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Abstract

There have been many image denoisers using deep neu-
ral networks, which outperform conventional model-based
methods by large margins. Recently, self-supervised meth-
ods have attracted attention because constructing a large
real noise dataset for supervised training is an enormous
burden. The most representative self-supervised denois-
ers are based on blind-spot networks, which exclude the
receptive field’s center pixel. However, excluding any in-
put pixel is abandoning some information, especially when
the input pixel at the corresponding output position is ex-
cluded. In addition, a standard blind-spot network fails to
reduce real camera noise due to the pixel-wise correlation
of noise, though it successfully removes independently dis-
tributed synthetic noise. Hence, to realize a more practi-
cal denoiser, we propose a novel self-supervised training
framework that can remove real noise. For this, we de-
rive the theoretic upper bound of a supervised loss where
the network is guided by the downsampled blinded output.
Also, we design a conditional blind-spot network (C-BSN),
which selectively controls the blindness of the network to
use the center pixel information. Furthermore, we exploit a
random subsampler to decorrelate noise spatially, making
the C-BSN free of visual artifacts that were often seen in
downsample-based methods. Extensive experiments show
that the proposed C-BSN achieves state-of-the-art perfor-
mance on real-world datasets as a self-supervised denoiser
and shows qualitatively pleasing results without any post-
processing or refinement.

1. Introduction

Image denoising aims to recover a clean image from
its corrupted counterpart. Recently, image denoisers us-
ing convolutional neural networks (CNNs) have achieved
great performances, significantly outperforming conven-
tional model-based ones [44, 45, 33]. They trained net-
works by minimizing the difference between the network

(a) Noisy
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Figure 1. Visual comparison of denoised images on SIDD vali-
dation [2]. Our C-BSN shows better details and no artifacts with-
out post-processing or refinement. Best viewed in pdf.

outputs and the ground-truth clean images. In early works,
they assumed the camera noise as an additive white Gaus-
sian noise (AWGN) and generated a large number of clean-
noisy image pairs for the supervised training. However,
the denoisers trained with AWGN fail to generalize to real-
world camera noises due to the difference between the
Gaussian and real noise distributions [11]. Specifically, real
noise follows a more complicated distribution than a simple
Gaussian and gets more correlated spatially and chromati-
cally while passing through an in-camera image processing
pipeline, such as demosaicing that involves the computation
using adjacent pixels.
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Some researchers attempted to find a more realistic noise
model to deal with real noise. In the case of camera-raw im-
ages, noise can be modeled with a relatively simple distri-
bution such as heteroscedastic Gaussian [9]. Hence, a raw
image added with such synthetic noise is passed through a
camera image signal processor (ISP) model to generate a
realistic noisy sRGB image [11, 41]. Other works synthe-
sized realistic noise using generative models [7, 6, 13, 1].
Another approach is to construct paired real noise datasets
from real photos like DND [28] and SIDD [2]. Training
in a supervised manner with those datasets successfully re-
duced the noise of real cameras [3, 42, 43]. However, ac-
quiring aligned clean images corresponding to noisy ones
requires a series of static photos of the same scene. It is
costly or even impossible in some cases, such as medical
images, since it requires strictly controlled capturing and
complicated post-processing. Also, since they used several
cameras in specific environments for capturing real noises,
they might have different distributions from the ones cap-
tured from other cameras and from the same cameras with
different shooting environments.

To mitigate the necessity of large aligned datasets, self-
supervised denoising that requires only noisy images has
been proposed. The most representative methods are based
on blind-spot networks (BSN), where each output pixel is
estimated from the surrounding noisy pixels except for the
corresponding one. It enables the network to learn with the
self-supervised loss function, where the same noisy images
are used as both input and target. The idea of blind-spot
prevents the network from converging to a trivial identity
function. The BSN is shown to converge to the clean im-
age under the assumption that the expectation of the noise
is zero and the noise is pixel-wise independent. They im-
posed blindness to the network by masking the input image
[18, 4] or by designing networks that structurally exclude
the central pixel from the receptive fields [19, 36, 20]. How-
ever, the BSN-based self-supervised algorithms have two
limitations; 1) The network cannot utilize the center pixel
which is the most informative. 2) It is not applicable to real
noise since it has a pixel-wise correlation in the sRGB do-
main [20].

In this paper, we propose a novel self-supervised learn-
ing framework to denoise real noise without the blind-spot,
i.e., with the center pixel information. Our framework
overcomes the above-stated limitations by deriving a novel
downsampled invariance loss function. The downsampled
invariance loss employs a novel conditional blind-spot net-
work (C-BSN) and random subsampler. Specifically, our
C-BSN conditionally controls its blindness by switching
the masked convolution operations. It allows the network
to be regularized by its blind-spot counterpart, which pre-
vents the trivial solution. Furthermore, we impose the loss
on randomly downsampled subimage so that the correla-

tion of the noise is weakened without inducing visual ar-
tifacts. In addition, we augment the loss with a blind self-
supervised loss for stabilizing the training. Extensive exper-
iments have been conducted to evaluate the proposed frame-
work, which validates that the C-BSN outperforms existing
self-supervised denoisers and even some supervised meth-
ods trained with real noise datasets.

The contributions of our method are summarized as fol-
lows:

• We propose a novel self-supervised denoising frame-
work that can be processed without a blind-spot.
We theoretically derive the upper bound of the self-
supervised loss as downsampled invariance loss, which
exploits masked output as the regularization of the
denoised image without masking. In addition, the
proposed method does not require post-processing or
noise statistics.

• To apply downsampled invariance loss, we propose a
novel conditional blind-spot network named C-BSN,
which conditionally controls the blindness of the net-
work. To deal with the spatial correlation of the real
camera noise, a random subsampler is proposed to
avoid visual artifacts.

• The C-BSN shows state-of-the-art performance
in real-world sRGB benchmarks DND [28] and
SIDD [2], as shown in Figs. 1, 4, and 5.

2. Related Works
Deep Image Denoising Image denoisers based on Convo-
lutional Neural Networks (CNNs) have outperformed con-
ventional model-based algorithms. In early works, deep
image denoisers were trained with large datasets consist-
ing of clean images and noisy ones corrupted by synthetic
Gaussian noise. DnCNN [44] proposed a CNN denoiser
with batch normalization and residual learning. Following
DnCNN, many networks with more sophisticated architec-
tures have been proposed [45, 24, 33, 22, 46]. However, de-
noisers trained with synthetic Gaussian noise could not gen-
eralize well for denoising real-world noisy images. To alle-
viate this problem, CBDNet [11] synthesized heteroscedas-
tic Gaussian noise and processed it through the camera ISP
model. Some works simulated realistic noise using gener-
ative adversarial network (GAN) [7, 6, 13] or flow-based
methods [1, 23, 17]. With the development of real-world
sRGB datasets [2, 28], recent denoisers have been trained
and tested on these datasets, [3, 42, 43, 40, 14, 15, 32, 34],
demonstrating that the real noisy images could be success-
fully denoised. Moreover, it has been shown that earlier
denoisers can also work better by retraining with these
datasets. However, collecting a large dataset is laborious
and costly. Moreover, the networks trained with a specific



dataset may not function properly on images captured by
other cameras, not included in the dataset, or images from
other domains, such as medical, electron, and ultra-sonic.
Self-supervised Deep Image Denoising In order to over-
come the lack of aligned real noisy-clean image pairs, self-
supervised learning that trains denoiser with solely noisy
images has been proposed. Lehtinen et al. [21] proposed
Noise2Noise where training pairs are two noisy images of
the same scene. Noise2Void [18] and Noise2Self [4] in-
troduced self-supervised denoisers that require only sin-
gle noisy images by masking the center pixel of the re-
ceptive field. Without masking input pixels, Laine et
al. [19] proposed a structurally blind-spotted network with
a concatenation of half-plane receptive field U-Nets [30].
Wu et al. [36] introduced dilated blind-spot network (D-
BSN), where masked convolution is followed by dilated
convolutions and 1 × 1 convolutions, strictly excluding
the center pixel from the receptive field. Self2Self [29]
trained the denoiser with a single noisy image by ap-
plying Bernoulli dropout. Neighbor2Neighbor [12] pro-
posed a self-supervised loss between two subsampled im-
ages. Also, assuming known noise characteristics, Noisy-
as-clean [38] and Noisier2noise [25] added a proper noise
to the noisy image and used the pair as a training set.
Recorrupted2Recorrupted [27] generated pairs of Gaussian-
corrupted images to be used as training pairs. In general,
real noises of the sRGB domain have unknown or non-
stationary statistics and are spatially correlated, making the
above methods less applicable.

Recently, some works have been proposed to overcome
the limitations of the above BSN-based methods. To miti-
gate the spatial correlation of real noise, AP-BSN [20] uti-
lized pixel downshuffle (PD) [47] asymmetrically. During
training, the network was trained using high strides where
the assumption of independence holds. During testing, low
strides were used to preserve more pixel information. CVF-
SID [26] disentangled a clean image and signal-dependent
noise from real-world noisy input. To utilize information of
center pixel, Laine et al. [19] post-processed the denoised
output to be the posterior with the known noise model in
a Bayesian approach. Noise2Same [37] derived the up-
per bound of self-supervised loss without introducing the
blind-spot. Blind2Unblind [35] proposed re-visible loss that
makes blind-spot visible again. However, to the best of our
knowledge, there has been no research that handles both
problems (use of blind-spot and handling spatial correla-
tion) for self-supervised image denoising.

3. Method

3.1. Overview

We introduce a novel self-supervised learning frame-
work to denoise real-world RGB images, which is illus-

trated in Fig. 2. We propose a novel loss function that can be
directly optimized on the input image without loss of infor-
mation. It consists of self-supervised loss and downsampled
invariance loss that controls the extent of the blindness. Our
main idea of the downsampled invariance loss is to make a
blind-spot network serve as regularization of the same net-
work while preserving network parameters. To this end, we
propose a conditional blind-spot network (denoted C-BSN
in the figure) to selectively mask the center pixel in the re-
ceptive field. In addition, we introduce Random Subsam-
pler (RS) to decorrelate noise spatially. The pixel-shuffle
downsampling (PD) [47] also loosens the spatial correlation
of the noise, but it generates severe checkerboard artifacts.
On the contrary, since our RS draws a pixel randomly from
each grid, it does not produce such artifacts. We denote the
noisy input image as x and the corresponding clean image
as y. For brevity, the channel dimension is omitted, and
spatial dimensions are vectorized, i.e., x,y ∈ Rm.

3.2. Revisiting Noise2Same

Under the assumption that noise is zero mean and
pixel-wise independent, Baston et al. [4] proved that self-
supervised loss is equivalent to supervised loss if the net-
work is J -invariant.

Definition 1. [4] Let J be a partition of the dimensions
{1, ...,m} and let J ⊂ J . A function f : Rm → Rm is
J-invariant if f(x)J does not depend on the value of xJ . It
is J -invariant if it is J-invariant for each J ∈ J .

Subscripted notation xJ is used for x restricted to J .
Noise2Same [37] analyzed that strictly J -invariant func-
tion is not optimal for the denoisers. Rather, it mitigates the
J -invariance constraints by minimizing the upper bound of
supervised loss,

LN2Same = Ex ||f(x)− x||2/m

+ λinv EJ(Ex ||f(x)J − f(xJC )J ||2/|J |)
1
2 ,

(1)
where x is the normalized input image so that the mean of x
is zero and the standard deviation equals one. The first term
is the self-supervised loss, while the second term controls
how J -invariant f should be.

3.3. Downsampled Invariance Loss

Noise2Same upper bound holds when f(xJC ) in Eq. (1)
is not correlated with xJ . Although the pixel-wise inde-
pendent noise such as AWGN satisfies the above constraint,
real noise is correlated spatially, which makes it no longer
applicable. Instead of randomly sampling the subset J , we
sample the downsampled image to reduce the correlation,
following previous research [47, 20]. Precisely, we propose
modified version of Eq. (1) as follows:
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Figure 2. Overview of the proposed C-BSN framework. Illustration of the C-BSN architecture and loss functions. For simplicity,
condition variable c is omitted in f when c = False, and fM denotes the blind-spot network with c = True. The yellow box represents
1 × 1 convolution and the green box represents dilated convolution module, which consists of dilated convolution followed by 1 × 1
convolution and residual skip connection. Note that RS samples the same pixel indices when calculating downsampled invariance loss with
RS2(f(x)) and sg(fM (RS2(x)).

Proposition 1. Let x be a normalized zero-mean noisy im-
age conditioned on y, E[x|y] = y. Let d be any downsam-
pling operation and ds(x) be a set of downsampled pixels
of x with a stride of s. Assume that downsampled subimage
ds(x) has zero pixel-wise correlation and fM is a blind-
spot network. Then, the following inequality holds.

Ex,y

∥∥f(x)− y
∥∥2 +∥x− y∥2 ≤ Ex

∥∥f(x)− x
∥∥2

+ 2
√
ms2 E

ds(x)
[E

∥∥ds(f(x))− fM (ds(x))
∥∥2] 12 . (2)

Proposition 1 provides the upper bound of the supervised
loss with the self-supervised loss and the regularization of
the downsampled output with the blind output of the down-
sampled input. We prove in the supplementary material that
f(xJC ) in Eq. (1) can be replaced by fM (ds(x)), which
has no correlation with ds(x). This simplifies the second
term of Eq. (1) to our new downsampled invariance loss,

Linv =

√
s2

m

∥∥ds(f(x))− sg(fM (ds(x)))
∥∥
2
, (3)

where sg is a stop-gradient operation. With Proposition 1,
we can optimize the denoising network by minimizing the
right side of Eq. (2). Details of the proof are in the supple-
mentary material.

3.4. Conditional Blind-Spot Network

Equation (3) requires the parameters of the network f
to be shared regardless of the blind-spot. In the case of
Noise2Same [37], the network remains unchanged as blind-
ness is caused by masking input pixels, not by the network
structure. However, masking causes train-test discrepancy
of inputs and harms training efficiency since loss can be
back-propagated only through masked pixels. On the other
hand, a network such as D-BSN [36] excludes the center
pixel by its architecture. It can be optimized through every
single pixel, though the blindness cannot be removed. To
control blindness with D-BSN architecture conditionally,
the network structure should be changed while sharing the
training parameters. To this end, we propose a conditional
blind-spot network (C-BSN) to make a blind-spot without
masking the input image.

In D-BSN, blindness is induced by masked convolutions,
and dilated convolutions prevent masked pixel information
from being mixed in. We switch the behavior of masked
convolution by changing the mask of kernels according to
the given condition c:

Fo = (M ⊙W ) ∗ Fi + b, (4)

M =

{
1k×k − δk×k, if c = True,
1k×k, otherwise,

(5)
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Figure 3. Details of a random subsampler with a stride of two.
Each color represents a relative position within the cell. m is a
selection mask introduced for an explanation. The indices of m
that determine which pixel will be selected are randomly sampled
from the uniform distribution.

where W is convolutional filter, b is a bias, and Fi and Fo

are input features and output features, respectively. δk×k

is a k × k Dirac delta kernel, and 1 is the matrix of
ones. For simplicity, we omit the condition variable c when
c = False and represent only blind-conditioned network as
fM = f(·; c = True). We only use fM in the training
phase, and all test images are inferred by non-blind network
f without the loss of information.

Applying conditional masked convolution can alter the
output features’ distribution because the kernel’s center is
set to zero when c is False. However, f should be trained
differently from fM to utilize the masked pixel. In addi-
tion, the center of the kernel is trained independently of
fM , based on the modified feature distribution. Hence, we
use the kernel and its mask without normalization between
c =True and c =False.

3.5. Random Subsampler

In Section 3.3, we introduced a downsample operator to
the invariance loss to extract a subset of the image with
zero spatial correlation. This constraint is guaranteed in
pixel-wise synthetic noises, while real noise does not com-
ply. In order to remove spatial pixel dependency, Zhou et
al. [47] and Lee et al. [20] utilized pixel-shuffle downsam-
pling (PD). The PD is the inverse operation of the pixel-
shuffle [31] and creates the mosaic of the subimages. How-
ever, directly applying PD in downsampled invariance loss
is not trivial since the expectation of Eq. (2) is calculated
over subimages ds(x). Another approach to decorrelate the
noise is a space2batch (S2B) operation, where pixel down-
shuffled subimages are concatenated along batch dimension
instead of channel dimension. However, naively applying
S2B induces severe visual artifacts in the results. When
S2B images are taken as input, all the subimages are calcu-
lated independently, which results in a checkerboard pattern
in the batch2space (B2S) upsampled outputs, giving false
guidance to the f(x).

To deal with this problem, we propose a random subsam-
pler RSs(·), a subsampling operator to avoid the checker-
board artifact. Figure 3 shows the details of our random
subsampler. Taking stride of two as an example, input im-
ages are divided into 2× 2 grid cells. For each cell, a pixel
is randomly drawn within the cell, making s times down-
sampled image. If the randomly downsampled pixel in the
adjacent cell is also adjacent, the correlation may occur sig-
nificantly. However, in this case, the average distance from
the other peripheral pixels becomes large, and the expected
average distance between subsampled pixels can still be ap-
proximated to s. Therefore, as with PD, the expected spatial
correlation is weakened by the random subsampler.

3.6. Total Loss function

In this section, we provide the total loss function. For
simple notation, we use∥·∥ to represent the pixel-averaged
L1 norm. We substitute mean squared errors to the L1 norm
in the self-supervised loss, as

Lself =
∥∥f(x)− x

∥∥ . (6)

Also, we find it beneficial to replace the root mean square
(RMS) of the downsampled invariance loss with the L1

norm as well and to use a random subsampler as a down-
sampling operation,

LinvRS =
∥∥RS2(f(x))− sg(fM (RS2(x))

∥∥ . (7)

From the Proposition 1 in Section 3.3, we minimize the up-
per bound of supervised loss function,

LCBSN = Lself + λinv · LinvRS (8)

where λinv is a hyperparameter to control the contribution
of the downsampled invariance loss. We set the stride of RS
as 2 in order to reflect more spatial information.

In addition, we introduce a self-supervised loss of the
blind conditioned network, Lblind, to stabilize the training
as in [35], where

Lblind =
∥∥B2S5(fM (S2B5(x)))− x

∥∥ . (9)

While downsampled invariance loss utilizes the stride of
two, the stride in Eq. (9) is five since the ideal BSN should
be trained with as little correlation as possible. Without
blind self-supervised loss, fM (x) is random in the early
stage of training, giving wrong guidance to the f(x). Thus,
we augment LCBSN with the blind self-supervised loss to
facilitate the transition from fM to f . Additionally, we
adopt warm-up scheduling to LCBSN . Scheduling param-
eter λsch is multiplied to LCBSN , gradually increasing the
impact of LCBSN . With all these in consideration, the total
objective function is defined as

Ltotal = Lblind + λsch · LCBSN . (10)



Table 1. Quantitative comparison on SIDD and DND benchmarks. PSNR and SSIM are from the official SIDD and DND websites. We
use † notation to indicate that the network is trained on the test set directly. ∗ denotes that the method uses a self-ensemble strategy. The
highest PSNR and SSIM of self-supervised algorithms are highlighted in bold.

Supervision Method SIDD DND
PSNR(dB) SSIM PSNR(dB) SSIM

Model-based BM3D [8] 25.65 0.685 34.51 0.851
WNNM [10] 25.78 0.809 34.67 0.865

Supervised

DNCNN [44] 35.13 0.896 37.89 0.932
CBDNet [11] 33.28 0.868 38.05 0.942
RIDNet [3] 38.70 0.950 39.24 0.952

AINDNet (R)* [15] 38.84 0.951 39.34 0.952
VDN [40] 39.26 0.955 39.38 0.952

MIRNet [42] 39.72 0.959 39.88 0.956
MAXIM-3S [34] 39.96 0.960 39.84 0.957

Generation-based GCBD [38] - - 35.58 0.922
C2N* [13] + DIDN [39] 35.35 0.937 36.38 0.887

Self-supervised

NAC [38] - - 36.20 0.925
R2R [27] 34.78 0.898 - -

CVF-SID(T) [26] 34.43 0.912 36.31 0.923
CVF-SID(S2)† [26] 34.71 0.917 36.50 0.924

AP-BSN [20] 34.90 0.900 37.46 0.924
AP-BSN + R3 [20] 35.97 0.925 38.09 0.937

C-BSN 36.82 0.934 38.45 0.939
C-BSN† 36.84 0.933 38.60 0.941

4. Experimental results

4.1. Implementation Details

We train and test our method on real-world sRGB camera
noise. Our model is trained in two settings; one is trained
with an external dataset, and the other is trained with a
test set directly. For the external training set, we use the
SIDD medium set [2], which contains 320 pairs of aligned
real noisy-clean images captured by five smartphone cam-
eras. We only use the noisy images as training samples
and discard all clean images. In addition, as C-BSN re-
quires only noisy images to be trained, we train C-BSN†

solely on test set images. We test the proposed algorithm
in DND [28] and SIDD [2] benchmark. DND consists of
50 high-resolution noisy images from four different cam-
eras. Note that both benchmarks evaluate PSNR and SSIM
online and do not provide ground truth images.

We crop 240×240 patches from training images and use
the mini-batch size of 4. We randomly rotate 90◦ and flip for
data augmentation for each image patch. Input images are
normalized so that the mean and the standard deviation are
0 and 1, respectively. The standard deviation is calculated
as max(std, 1√

m
) to avoid division by zero.

We follow the AP-BSN structure [20] with modified
masked convolution in order to compare the effectiveness of

loss functions only. We set λinv to 2 as derived in Proposi-
tion 1 and employ a warm-up strategy for λsch that linearly
increases from 0 to 1 for the first 200,000 iterations. We
use Adam [16] optimizer with the initial learning rate 1e-4.
C-BSN is optimized for 400,000 iterations, and the learning
rate is halved every 100,000 iterations, capped at 2e-5. Note
that C-BSN requires a single inference of input image, and
the downsampling operation is not performed in test time.

4.2. Comparison with state-of-the-art algorithms

We compare our C-BSN against supervised, generation-
based, and self-supervised methods. The supervised mod-
els are trained on real noisy-clean pairs of SIDD, and the
generation-based models simulate realistic noise and train
denoiser with generated pairs. The self-supervised models
use only noisy images to train the networks. We only re-
port the self-supervised models that aim to remove the real
noise. Table 1 compares PSNR and SSIM on SIDD and
DND benchmarks. The proposed C-BSN outperforms other
self-supervised methods by large margins and even some
supervised networks. C-BSN† trained with the test dataset
shows slightly higher PSNR than the C-BSN trained on the
external dataset. It demonstrates that the training with the
same noise distribution of the test set benefits the perfor-
mance of the network. Specifically, C-BSN† outperforms
CVF-SID (S2) and AP-BSN+R3 by 2.13dB and 0.51dB,



(a) Noisy image
26.90 / 0.7527

(b) CVF-SID(S2) [26]
28.74/0.8737

(c) AP-BSN [20]
30.79 / 0.8901

(d) AP-BSN+R3 [20]
32.04 / 0.9164

(e) C-BSN†

32.63 / 9180
Figure 4. Visual comparison on DND benchmark. PSNR and SSIM of each image are reported below.

(a) Noisy image (b) CVF-SID(S2) [26] (c) AP-BSN [20] (d) AP-BSN+R3 [20] (e) C-BSN†

Figure 5. Visual comparison on SIDD benchmark. In SIDD benchmark, PSNR and SSIM of the image is not available.

which shows the effectiveness of our framework. The pro-
posed downsampled invariance loss and C-BSN structure
enjoy the use of blind-spot information and single inference
with full image resolution.

Figs. 1, 4, and 5 illustrate the qualitative comparisons
of self-supervised methods on the DND and SIDD bench-
marks. We can see that the outputs of CVF-SID remain
noisy and show stains in the flat region. AP-BSN suffers
from checkerboard artifact and AP-BSN+R3 over-blur im-
age details. On the contrary, it can be seen that our C-BSN
successfully reduces the noise and preserves the structure of
the images.

Note that AP-BSN+R3 [20] and CVF-SID(S2) [26] ex-
ploit a refinement technique that requires multiple runs of
the network. AP-BSN+R3 randomly replaces denoised pix-
els with noisy ones and averages the denoised results of
randomly replaced inputs. CVF-SID(S2) trains the second
model with the denoised images as a new training set and
double-denoise with two successive models. On the other
hand, we do not need any post-processing and achieve state-
of-the-art results with a single inference.

4.3. Ablation Study

In this section, we conduct ablation studies on the loss
function, downsampler, and blind loss to show the effective-
ness of the proposed method. To reduce the cost of training,
we train the networks with the patch size of 120× 120 and
evaluate them on the SIDD validation set.

Table 2. Ablation on loss function. Details of the settings of the
experiment are reported in Section 4.3.

Loss function PSNR(dB) SSIM
LN2Same 25.58 0.807

Ltotal with blind-spot 35.86 0.931
Linv with RMS 35.63 0.920

Ltotal 36.22 0.935

Ablation on loss function. We analyze the different loss
functions to evaluate the effectiveness of our downsampled
invariance loss and conditional blind-spot network. Table 2
reports the PSNR on the SIDD validation dataset with four
different loss functions. For LN2Same, we set all condition
c to False so that the network is not blind, and the blindness
is caused by masking input as in [37]. The network trained
with LN2Same fails to converge, showing that a downsam-
pling operation is necessary to reduce the spatial correlation
of real noisy input. Ltotal with blind-spot is trained with
original D-BSN, which is not able to remove the blind-spot.
We set all c to True to make the network blind while keeping
the other loss functions the same. Note that it differs from
AP-BSN or D-BSN since the network is trained by Ltotal on
full image resolution. We can see that PSNR drops largely
without C-BSN structure, which validates the importance of
the center pixel information. Lastly, Linv with L2 is trained
by LinvRS with the RMS as in Noise2Same. The perfor-
mance decreases when the L1 norm of LinvRS is replaced
by RMS, which shows L1 norm can enhance the quality of
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Figure 6. Qualitative comparison of different downsampling
operations in downsampled invariance loss on SIDD valida-
tion.

output significantly.
Ablation on downsampler. We evaluate the networks
trained with different downsamplers in the downsampled
invariance loss to validate the effectiveness of our random
subsampler with a stride of two. We test three downsam-
plers, PD, S2B, and RS, with strides of 2 and 5. Each
stride represents the small stride for more information and
the large stride for spatial independence of real noise. Ta-
ble 3 and Figure 6 show the effectiveness of each down-
sample operation quantitatively and qualitatively. As argued
in Section 3.5, the networks trained with PD underperform
S2B and produce visual artifacts of size s× s. The models
trained with the stride of 5 produce blurry images and can-
not remove noise around the edges. It demonstrates that it is
advantageous to keep spatial information of the input with

Table 3. Ablation on the downsampler of downsampled invari-
ance loss.

downsampler stride PSNR(dB) SSIM

PD
5 34.71 0.905
2 35.32 0.914

S2B
5 35.62 0.924
2 36.02 0.922

RS
5 35.24 0.922
2 36.22 0.935

Table 4. Ablation on the blind loss.
λsch PSNR(dB) SSIM
∞ 25.92 0.810
0 29.59 0.757
1 35.65 0.926

warm-up 36.22 0.935

a small stride in the downsampled invariance loss. Regard-
less of the stride, S2B outperforms PD, and RS outperforms
S2B. PD and S2B with a stride of two can reduce spatially
correlated noise, but it also produces severe checkerboard
artifacts. On the other hand, the proposed RS2 achieves the
highest PSNR and visually pleasing result without artifacts,
outperforming PD2 and S2B2 by 0.90dB and 0.20dB, re-
spectively.
Ablation on the blind loss. We investigate the effective-
ness of the blind loss, Lblind. Though LCBSN is an up-
per bound of the supervised loss, the training is unstable
without Lblind. We set the hyperparameter λsch to differ-
ent conditions as in Table 4. When λsch = ∞, we do not
use the blind loss and train C-BSN with LCBSN only. In
this case, the network fails to learn denoising and outputs
zeros, resulting in a flat image of the input mean. With
λsch = 0, the loss function is Lblind as AP-BSN [20].
However, processing AP-BSN with the original size input
without a blind-spot produces severe artifacts and poor im-
age quality. It can be seen that λsch = 1 shows suboptimal
PSNR to warm-up, yet it sometimes falls to the same local
optima as λsch = ∞. The suggested warm-up scheduling
brings about 0.57dB PSNR improvement and stabilizes the
training procedure.

5. Conclusion

We have presented a novel self-supervised image denois-
ing framework C-BSN for real camera noise reduction. We
have derived the downsampled invariance loss, which is the
upper bound of the supervised loss and enables the training
without a blind-spot. The C-BSN structure conditionally
controls blind-spot, and then the random subsampler decor-
relates noise without introducing visual artifacts. Without
using post-processing or refinement, our C-BSN outper-
forms recent self-supervised denoisers.



Appendix

S1. Detailed Proof of Downsampled Invariance
Loss

Proposition 1. Let x be a normalized zero-mean noisy im-
age conditioned on y, E[x|y] = y. Let d be any downsam-
pling operation and ds(x) be a set of downsampled pixels
of x with a stride of s. Assume that downsampled subimage
ds(x) has zero pixel-wise correlation and fM is a blind-
spot network. Then, the following inequality holds.

Ex,y

∥∥f(x)− y
∥∥2 +∥x− y∥2 ≤ Ex

∥∥f(x)− x
∥∥2

+ 2
√
ms2 E

ds(x)
[E

∥∥ds(f(x))− fM (ds(x))
∥∥2] 12 .

(s1)

Proof. We follow similar steps with the supplementary ma-
terial of [37]. Self-supervised loss can be decomposed as

Ex ||f(x)− x||2 =Ex,y ||f(x)− y||2 + ||x− y||2

− 2⟨f(x)− y,x− y⟩. (s2)

Then, Proposition 1 is equivalent to that the third term
⟨f(x)− y,x− y⟩ is upper-bounded by the rightmost term
in Eq. (s1). ⟨f(x)− y,x− y⟩ can be formulated as

Ex,y⟨f(x)− y,x− y⟩ (s3)

= Ey Ex|y
∑
j

(f(x)j − yj)(xj − yj) (s4)

=
∑
j

Ey[Ex|y(f(x)j − yj)(xj − yj)

− Ex|y(f(x)j − yj)Ex|y(xj − yj)] (s5)

=
∑
j

Ey[Cov(f(x)j − yj , xj − yj |y)] (s6)

=
∑
j

Ey[Cov(f(x)j , xj |y)]. (s7)

Eq. (s5) holds since Ex|y(xj − yj) = 0 by the zero-mean
noise assumption. Let J be a subset of the image sampled
by a random downsampling operation ds(x). Then we have
the equation,

∑
j

Ey[Cov(f(x)j , xj |y)] =
m

|J |
EJ

∑
j

Ey[Cov(f(x)j , xj |y)],

(s8)
since every pixel has the chance of selecting |J |/m = 1/s2.
On the right-hand side, the covariance term can be upper-
bounded as

1

|J |
∑
j∈J

Ey[Cov(f(x)j , xj |y)] (s9)

=
1

|J |
∑
j∈J

Ey[Cov(f(x)j − fM (ds(x))j , xj |y)] (s10)

≤ 1

|J |
∑
j∈J

(Ey[Var(f(x)j − fM (ds(x))j |y)
1
2 ·Var(xj |y)

1
2 ])

(s11)

≤ (
1

|J |
∑
j∈J

Ey[Var(f(x)j − fM (ds(x))j |y) ·Var(xj |y)])
1
2

(s12)

≤ (
1

|J |
∑
j∈J

Ey[E[(f(x)j − fM (ds(x))j)
2|y]] · 1) 1

2 ]

(s13)

= (
1

|J |
∑
j∈J

E[(f(x)j − fM (ds(x))j)
2])

1
2 (s14)

= (
s2

m
E[(ds(f(x))− fM (ds(x)))

2])
1
2 (s15)

In Eq. (s10), the equality holds since xj is excluded in BSN
and downsampled surroundings have no correlation with xj

by the assumption. Note that the Inequality (s11) is de-
rived from the Cauchy-Schwarz inequality, and the Inequal-
ity (s12) is derived from Jensen’s inequality. Also, the In-
equality (s13) holds by the fact that Var(x) ≤ E[x2], and by
the assumption that input x is normalized i.e., Var(xj |y) ≤
Var(xj) = 1.

By the Proposition 1, we use Eq. (s15) as downsampled
invariance loss,

Linv =

√
s2

m
||ds(f(x))− sg(fM (ds(x)))||2, (s16)

where sg is the stop gradient operation. fM (ds(x)) is in-
troduced to Eq. (s10) since it has zero correlation with xj .
Therefore, we regard it as a constant and adopt a stop-
gradient operation in the loss function. Lastly, we replace
the root mean squared error with mean absolute difference
in downsampled invariance loss as

Linv =
s2

m
||ds(f(x))− sg(fM (ds(x)))||1. (s17)

S2. Analysis of Downsampling Ratio in Loss
Functions

We conduct extensive experiments to analyze the effects
of the downsampling ratios in LinvRS and Lblind. Fig-
ure S1 shows the PSNR of C-BSNa/b on SIDD validation
dataset [2], where a is the stride of RS in the downsampled
invariance loss and b is the stride of S2B in the blind loss.
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Figure S1. PSNR of C-BSNa/b on SIDD validation [2], where a
denotes the stride of RS and b denotes the stride of S2B.

Using strides less than 4 in the blind loss leads to sub-
optimal performance, showing that reducing spatial corre-
lation of masked network input is crucial. Regarding the
strides of RS, the performance tends to decrease as the stride
increases over 3, while C-BSN with a = 1 fails to denoise
the image. Although the performance is maximized with C-
BSN3/4, the performance gap is marginal and falls within
the range of variation caused by the randomness of the train-
ing process. Therefore, we adopt C-BSN2/5 as a baseline,
consistent with AP-BSN [20].

S3. Ablation on Downsampler of Blind Loss

We conduct an additional ablation study on the down-
sampler of blind loss. We follow the same setting as Section
4.3 in the paper. Table S1 reports PSNR and SSIM of the
network with different downsampler in the blind loss. Re-
gardless of downsampling operations, models trained with
small strides show poor performance, which is consistent
with the result of Figure S1. Space2batch, with a stride of
5, achieves the highest PSNR and SSIM compared to the
other two downsamplers. Therefore, we employ S2B as the
downsampling function for the blind loss.

S4. More Visualized Results

We present more visual comparisons on SIDD [2] vali-
dation and NIND [5]. We compare C-BSN with other self-
supervised methods, CVF-SID (T) [26], CVF-SID (S2),
AP-BSN [20], AP-BSN (R3) [20], which aim to remove
real-world noise. We use official code from the authors’
GitHub with the pre-trained model. The denoised results of
various scenes are illustrated in Figure S2.

For NIND, we use C-BSN† which is trained on the test
set directly. Figure S3 shows the noisy images from NIND

Table S1. Ablation on the downsampler of blind Loss.
downsampler stride PSNR(dB) SSIM

PD
5 34.83 0.912
2 29.11 0.715

S2B
5 36.22 0.935
2 25.93 0.810

RS
5 35.67 0.924
2 30.54 0.771

and its denoised outputs. We mark ROI with red boxes
for each image and present noisy-denoised pairs of cropped
patches.



Figure S2. Visual comparison of denoised images on SIDD validation [2]. We provide PSNR and SSIM in the upper left of the images.
All images are upsampled by 2 with the nearest neighbor for better comparison. Best viewed in pdf.



(a) NIND soap ISO6400

(b) NIND MuseeL-coral2 ISOH1

(c) NIND MVB-LouveFire ISOH1
Figure S3. C-BSN† results of NIND [5] samples. (Left) Real noisy images from NIND. (Right) Enlarged noisy-Denoised image pairs.
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