic only mod-
ifies the sky temperature, leaving the mountains and lake
unchanged.

To further validate the effectiveness of our proposed
framework, we conduct a user study to evaluate human pref-
erences for RSFNet and other state-of-the-art methods, in-
cluding CSRNet [8], Adalnt [30], and Hormonizer [11]. To
form the test set, we randomly select 58 images from the
validation set of Adobe-MIT FiveK using the input zeroed
with expertC white balance and input zeroed as shot set-
tings, as well as an additional 20 images downloaded from
the internet. During the experiment, we display retouched
images produced by all methods, including the original in-
put, to 22 participants. Participants are asked to select the
best result from a randomly shuffled set of retouched images
generated by all methods. We calculate the preferences of
participants for each method and plot the results using a box
plot, as shown in Figure 7.

Among the compared methods, Adalnt [30] achieves



higher mean and median percentages. RSFNet exhibits
more stable performance with a higher bottom percentage
and the smallest standard variance percentage than the other
methods. In comparison to the white-box method Harmo-
nizer [1 1], RSFNet demonstrates superior user preference
percentages. The boxplot illustrates the varying preferences
of different users, highlighting the significance of editable
capability. As RSFNet utilizes traditional color filters for
retouching, it can be readily integrated into traditional re-
touching tools. Users can further enhance the visual appeal
of the retouched results according to their own preferences
through an interface.

Video Retouching. Our proposed RSFNet model also
demonstrates applicability to video retouching, as shown in
Figure 8. The filter arguments remain constant within a sin-
gle video clip for all frames, ensuring consistency through-
out the retouching process. However, for RSFNet variations
with controlled region shapes, such as RSFNet-saliency, the
retouching consistency across frames relies on the consis-
tency of region masks across frames. Although filter ar-
guments can alleviate the inconsistency caused by masks,
severe inconsistency problems in masks may still affect re-
touching results. With the assistance of a more robust track-
ing algorithm, these models can achieve better performance
in editable video retouching, highlighting the potential of
RSFNet in various retouching applications.

5. Limitation and Conclusion

We develop our framework under the assumption that all
adjustments are done in one layer, which is then combined
via linear summations of increments of all filters to obtain
the final result. Therefore, although our model provides a
white-box retouching framework that aligns with the intu-
ition of human artists, it is unable to cover all adjustments
that artists could conduct using professional software. How-
ever, we believe that if the cache data in the retouching pro-
cess of artists is available, such as the region masks used
for region-specific retouching, our model equipped with a
more complicated structure, such as a cascaded structure
in [10, 11], could behave more similarly to a real human
artist by learning from this data.

This paper introduces RSFNet, a white-box framework
for image retouching that utilizes a divide-and-conquer
strategy to generate region maps and human-understandable
filter arguments. The resulting filtered images are com-
bined using linear summations, allowing for a wider range
of filter classes and achieving fine-grained enhancement
with superior performance. A variation of RSFNet with
controlled shape region masks is also proposed for user
convenience. Extensive experiments are presented to
demonstrate the effectiveness of RSFNet.
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Appendices

A. Filter Function

The retouched result is represented as equation:

Y =X+ Z Z(F"%n(am,m X) = X) © Mp, @)

For different filters, F)y, 1, (0.0, X) has different expres-
sions:

Fcontrast (05 X)
Fsaturation(ea X)

=6(X — mean(X))
=0(X — L(X))
athc; Xc S {XR7 XG}

- X
-X

Frue(0,X,) - X.=1{ 1
ue(fh Xo) = Xe —gonfXe, Xe = Xp

010Xe, Xe = XR, 020
20X, X, = Xp,0 <0
0.0, X.=Xg,0>0
o 30X, Xe = Xq,0 <0
0 40X, Xe = Xp,0>0
50X, X, = Xp,0 <0
Fahadows (0, X) — X =0(1 — X)
Frnidtones(8, X) — X = 0(0.25 — (X — 0.5)%)
Fhrighiights(0,X) — X = 60X

Ftemperature(oa Xc) - Xc

as,laXc = Xgr
Fshift(ech) - Xc = as,27Xc = XG
as,37Xc = XB

(®)
Where mean(X) denotes the mean value of the entire im-
age, while L(X) represents the L channel of the image in
the CIE LAB color space. Additionally, X. € Xgr, X¢, XB
denotes the RGB color channels of the image. The adjust-
ment factor, denoted by «, is a scalar that satisfies « > 0.
In our experiments, values of « are determined according to
traditional color grading tools.



B. Variation of RSFNet with Controlled Re-
gion Shape

Ground Truths Mask Generation. We adopt the
palette-based method proposed in [2] to generate the main
colors C = (4, ...,C), of an image, along with distance
maps from pixels to /N color centers. We obtain region
masks by applying a Gaussian smoothing function to these
distance maps, resulting in Mpqiette = Mp1,...Myk,.
We also predict saliency masks using pre-trained networks
from [ ]’ yleldlng Msaliency = salls Msal2~

Since previous works on panoptic segmentation split
objects into more than one hundred classes, which is
redundant for our task, we aim to identify the most signif-
icant pixel groupings. To accomplish this, we follow the
practice in [16, 28] and train a self-attentioned network
with pairwise retouching data. First, we predict semantic
masks using the networks presented in [5]. We then apply
a clustering algorithm (e.g., K-means [21]) to the output
features of the self-attentioned network with masked im-
ages as input. Masks assigned with the same cluster index
are merged’ resulting in Mse’mantics = seml; -~-MsemKS .
For each of the three sets of masks, we train a separate
model with the corresponding output channel numbers.
The entire process is illustrated in Figure 3.

Differentiable Adaptive Smooth Kernel. To ensure
smooth transition across mask edges, we have incorporated
a differentiable adaptive smooth kernel module into our
main network. We fix the Gaussian smooth kernel to a suit-
able size 0,44, such as 51 x 51 for the original input with a
resolution of 256 x 256. The standard variance of the kernel
is a learnable parameter, which adapts to the inputs.

C. Additional Results

Quantitative Results. We valuate our methods using
a random split setup for PPR10K [13]. The results are
demonstrated in Table 4. For more implementation details,
please refer to our codebase at https://github.com/
Vicky0522/RSEFNet.

Qualitative Results. We present more results of
RSFNet-saliency, RSFNet-palette and RSFNet-map in Fig-
ure 9 and 10, including generated masks and corresponding
filter arguments.


https://github.com/Vicky0522/RSFNet
https://github.com/Vicky0522/RSFNet

360p 360p 360p

Method expert a expert b expert ¢
PSNRT SSIMt PSNRT SSIMt PSNRT  SSIMt
DeepLPF [17] 24.97 0.939 24.33 0.930 24.65 0.926
CSRNet [8] 24.38 0.938 24.41 0.940 24.53 0.931
3D-LUT+Adalnt [30]  27.31 0.954 26.62 0.945 26.67 0.929
Harmonizer [11] 25.02 0.916 23.84 0.895 25.22 0.920
RSFNet-map 27.25 0.956 26.61 0.954 26.76 0.945

RSFNet-saliency 25.98 0.946 25.87 0.948 25.88 0.937

Table 4: Quantitative comparisons for retouching tasks on PPR10K dataset [13]. All the models are trained on data without
augmentations. White-box methods are colored as violet.
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Figure 9: Editable white-box retouching. Arguments and masks generated by RSFNet-saliency trained with saliency masks
are shown in the second column. Retouched result is shown in the third column. Three versions of adjustments conducted on
the retouched results are shown in the three columns on the right. Ground truths is shown in the right-most column. Numbers
in green boxes indicate relative variation.
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Figure 10: Editable white-box retouching. Arguments and masks generated by RSFNet-palette trained with palette-based
masks are shown in the first row. Only two of the most significant arguments are presented. Retouched result is shown in the
first column of the second row. Five versions of adjustments conducted on the retouched results and corresponding masks
are shown in the rest columns of the second row. Ground truths is shown in the right-most column. Numbers in green boxes
indicate relative variation.



