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Abstract

Exploiting spatial-angular correlation is crucial to light
field (LF) image super-resolution (SR), but is highly chal-
lenging due to its non-local property caused by the dis-
parities among LF images. Although many deep neural
networks (DNNs) have been developed for LF image SR
and achieved continuously improved performance, exist-
ing methods cannot well leverage the long-range spatial-
angular correlation and thus suffer a significant perfor-
mance drop when handling scenes with large disparity vari-
ations. In this paper, we propose a simple yet effective
method to learn the non-local spatial-angular correlation
for LF image SR. In our method, we adopt the epipolar
plane image (EPI) representation to project the 4D spatial-
angular correlation onto multiple 2D EPI planes, and then
develop a Transformer network with repetitive self-attention
operations to learn the spatial-angular correlation by mod-
eling the dependencies between each pair of EPI pixels.
Our method can fully incorporate the information from all
angular views while achieving a global receptive field along
the epipolar line. We conduct extensive experiments with
insightful visualizations to validate the effectiveness of our
method. Comparative results on five public datasets show
that our method not only achieves state-of-the-art SR per-
formance but also performs robust to disparity variations.
Code is publicly available at https://github.com/
ZhengyuLiang24/EPIT.

1. Introduction

Light field (LF) cameras record both intensity and direc-
tions of light rays, and enable various applications such as
depth perception [25, 29, 32], view rendering [3, 52, 66],
virtual reality [11, 74], and 3D reconstruction [6, 77]. How-
ever, due to the inherent spatial-angular trade-off [82], an
LF camera can either provide dense angular samplings with
low-resolution (LR) sub-aperture images (SAIs), or capture
high-resolution (HR) SAIs with sparse angular sampling.
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Figure 1. Visualization of 4× SR results and the corresponding at-
tribution maps [18] of our method and four state-of-the-art meth-
ods [26, 36, 60, 78] under different manually sheared disparity
values. Here, the patch marked by the green box in the HR image
is selected as the target region, and the regions that contribute to
the final SR results are highlighted in red. Our method can well
exploit the non-local spatial-angular correlation and achieve supe-
rior SR performance. More examples are provided in Fig. 8.

To handle this problem, many methods have been proposed
to enhance the angular resolution via novel view synthesis
[28, 43, 67], or enhance the spatial resolution by performing
LF image super-resolution (SR) [10, 20]. In this paper, we
focus on the latter task, i.e., generating HR LF images from
their LR counterparts.

Recently, convolutional neural networks (CNNs) have
been widely applied to LF image SR and demonstrated su-
perior performance over traditional paradigms [1, 34, 44,
49, 64]. To incorporate the complementary information
(i.e., angular information) from different views, existing
CNNs adopted various mechanisms such as adjacent-view
combination [73], view-stack integration [26, 78, 79], bidi-
rectional recurrent fusion [59], spatial-angular disentangle-
ment [36, 60, 61, 72, 9], and 4D convolutions [42, 43].
However, as illustrated in both Fig. 1 and Sec. 4.3, existing
methods achieve promising results on LFs with small base-
lines, but suffer a notable performance drop when handling
scenes with large disparity variations.
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We attribute this performance drop to the contradictions
between the local receptive field of CNNs and the require-
ment of incorporating non-local spatial-angular correlation
in LF image SR. That is, LF images provide multiple obser-
vations of a scene from a number of regularly distributed
viewpoints, and a scene point is projected onto different
but correlated spatial locations on different angular views,
which is termed as the spatial-angular correlation. Note
that, the spatial-angular correlation has the non-local prop-
erty since the difference between the spatial locations of two
views (i.e., disparity value) depends on several factors (e.g.,
angular coordinates of the selected views, the depth value
of the scene point, the baseline length of the LF camera,
and the resolution of LF images), and can be very large in
some situations. Consequently, it is appealing for LF im-
age SR methods to incorporate complementary information
from different views by exploiting the spatial-angular cor-
relation under large disparity variations.

In this paper, we propose a simple yet effective method
to learn the non-local spatial-angular correlation for LF im-
age SR. In our method, we re-organize 4D LFs as multi-
ple 2D epipolar plane images (EPIs) to manifest the spatial-
angular correlation to the line patterns with different slopes.
Then, we develop a Transformer-based network called EPIT
to learn the spatial-angular correlation by modeling the de-
pendencies between each pair of pixels on EPIs. Specif-
ically, we design a basic Transformer block to alternately
process horizontal and vertical EPIs, and thus progressively
incorporate the complementary information from all angu-
lar views. Compared to existing LF image SR methods, our
method can achieve a global receptive field along the epipo-
lar line, and thus performs robust to disparity variations.

In summary, the contributions of this work are as fol-
lows: (1) We address the importance of exploiting non-
local spatial-angular correlation in LF image SR, and pro-
pose a simple yet effective method to handle this problem.
(2) We develop a Transformer-based network to learn the
non-local spatial-angular correlation from horizontal and
vertical EPIs, and validate the effectiveness of our method
through extensive experiments and visualizations. (3) Com-
pared to existing state-of-the-art LF image SR methods,
our method achieves superior performance on public LF
datasets, and is much more robust to disparity variations.

2. Related Work

2.1. LF Image SR

LFCNN [73] is the first method to adopt CNNs to learn
the correspondence among stacked SAIs. Then, it is a com-
mon practice for LF image SR networks to aggregate the
complementary information from adjacent views to model
the correlation in LFs. Yeung et al. [72] designed a spatial-
angular separable (SAS) convolution to approximate the 4D

convolution to characterize the sub-pixel relationship of LF
4D structures. Wang et al. [59] proposed a bidirectional
recurrent network to model the spatial correlation among
views on horizontal and vertical baselines. Meng et al. [42]
proposed a densely-connected network with 4D convolu-
tions to explicitly learn the spatial-angular correlation en-
coded in 4D LF data. To further learn inherent correspond-
ing relations in SAIs, Zhang et al. [78, 79] grouped LFs
into four different branches according to the specific an-
gular directions, and used four sub-networks to model the
multi-directional spatial-angular correlation.

The aforementioned networks use part of input views to
super-resolve each view, and the inherent spatial-angular
correlation in LF images cannot be well incorporated. To
address this issue, Jin et al. [26] proposed an All-to-One
framework for LF image SR, and each SAI can be indi-
vidually super-resolved by combining the information from
all views. Wang et al. [61, 60] organized LF images
into macro-pixels, and designed a disentangling mechanism
to fully incorporate the angular information. Liu et al.
[38] introduced 3D convolutions based multi-view context
block to exploit the correlations among all views. In addi-
tion, Wang et al. [62] adopted deformable convolutions to
achieve long-range information exploitation from all SAIs.
Existing methods generally learn the local correspondence
across SAIs, and ignore the importance of non-local spatial-
angular correlation in LF images. However, due to the lim-
ited receptive field of CNNs, existing methods generally
learn the local correspondence across SAIs, and ignore the
importance of non-local spatial-angular correlation in LF
images.

Recently, Liang et al. [36] applied Transformers to LF
image SR and developed an angular Transformer and a
spatial Transformer to incorporate angular information and
model long-range spatial dependencies, respectively. How-
ever, since 4D LFs were organized into 2D angular patches
to form the input of angular Transformers, the non-local
property of spatial-angular correlations reduces the robust-
ness of LFT to large disparity variations.

2.2. Non-Local Correlation Modeling

Non-local means [5] is a classical algorithm that com-
putes the weighted mean of pixels in an image according
to the self-similarity measure, and a number of studies on
such non-local priors have been proposed for image restora-
tion [12, 51, 19, 4], image and video SR [16, 76, 14, 71, 23].
Then, the attention mechanism is developed as a tool to bias
the most informative components of an input signal, and
achieves significant performance in various computer vi-
sion tasks [22, 8, 58, 15]. Huang et al. [24] proposed novel
criss-cross attention to capture contextual information from
full-image dependencies in an efficient way. Wang et al.
[56, 55] proposed a parallax attention mechanism to handle
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the varying disparities problem of stereo images. Wu et al.
[69] applied attention mechanisms to 3D LF reconstruction
and developed a spatial-angular attention module to learn
the first-order correlation on EPIs.

Recently, the attention mechanism is further general-
ized as Transformers [54] with multi-head structures and
feed-forward networks. Transformers have inspired lots
of works [39, 35, 7, 13] to further investigate the power
of attention mechanisms in visions. Liu et al. [40] pre-
sented a pure-Transformer method to incorporate the inher-
ent spatial-temporal locality of videos for action recogni-
tion. Naseer et al. [45] investigated the robustness and gen-
eralizability of Transformers, and demonstrated favorable
merits of Transformers over CNNs for occlusion handling.
Shi et al. [50] observed that Transformers can implicitly
make accurate connections for misaligned pixels, and pre-
sented a new understanding of Transformers to process spa-
tially unaligned images.

3. Method
3.1. Preliminary

Based on the two-plane LF parameterization model [33],
an LF image is commonly formulated as a 4D function
L(u, v, h, w) ∈ RU×V×H×W , where U and V represent
angular dimensions, H and W represent spatial dimensions.
The EPI sample of 4D LF is acquired with a fixed angular
coordinate and a fixed spatial coordinate. Specifically, the
horizontal EPI is obtained with constant u and h, and the
vertical EPI is obtained with constant v and w.

As shown in Fig. 2, the EPIs not only record spatial
structures at edges or textures, but also reflect the dispar-
ity information via line patterns of different slopes. Specif-
ically, due to large disparities, the EPIs contain abundant
spatial-angular correlation of LFs in a long-range way.
Therefore, we propose to explore the non-local spatial-
angular correlation from horizontal and vertical EPIs for LF
image SR.

3.2. Network Design

As shown in Fig. 3(a), our network takes an LR LF
LLR ∈ RU×V×H×W as its input, and produces an HR LF
LSR ∈ RU×V×αH×αW , where α presents the upscaling
factor. Our network consists of three stages including initial
feature extraction, deep spatial-angular correlation learning,
and feature upsampling.

3.2.1 Initial Feature Extraction

As shown in Fig. 3(b), we follow most existing works
[7, 35, 75] to use three 3×3 convolutions with LeakyReLU
[41] as a SpatialConv layer to map each SAI to a high-
dimensional feature. The initially extracted feature can be
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Figure 2. The SAI and EPI representations of LF images. The
array of 9×9 views of a scene rosemary from HCInew [21]
dataset is used as an example for illustration.

represented as F ∈ RU×V×H×W×C , where C denotes the
channel dimension.

3.2.2 Deep Spatial-Angular Correlation Learning

Non-Local Cascading Block. The basic module for
spatial-angular correlation learning is the Non-Local Cas-
cading block. As shown in Fig. 3(a), each block consists of
two cascaded Basic-Transformer units to separately incor-
porate the complementary information along the horizontal
and vertical epipolar lines. In our method, we employed five
Non-Local Cascading blocks to achieve a global perception
of all angular views, and followed SwinIR [35] to adopt
spatial convolutions to enhance the local feature represen-
tation. The effectiveness of this inter-block spatial convo-
lution is validated in Sec. 4.4. Note that, the weights of
the two Basic-Transformer units in each block are shared to
jointly learn the intrinsic properties of LFs, which is demon-
strated effective in Sec. 4.4.

As shown in Fig. 3(c), the initial features F can be
first separately reshaped to the horizontal EPI pattern
Fhor ∈ RUH×V×W×C and the vertical EPI pattern Fver ∈
RVW×U×H×C . Next, Fhor (or Fver) is fed to a Basic-
Transformer unit to integrate the long-range information
along the horizontal (or vertical) epipolar line. Then, the
enhanced feature F̂hor (or F̂ver) is reshaped into the size
of UV ×H ×W × C, and passes through a SpatialConv
layer to incorporate the spatial context information within
each SAI. Without loss of generality, we take the vertical
Basic-Transformer as an example to introduce the detail of
our Basic-Transformer unit in the following texts.
Basic-Transformer Unit. The objective of this unit is to
capture long-range dependencies along the epipolar line via
Transformers. To leverage the powerful sequence mod-
eling capability of Transformers, we convert the vertical
EPI features Fver to the sequences of “tokens” for cap-
turing spatial-angular correlation in U and H dimensions.
As shown in Fig. 3(d), the vertical EPI features are passed
through a linear projection matrix Win ∈ RC×D , where D

3



 
 

H
or

iz
on

ta
l

V
er

ti
ca

l

N
on

-L
oc

al
 C

as
ca

di
ng

 

N
on

-L
oc

al
 C

as
ca

di
ng

N
on

-L
oc

al
 C

as
ca

di
ng

 

N
on

-L
oc

al
 C

as
ca

di
ng

 

Sp
at

ia
lC

on
v

(a) Overview

Ma

Weight 
Sharing

Add

Initial Feature 
Extraction

Deep Spatial-Angular 
Correlation Learning

Spatial 
Upsampling

U
p-

Sa
m

pl
in

g

Sp
at

ia
lC

on
v

(d) Basic Transformer 

La
ye

rN
or

m

Se
lf-

A
tt

en
ti

on

La
ye

rN
or

m

C
ha

nn
el

 M
LP

(c) Non-Local Cascading Block

Horizontal Unit Vertical Unit

Ba
si

c
Tr

an
sf

or
m

er

Sp
at

ia
lC

on
v

(b) SpatialConv

3x3

3x3

3x3

LReLU

LReLU Li
ne

ar

Li
ne

ar

Figure 3. An overview of our proposed EPIT. Here, a 3×3 LF is used as an example for illustration.

denotes the embedding dimension of each token. The pro-
jected EPI features are a sequence of tokens with a length of
UH , i.e., Tver ∈ RUH×D. Following the PreNorm opera-
tion in [70], we also apply Layer Normalization (LN) before
the attention calculation, and obtain the normalized tokens
T̄ver = LN(Tver).

Afterwards, tokens T̄ver are passed through the Self-
Attention layer and transformed into the deep tokens involv-
ing non-local spatial-angular information along the vertical
epipolar line. Specifically, T̄ver need to be separately mul-
tiplied by WQ ∈ RD×D , WK ∈ RD×D and WV ∈ RD×D

to generate corresponding query, key and value compo-
nents for self-attention calculation, i.e., Qver = T̄verWQ ,
Kver = T̄verWK and Vver = T̄verWV .

Given a query position q = {1, 2, ...,UH } in Qver and a
key position k = {1, 2, ...,UH } in Kver, the corresponding
response Aver(q, k) ∈ R measures the mutual similarity of
the pairs by the dot-product operation, followed by a Soft-
max function to obtain the attention scores on the vertical
EPI tokens. That is,

Aver(q, k) = Softmax(
Qver (q) ·Kver (k)

T

√
D

). (1)

Based on the attention scores, the output of self-attention
T ′
ver can be calculated as the weighted sum of value. In

summary, the calculation process of Self-Attention layer can
be formulated as:

T ′
ver = AverVver + Tver . (2)

To further incorporate the spatial-angular correlation,

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. An example of the attention maps of a Basic-Transformer
unit for the spatial-angular correlation. Note that, the attention
maps correspond to the correlation between the regions marked by
the red and yellow strokes.

following [54], our Basic-Transformer unit also contains
the multi-layer perception (MLP) and LN, and generates the
enhanced T̂ver as:

T̂ver = MLP(LN(T ′
ver)) + T ′

ver. (3)

At the end of the Basic-Transformer unit, the enhanced
T̂ver is fed to another linear projection Wout ∈ RD×C ,
and reshaped into the size of UV ×H ×W × C for the
subsequent SpatialConv layer.
Cross-View Similarity Analysis. Note that, the setting
[Aver(q, 1), ...,Aver(q,UH )] ∈ R1×UH represents the
similarity scores of q with all k in Kver, and thus can be
re-organized as a slice of cross-view attention map accord-
ing to the angular coordinate. Inspired by this, we visual-
ized the cross-view attention maps on an example scene in
Fig. 4. The regions marked by the red stripe in Fig. 4(a)
are set as the query tokens, and the self-similarity (i.e.,
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Table 1. Quantitative comparison of different SR methods in terms of the number of parameters (#Prm.) and PSNR/SSIM. Larger PSNR
and SSIM values indicate higher SR quality. We mark the best results in red and the second best results in blue.

Methods #Prm.(M) 2× 4×
2×/4× EPFL HCInew HCIold INRIA STFgantry EPFL HCInew HCIold INRIA STFgantry

Bicubic - / - 29.74/.9376 31.89/.9356 37.69/.9785 31.33/.9577 31.06/.9498 25.14/.8324 27.61/.8517 32.42/.9344 26.82/.8867 25.93/.8452
VDSR [30] 0.66 / 0.66 32.50/.9598 34.37/.9561 40.61/.9867 34.43/,9741 35.54/.9789 27.25/.8777 29.31/.8823 34.81/.9515 29.19/.9204 28.51/.9009
EDSR [37] 38.6 / 38.9 33.09/.9629 34.83/.9592 41.01/.9874 34.97/.9764 36.29/.9818 27.84/.8854 29.60/.8869 35.18/.9536 29.66/.9257 28.70/.9072
RCAN [81] 15.3 / 15.4 33.16/.9634 34.98/.9603 41.05/.9875 35.01/.9769 36.33/.9831 27.88/.8863 29.63/.8886 35.20/.9548 29.76/.9276 28.90/.9131
resLF[79] 7.98 / 8.64 33.62/.9706 36.69/.9739 43.42/.9932 35.39/.9804 38.36/.9904 28.27/.9035 30.73/.9107 36.71/.9682 30.34/.9412 30.19/.9372

LFSSR [72] 0.88 / 1.77 33.68/.9744 36.81/.9749 43.81/.9938 35.28/.9832 37.95/.9898 28.27/.9118 30.72/.9145 36.70/.9696 30.31/.9467 30.15/.9426
LF-ATO [26] 1.22 / 1.36 34.27/.9757 37.24/.9767 44.20/.9942 36.15/.9842 39.64/.9929 28.52/.9115 30.88/.9135 37.00/.9699 30.71/.9484 30.61/.9430

LF-InterNet [61] 5.04 / 5.48 34.14/.9760 37.28/.9763 44.45/.9946 35.80/.9843 38.72/.9909 28.67/.9162 30.98/.9161 37.11/.9716 30.64/.9491 30.53/.9409
LF-DFnet [62] 3.94 / 3.99 34.44/.9755 37.44/.9773 44.23/.9941 36.36/.9840 39.61/.9926 28.77/.9165 31.23/.9196 37.32/.9718 30.83/.9503 31.15/.9494
MEG-Net [78] 1.69 / 1.77 34.30/.9773 37.42/.9777 44.08/.9942 36.09/.9849 38.77/.9915 28.74/.9160 31.10/.9177 37.28/.9716 30.66/.9490 30.77/.9453
LF-IINet [38] 4.84 / 4.88 34.68/.9773 37.74/.9790 44.84/.9948 36.57/.9853 39.86/.9936 29.11/.9188 31.36/.9208 37.62/.9734 31.08/.9515 31.21/.9502

DPT [57] 3.73 / 3.78 34.48/.9758 37.35/.9771 44.31/.9943 36.40/.9843 39.52/.9926 28.93/.9170 31.19/.9188 37.39/.9721 30.96/.9503 31.14/.9488
LFT [36] 1.11 / 1.16 34.80/.9781 37.84/.9791 44.52/.9945 36.59/.9855 40.51/.9941 29.25/.9210 31.46/.9218 37.63/.9735 31.20/.9524 31.86/.9548

DistgSSR [60] 3.53 / 3.58 34.81/.9787 37.96/.9796 44.94/.9949 36.59/.9859 40.40/.9942 28.99/.9195 31.38/.9217 37.56/.9732 30.99/.9519 31.65/.9535
LFSAV [9] 1.22 / 1.54 34.62/.9772 37.43/.9776 44.22/.9942 36.36/.9849 38.69/.9914 29.37/.9223 31.45/.9217 37.50/.9721 31.27/.9531 31.36/.9505

EPIT (ours) 1.42 / 1.47 34.83/.9775 38.23/.9810 45.08/.9949 36.67/.9853 42.17/.9957 29.34/.9197 31.51/.9231 37.68/.9737 31.37/.9526 32.18/.9571

key are same as query) is ideally located at the diagonal,
as shown in Fig. 4(f). In contrast, the yellow stripes in
Figs. 4(b)-4(e) are set as the key tokens, the correspond-
ing cross-view similarities are shown in Figs. 4(g)-4(j). It
can be observed that due to the foreground occlusions, the
responses of the background appear as short lines (marked
by the white boxes) parallel to the diagonal in each cross-
view attention map, and both of the distance to the diagonal
and the length of response regions adaptively change as the
key view moves along the baseline, which demonstrates the
disparity-awareness of our Basic-Transformer unit.

3.2.3 Feature Upsampling

Finally, we apply the pixel shuffling operation to increase
the spatial resolution of LF features, and further employ
a 3×3 convolution to obtain the super-resolved LF image
LSR. Following most existing works [61, 60, 36, 62, 57,
38, 78, 79, 72], we use the L1 loss function to train our net-
work due to its robustness to outliers [2].

4. Experiments

In this section, we first introduce the datasets and our
implementation details, and then compare our method with
state-of-the-art methods. Next, we investigate the perfor-
mance of different SR methods with respect to disparity
variations. Finally, we validate the effectiveness of our
method through ablation studies.

4.1. Datasets and Implementation Details

We followed [62, 60, 38, 57, 36] to use five public LF
datasets (EPFL [48], HCInew [21], HCIold [65], INRIA
[46], STFgantry [53]) in the experiments. All LFs in these
datasets have an angular resolution of 9×9. Unless specif-
ically mentioned, we extracted the central 5×5 SAIs for

training and test. In the training stage, we cropped each
SAI into patches of size 64×64/128×128, and performed
0.5×/0.25× bicubic downsampling to generate the LR
patches for 2×/4× SR, respectively. We used peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) [63]
as quantitative metrics for performance evaluation. To ob-
tain the metric score for a dataset with M scenes, we first
calculated the metric of each scene by averaging the scores
over all the SAIs separately, and then obtained the score for
this dataset by averaging the scores over the M scenes.

We adopted the same training settings for all experi-
ments, i.e., Xavier initialization algorithm [17] and Adam
optimizer [31] with β1 = 0.9, β2 = 0.999. The initial learn-
ing rate was set to 2×10−4 and decreased by a factor of 0.5
every 15 epochs. During the training phase, we performed
random horizontal flipping, vertical flipping, and 90-degree
rotation to augment the training data. All models were
implemented in the PyTorch framework and trained from
scratch for 80 epochs with 2 Nvidia RTX 2080Ti GPUs.

4.2. Comparisons on Benchmark Datasets

We compare our method to 14 state-of-the-art methods,
including 3 single image SR methods [30, 37, 81] and 11 LF
image SR methods [79, 72, 26, 61, 62, 78, 38, 57, 36, 60, 9].
Quantitative Results. A quantitative comparison among
different methods is shown in Tabel 1. Our EPIT with
a small model size (i.e., 1.42M/1.47M for 2×/4× SR)
achieves state-of-the-art PSNR and SSIM scores on almost
all the datasets for both 2× and 4× SR. It is worth noting
that LFs in the STFgantry dataset [53] have larger dispar-
ity variations, and are thus more challenging. Our EPIT
significantly outperforms all the compared methods and
achieves 1.66dB/0.32dB PSNR improvements over the sec-
ond top-performing method LFT for 2×/4× SR, respec-
tively, which demonstrates the powerful capacity of our
EPIT in non-local correlation modeling.
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Figure 5. Qualitative comparison of different SR methods for 2×/4× SR.
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Figure 6. Quantitative and qualitative (MSE) comparisons of dis-
parity estimation results achieved by SPO [80] using different SR
results. The MSE (↓) is the mean square error multiplied by 100.

Table 2. PSNR values achieved by DistgSSR [60] and our EPIT
with different angular resolution for 4× SR.
Input EPFL HCInew HCIold INRIA STFgantry

[60] Ours [60] Ours [60] Ours [60] Ours [60] Ours
2×2 28.27 -0.05 30.80 +0.04 36.77 +0.17 30.55 -0.03 30.74 +0.56
3×3 28.67 +0.03 31.07 +0.19 37.18 +0.19 30.83 +0.11 31.12 +0.74
4×4 28.81 +0.23 31.25 +0.15 37.32 +0.20 30.93 +0.26 31.23 +0.88
5×5 28.99 +0.35 31.38 +0.13 37.56 +0.12 30.99 +0.38 31.65 +0.56
6×6 29.10 +0.33 31.39 +0.18 37.52 +0.26 30.98 +0.47 31.57 +0.74
7×7 29.38 +0.22 31.43 +0.20 37.65 +0.27 31.18 +0.33 31.63 +0.77
8×8 29.32 +0.28 31.52 +0.14 37.76 +0.24 31.23 +0.31 31.58 +0.90
9×9 29.41 +0.30 31.48 +0.21 37.80 +0.26 31.22 +0.34 31.66 +0.84

Qualitative Results. Figure 5 shows the qualitative re-
sults achieved by different methods for 2×/4× SR. It can
be observed from the zoom-in regions that single image SR
method RCAN [81] cannot recover the textures and details
in the SR images. In contrast, our EPIT can incorporate
sub-pixel correspondence among SAIs and generate more
faithful details with fewer artifacts. Compared to most LF
image SR methods, our EPIT can generate superior visual
results with high angular consistency. Please refer to the
supplemental material for additional visual comparisons.
Angular Consistency. We evaluate the angular consistency
by using the 4× SR results on several challenging scenes

Cars 34 / STF Lytro

Bicubic

DistgSSRLFTMEG-Net LF-IINet

LF-ATOLFSSR

RCAN

EPIT

resLF

DPT

Figure 7. Visual comparison of different SR methods on real-world
LF scenes for 4× SR.

(e.g., Backgammon and Stripes) in 4D LF benchmark
[21] for disparity estimation. As shown in Fig. 6, our
EPIT achieves competitive MSE scores on these challeng-
ing scenes, which demonstrates the superiority of our EPIT
on angular consistency.
Performance with Different Angular Resolution. Since
the angular resolution of LR images can vary significantly
with different LF devices, we compare our method to Dist-
gSSR [60] on LFs with different angular resolutions. It can
be observed from Table 2 that our method achieves higher
PSNR values than DistgSSR on almost all the datasets with
each angular resolution (except on the EPFL and INRIA
datasets with 2×2 input LFs). The consistent performance
improvements demonstrate that our EPIT can well model
the spatial-angular correlation with various angular resolu-
tions. More comparisons and discussions are provided in
the supplemental material.
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Figure 8. Performance comparison and local attribution maps of different SR methods on two representative scenes with different shearing
values for 2× SR. Here, we plot the performance curve to quantitatively measure the effect of disparity variations on LFs, and present the
visual results and corresponding attribution maps under sheared value=2, 4.

Performance on Real-World LF Scenes. We compare our
method to state-of-the-art methods under real-world degra-
dation by directly applying them to LFs in the STFlytro
dataset [47]. Since no groundtruth HR images are avail-
able in this dataset, we present the LR input and their super-
resolved results in Fig. 7. It can be observed that our method
can recover more faithful details and generate more clear
letters than other methods. Since the LF structure keeps un-
changed under both bicubic and real-world degradation, our
method can learn the spatial-angular correlation from bicu-
bicly downsampled training data, and well generalize to LF
images under real degradation.

4.3. Robustness to Large Disparity Variations

Considering the parallax structure of LF images, we fol-
lowed the shearing operation in existing works [67, 68] to
linearly change the overall disparity range of LF datasets.
Note that, the content of SAIs maintain unchanged after the
shearing operation, and thus we can quantitatively investi-
gate the performance of different SR methods with respect
to the disparity variations.
Quantitative & Qualitative Comparison. Figure 8 shows
the quantitative and qualitative results of different SR meth-
ods with respect to sheared values, from which we can
observe that: 1) Except for the single image SR method
RCAN, all LF image SR methods suffer a performance drop

when the absolute sheared value of LF images increases.
That is because, large sheared values can result in more
significant misalignment among LF images, and introduce
difficulties in complementary information incorporation; 2)
As the absolute sheared value increases, the performance of
existing LF image SR methods is even inferior to RCAN.
The possible reason is that, these methods do not make full
use of local spatial information, but rather rely on local an-
gular information from adjacent views. When the sheared
value exceeds their receptive fields, the large disparities can
make the spatial-angular correlation non-local and thus in-
troduce challenges in complementary information incorpo-
ration; 3) Our EPIT performs much more robust to dispar-
ity variations and achieves the highest PSNR scores under
all sheared values. More quantitative comparisons on the
whole datasets can be referred to the supplemental material.

LAM Visualization. We used Local Attribution Map
(LAM) [18] to visualize the input regions that contribute
to the SR results of different methods. As shown in Fig. 8,
we first specify the center of green stripes in HR images
as the target regions, and then re-organize the correspond-
ing attribution maps on LR images into the EPI patterns. It
can be observed that RCAN achieves a larger receptive field
along the spatial dimension than other compared methods,
which supports the results in Figs. 8(b) and 8(e) that RCAN
achieves a relatively stable SR performance with different
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Figure 9. PSNR distribution among different SAIs achieved by
MEG-Net [78], LFT [36], and our EPIT on the INRIA dataset [46]
for 2× SR.

sheared values. It is worth noting that our EPIT can au-
tomatically incorporate the most relevant information from
different views, and can learn the non-local spatial-angular
correlation regardless of disparity variations.
Perspective Comparison. We compare the performance of
MEG-Net, DistgSSR and our method with respect to dif-
ferent perspectives and sheared values (0 to 3). It can be
observed in Fig. 9 that, both MEG-Net and DistgSSR suf-
fer significant performance drops on all perspectives as the
sheared value increases. In contrast, our EPIT can well
handle the disparity variation problem, and achieve much
higher PSNR values with a balanced distribution among dif-
ferent views regardless of the sheared values.

4.4. Ablation Study

In this subsection, we compare the performance of our
EPIT with different variants to verify the effectiveness of
our design choices, and additionally, investigate their ro-
bustness to large disparity variations.
Horizontal/Vertical Basic-Transformer Units. We
demonstrated the effectiveness of the horizontal and verti-
cal Basic-Transformer units in our EPIT by separately re-
moving them from our network. Note that, without using
horizontal or vertical Basic-Transformer unit, these variants
cannot incorporate any information from the correspond-
ing angular directions. As shown in Table 3, both vari-
ants w/o-Horizontal and w/o-Vertical suffer a decrease of
0.72dB in the INRIA dataset as compared to EPIT, which
demonstrates the importance of exploiting spatial-angular
correlations from all angular views.
Weight Sharing in Non-Local Cascading Blocks. We
introduced the variant w/o-Share by removing the weight
sharing between horizontal and vertical Basic-Transformer
units. As shown in Table 3, the additional parameters in
variant w/o-Share do not introduce further performance im-

Table 3. The PSNR scores achieved by different variants of our
EPIT on the LFs with different shearing values for 2× SR. We
adjusted the channel number of each variant to make its model
size (i.e., #Prm.) not smaller than EPIT for better validation.

Variants #Prm. FLOPs EPFL (Sheared) INRIA (Sheared)
0 2 4 0 2 4

w/o-Horiz 1.42M 80.20G 33.96 33.98 34.02 35.95 36.08 36.11
w/o-Verti 1.42M 80.20G 34.01 33.94 33.87 35.95 35.97 36.02
w/o-Share 2.71M 80.20G 34.80 34.63 34.51 36.66 36.72 36.45
w/o-Local 1.64M 96.39G 34.42 34.36 34.27 36.36 36.40 36.25
w/o-Trans 1.60M 78.82G 33.90 31.32 31.74 35.95 33.28 33.55
w-1-Block 1.54M 68.23G 33.97 34.24 34.08 35.84 36.19 35.93
w-2-Block 1.45M 73.37G 34.19 34.36 34.29 35.98 36.27 35.99
w-3-Block 1.71M 85.78G 34.64 34.51 34.45 36.53 36.47 36.22
EPIT 1.42M 74.96G 34.83 34.69 34.59 36.67 36.75 36.59

provement. It demonstrates that the weight sharing strategy
between two directional Basic-Transformer units is benefi-
cial and efficient to regularize the network.
SpatialConv in Non-Local Cascading Blocks. We intro-
duced the variant w/o-Local by removing the SpatialConv
layers from our EPIT, and we adjusted the channel number
to make the model size of this variant not smaller than the
main model. As shown in Table 3, the SpatialConv has a
significant influence on the SR performance, e.g., the vari-
ant w/o-Local suffers a 0.41dB PSNR drop on the EPFL
dataset. It demonstrates that local context information is
crucial to the SR performance, and the simple convolutions
can fully incorporate the spatial information from each SAI.
Basic-Transformer in Non-Local Cascading Blocks. We
introduced the variant w/o-Trans by replacing Basic-
Transformer in Non-Local Blocks with cascaded convolu-
tions. As shown in Table 3, w/o-Trans suffers a most signifi-
cant performance drop as the sheared value increases, which
demonstrates the effectiveness of the Basic-Transformer in
incorporating global information on the EPIs.
Basic-Transformer Number. We introduced the variants
with-n-Block (n=1,2,3) by retaining n Non-Local Blocks.
Results in Table 3 show the effectiveness of our EPIT (hav-
ing 5 Non-Local Blocks) with higher-order spatial-angular
correlation modeling capability.

5. Conclusion
In this paper, we propose a Transformer-based network

for LF image SR. By modeling the dependencies between
each pair of pixels on EPIs, our method can learn the
spatial-angular correlation while achieving a global recep-
tive field along the epipolar line. Extensive experimental
results demonstrated that our method can not only achieve
state-of-the-art SR performance on benchmark datasets, but
also perform robust to large disparity variations.
Acknowledgment: This work was supported in part by
the Foundation for Innovative Research Groups of the Na-
tional Natural Science Foundation of China under Grant
61921001.
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Figure I. Qualitative comparison of different SR methods for 4× SR.

Section A provides more visual comparisons on the light
field (LF) datasets, and presents additional comparisons on
LFs with different angular resolution. Section B presents
detailed quantitative results of different methods on each
dataset with various sheared values. Section C describes
additional experiments for LF angular SR, and shows visual
results achieved by different methods.

A. Additional Comparisons on Benchmarks
A.1. Qualitative Results

In this subsection, we show more visual comparisons of
4× SR on the benchmark dataset in Fig. I. It can be ob-
served that the proposed EPIT recovers richer and more re-
alistic details.

A.2. Robustness to Different Angular Resolution

In the main body of our paper, we have illustrated that
our EPIT (trained on central 5×5 SAIs) achieves competi-
tive PSNR scores on other angular resolutions, as compared
to top-performing DistgSSR [60]. In Table I, we provide

more quantitative results achieved by the state-of-the-art
methods with different angular resolutions.

In addition, we train a series of EPIT models from
scratch on 2×2, 3×3 and 4×4 SAIs, respectively. It can
be observed from Table II that when using larger angular
resolution SAIs as training data, e.g., 5×5, our method can
achieve better SR performance on different angular resolu-
tions. That is because, more angular views are beneficial for
our EPIT to learn the spatial-angular correlation better. This
phenomenon inspires us to explore the intrinsic mechanism
of LF processing tasks in the future.

B. Additional Quantitative Comparison on
Disparity Variations

We have presented the performance comparison on two
selected scenes with different shearing values for 2× SR in
the main paper. Here, we provide quantitative results on
each dataset in Table III and Fig. II. It can be observed that
our EPIT achieves more consistent performance than exist-
ing methods with respect to disparity variations on various
datasets.
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Table I. PSNR/SSIM values achieved by different methods with
different angular resolution for 4× SR.

MethodsDatasets
resLF LFSSR MEG-Net LFT EPIT(ours)

E
PF

L
[4

8]

2×2 - 26.00/.8541 26.40/.8667 27.64/.8953 28.22/.9024
3×3 28.13/.9012 26.84/.8750 27.16/.8834 28.12/.9029 28.74/.9103
4×4 - 27.62/.8930 28.04/.9036 28.43/.9087 29.04/.9164
5×5 28.27/.9035 28.27/.9118 28.74/.9160 29.85/.9210 29.34/.9197
6×6 - 27.62/.8995 28.46/.9115 28.45/.9101 29.43/.9218
7×7 27.91/.9038 27.29/.8889 28.30/.9083 28.55/.9094 29.60/.9231
8×8 - 27.06/.8834 28.15/.9061 28.37/.9064 29.60/.9240
9×9 26.07/.8881 26.95/.8810 28.12/.9046 28.45/.9071 29.71/.9246

H
C

In
ew

[2
1]

2×2 - 28.44/.8639 29.02/.8782 29.94/.8960 30.84/.9114
3×3 30.63/.9089 29.47/.8848 29.84/.8943 30.28/.9031 31.23/.9182
4×4 - 30.22/.8997 30.68/.9094 30.51/.9065 31.40/.9213
5×5 30.73/.9107 30.72/.9145 31.10/.9177 31.46/.9218 31.51/.9231
6×6 - 30.24/.9053 30.91/.9154 30.26/.9009 31.57/.9241
7×7 30.23/.9112 29.89/.8997 30.64/.9125 30.05/.8975 31.63/.9250
8×8 - 29.68/.8969 30.48/.9105 29.81/.8923 31.66/.9256
9×9 27.84/.8967 29.46/.8942 30.34/.9087 29.77/.8916 31.69/.9260

H
C

Io
ld

[6
5]

2×2 - 33.37/.9413 34.17/.9489 35.52/.9591 36.94/.9690
3×3 36.61/.9674 34.72/.9535 35.26/.9579 35.91/.9616 37.37/.9717
4×4 - 35.80/.9615 36.42/.9662 36.15/.9634 37.52/.9729
5×5 36.71/.9682 36.70/.9696 37.28/.9716 37.63/.9735 37.68/.9737
6×6 - 35.32/.9617 36.75/.9688 36.21/.9636 37.76/.9744
7×7 36.21/.968 34.94/.9578 36.35/.9662 36.10/.9629 37.92/.9749
8×8 - 34.70/.9558 36.18/.9651 35.73/.9596 38.00/.9754
9×9 33.55/.9519 34.46/.9539 36.08/.9644 35.71/.9593 38.06/.9756

IN
R

IA
[4

6]

2×2 - 27.83/.9035 28.31/.9125 29.99/.9378 30.52/.9418
3×3 30.33/.9413 28.78/.9201 29.16/.9264 30.35/.9424 30.94/.9472
4×4 - 29.59/.9327 30.00/.9401 30.64/.9457 31.19/.9509
5×5 30.34/.9412 30.31/.9467 30.66/.9490 31.20/.9524 31.27/.9526
6×6 - 29.50/.9356 30.38/.9443 30.61/.9457 31.45/.9533
7×7 29.82/.9398 29.05/.9269 30.13/.9415 30.56/.9443 31.51/.9539
8×8 - 28.76/.9221 30.02/.9399 30.41/.9422 31.54/.9540
9×9 27.65/.9226 28.58/.9196 29.97/.9386 30.43/.9420 31.56/.9539

ST
Fg

an
tr

y
[5

3]

2×2 - 27.29/.8710 28.15/.8944 29.69/.9263 31.30/.9468
3×3 30.05/.9348 28.81/.9064 29.22/.9161 30.05/.9316 31.86/.9534
4×4 - 29.77/.9254 30.30/.9356 30.35/.9359 32.11/.9558
5×5 30.19/.9372 30.15/.9426 30.77/.9453 31.86/.9548 32.18/.9571
6×6 - 29.79/.9320 30.58/.9428 30.01/.9289 32.31/.9580
7×7 29.71/.9375 29.40/.9257 30.25/.9393 29.53/.9208 32.40/.9585
8×8 - 29.12/.9211 30.03/.9367 29.17/.9135 32.48/.9591
9×9 27.23/.9224 28.85/.9169 29.83/.9344 29.06/.9110 32.50/.9592

C. LF Angular SR

It is worth noting that the proposed spatial-angular cor-
relation learning mechanism has large potential in multiple
LF image processing tasks. In this section, we apply our
proposed spatial-angular correlation learning mechanism to
the LF angular SR task. We first introduce our EPIT-ASR
model for LF angular SR. Then, we introduce the datasets
and implementation details in our experiments. Finally, we
present the preliminary but promising results as compared
to the state-of-the-art LF angular SR methods.

C.1. Upsampling

Since our EPIT is flexible to LFs with different angular
resolutions (as demonstrated in Sec. A.2), the EPIT-ASR
model can be built by changing the upsampling stage of
EPIT.

Here, we follow [60, 27] to take the 2×2 → 7×7 angu-

Table II. PSNR/SSIM values achieved by our EPIT trained on
LFs with different angular resolution for 4× SR.

Datasets EPIT(ours)*
2×2 3×3 4×4 5×5

E
PF

L
[4

8]

2×2 28.40/.9037 28.45/.9040 28.33/.9034 28.22/.9024
3×3 28.61/.9076 28.75/.9090 28.67/.9090 28.74/.9103
4×4 28.69/.9108 28.90/.9131 28.86/.9137 29.04/.9164
5×5 28.81/.9124 29.08/.9152 29.06/.9162 29.34/.9197
6×6 28.81/.9133 29.13/.9168 29.12/.9180 29.43/.9218
7×7 28.88/.9137 29.24/.9176 29.24/.9190 29.60/.9231
8×8 28.86/.9140 29.25/.9184 29.25/.9198 29.60/.9240
9×9 28.92/.9141 29.32/.9188 29.34/.9204 29.71/.9246

H
C

In
ew

[2
1]

2×2 30.81/.9109 30.86/.9116 30.86/.9116 30.84/.9114
3×3 30.84/.9124 31.06/.9157 31.09/.9162 31.23/.9182
4×4 30.86/.9132 31.14/.9174 31.21/.9184 31.40/.9213
5×5 30.86/.9134 31.19/.9184 31.27/.9197 31.51/.9231
6×6 30.86/.9134 31.21/.9190 31.32/.9205 31.57/.9241
7×7 30.85/.9133 31.23/.9194 31.35/.9211 31.63/.9250
8×8 30.86/.9133 31.24/.9197 31.37/.9215 31.66/.9256
9×9 30.85/.9132 31.25/.9199 31.39/.9219 31.69/.9260

H
C

Io
ld

[6
5]

2×2 36.83/.9683 36.85/.9682 36.81/.9679 36.94/.9690
3×3 36.92/.9688 37.13/.9701 37.14/.9702 37.37/.9717
4×4 36.95/.9692 37.21/.9708 37.27/.9712 37.52/.9729
5×5 37.01/.9695 37.31/.9714 37.39/.9718 37.68/.9737
6×6 37.00/.9696 37.33/.9717 37.44/.9723 37.76/.9744
7×7 37.00/.9696 37.40/.9719 37.52/.9726 37.92/.9749
8×8 36.99/.9696 37.41/.9721 37.56/.9729 38.00/.9754
9×9 36.99/.9697 37.44/.9722 37.60/.9730 38.06/.9756

IN
R

IA
[4

6]

2×2 30.63/.9429 30.66/.9431 30.58/.9427 30.52/.9418
3×3 30.82/.9458 30.91/.9465 30.87/.9466 30.94/.9472
4×4 30.90/.9472 31.04/.9484 31.02/.9489 31.19/.9509
5×5 30.95/.9483 31.14/.9498 31.14/.9506 31.27/.9526
6×6 30.94/.9484 31.17/.9503 31.18/.9511 31.45/.9533
7×7 30.93/.9485 31.20/.9506 31.22/.9515 31.51/.9539
8×8 30.92/.9484 31.22/.9507 31.24/.9517 31.54/.9540
9×9 30.91/.9481 31.22/.9506 31.26/.9516 31.56/.9539

ST
Fg

an
tr

y
[5

3]

2×2 30.84/.9432 31.03/.9449 31.09/.9452 31.30/.9468
3×3 30.93/.9447 31.39/.9493 31.49/.9503 31.86/.9534
4×4 31.02/.9459 31.56/.9510 31.69/.9523 32.11/.9558
5×5 30.99/.9459 31.58/.9518 31.74/.9534 32.18/.9571
6×6 31.03/.9460 31.68/.9525 31.85/.9541 32.31/.9580
7×7 31.03/.9459 31.70/.9526 31.90/.9545 32.40/.9585
8×8 31.04/.9459 31.73/.9528 31.96/.9549 32.48/.9591
9×9 31.02/.9457 31.74/.9529 31.97/.9550 32.50/.9592

* Note that, “A×A” below “EPIT(ours)” denotes the models are trained on the
LFs with corresponding angular resolution.

lar SR task as an example to introduce the angular upsam-
pling module in our EPIT-ASR. Given the deep LF feature
F ∈ R2×2×H×W×C , a 2×2 convolution without padding
is first applied to the angular dimensions to generate an
angular-downsampled feature Fdown ∈ R1×1×H×W×C .
Then, a 1×1 convolution is used to increase the channel di-
mension, followed by a 2D pixel-shuffling layer to generate
the angular-upsampled feature Fup ∈ R7×7×H×W×C . Fi-
nally, a 3×3 convolution is applied to the spatial dimensions
of Fup to generate the final output LRE ∈ R7×7×H×W .

C.2. Datasets and Implement Details

Following [27, 60], we conducted experiments on the
HCInew [21] and HCIold [65] datasets. All LFs in these
datasets have an angular resolution of 9×9. We cropped
the central 7×7 SAIs with 64×64 spatial resolution as
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Table III. Quantitative comparison of different SR methods on five datasets with different shearing values for 2× SR. We mark the best
results in red and the second results in blue.

MethodsDatasets
Bicubic RCAN resLF LFSSR LF-ATO LF-InterNet LF-DFnet MEG-Net LF-IINet LFT DistgSSR Ours

E
PF

L
[4

8]

-4 29.95/.9372 33.47/.9640 32.41/.9582 31.90/.9550 32.59/.9593 32.15/.9573 32.69/.9597 32.07/.9560 32.24 /.9579 32.48/.9587 32.29/.9583 34.52/.9734
-3 29.92/.9369 33.45/.9637 32.38/.9578 31.85/.9548 32.58/.9592 32.14/.9572 32.68/.9597 32.16/.9564 32.27/.9577 32.49/.9587 32.29/.9578 34.67/.9746
-2 29.89/.9369 33.31/.9632 32.36/.9587 31.92/.9561 32.37/.9589 32.06/.9571 32.47/.9592 32.17/.9574 32.37/.9589 32.35/.9587 32.65/.9618 34.64/.9749
-1 29.83/.9373 33.30/.9634 33.01/.9652 32.69/.9640 33.06/.9659 32.62/.9636 33.41/.9673 32.82/.9653 33.29/.9676 33.33/.9676 33.37/.9687 34.71/.9756
0 29.74/.9376 33.16/.9634 33.62/.9706 33.68/.9744 34.27/.9757 34.14/.9760 34.40/.9755 34.30/.9773 34.68/.9773 34.80/.9781 34.81/.9787 34.83/.9775
1 29.87/.9373 33.16/.9629 32.81/.9644 32.70/.9639 32.67/.9656 32.57/.9642 33.19/.9669 32.76/.9647 33.12/.9663 33.18/.9675 33.01/.9681 34.66/.9760
2 29.91/.9370 33.37/.9633 32.28/.9579 31.87/.9548 32.47/.9597 32.00/.9569 32.45/.9593 31.85/.9560 32.15/.9577 32.42/.9598 32.04/.9581 34.69/.9750
3 29.94/.9370 33.48/.9638 32.32/.9575 31.85/.9543 32.56/.9591 32.09/.9569 32.61/.9594 31.84/.9545 32.19/.9574 32.43/.9585 32.17/.9578 34.73/.9747
4 29.98/.9372 33.52/.9641 32.40/.9579 31.97/.9550 32.57/.9592 32.15/.9572 32.68/.9597 31.93/.9554 32.19/.9575 32.46/.9586 32.15/.9579 34.59/.9736

H
C

In
ew

[2
1]

-4 30.83/.9343 34.59/.9611 33.34/.9533 32.57/.9494 33.37/.9545 32.99/.9525 33.62/.9554 32.91/.9510 33.34/.9534 33.35/.9541 33.03/.9523 36.77/.9782
-3 30.81/.9342 34.65/.9609 33.45/.9543 32.61/.9501 33.58/.9558 33.06/.9523 33.75/.9562 33.16/.9527 33.44/.9542 33.51/.9551 33.43/.9554 37.05/.9791
-2 30.83/.9344 34.60/.9605 33.50/.9594 32.58/.9548 33.13/.9599 32.91/.9563 33.41/.9609 33.33/.9588 33.80/.9618 33.37/.9609 33.76/.9644 36.98/.9792
-1 30.74/.9349 34.42/.9603 35.00/.9704 34.19/.9691 34.87/.9716 34.29/.9690 35.59/.9739 34.51/.9716 35.70/.9748 35.49/.9747 35.68/.9754 37.21/.9815
0 31.89/.9356 34.98/.9603 36.69/.9739 36.81/.9749 37.24/.9767 37.28/.9763 37.44/.9773 37.42/.9777 37.74/.9790 37.84/.9791 37.96/.9796 38.23/.9810
1 30.73/.9350 34.14/.9602 34.04/.9649 33.90/.9639 33.41/.9660 33.63/.9633 34.30/.9681 34.06/.9659 34.64/.9682 34.33/.9694 34.30/.9691 36.83/.9792
2 30.79/.9344 34.30/.9605 32.99/.9547 32.64/.9509 32.84/.9566 32.65/.9527 32.80/.9560 32.43/.9517 32.99/.9546 33.10/.9571 32.31/.9546 36.31/.9787
3 30.77/.9341 34.39/.9609 33.17/.9523 32.70/.9493 33.32/.9545 33.03/.9523 33.51/.9553 32.59/.9492 33.22/.9529 33.32/.9541 32.87/.9521 36.56/.9787
4 30.79/.9343 34.36/.9612 33.16/.9530 32.74/.9499 33.19/.9545 32.99/.9526 33.40/.9553 32.61/.9497 33.13/.9532 33.21/.9543 32.70/.9521 36.40/.9778

H
C

Io
ld

[6
5]

-4 36.85/.9775 40.85/.9875 39.36/.9852 38.44/.9833 39.18/.9852 39.22/.9851 39.55/.9858 38.69/.9837 38.93/.9849 39.20/.9851 39.17/.9850 42.34/.9929
-3 36.83/.9775 40.88/.9874 39.57/.9854 38.45/.9837 39.35/.9854 39.33/.9853 39.76/.9858 38.99/.9843 39.18/.9850 39.37/.9851 39.40/.9852 43.04/.9936
-2 36.84/.9777 40.32/.9871 38.84/.9858 38.05/.9841 38.33/.9854 38.80/.9852 38.70/.9862 38.64/.9851 38.90/.9860 38.47/.9855 39.53/.9879 42.80/.9938
-1 36.71/.9782 40.22/.9873 40.43/.9902 39.44/.9891 39.60/.9900 39.79/.9895 40.96/.9914 39.68/.9899 41.19/.9915 40.73/.9913 41.45/.9923 43.31/.9952
0 37.69/.9785 41.05/.9875 43.42/.9932 43.81/.9938 44.20/.9942 44.45/.9946 44.23/.9941 44.08/.9942 44.84/.9948 44.52/.9945 44.94/.9949 45.08/.9949
1 36.66/.9783 39.25/.9869 39.85/.9903 40.31/.9904 38.42/.9901 39.93/.9903 40.18/.9915 39.85/.9905 40.88/.9921 39.99/.9916 40.50/.9922 42.75/.9942
2 36.74/.9779 39.78/.9871 38.77/.9862 38.50/.9844 38.25/.9862 38.70/.9856 38.41/.9865 38.17/.9847 38.64/.9861 38.61/.9867 38.33/.9863 42.31/.9939
3 36.76/.9777 40.66/.9876 39.31/.9852 38.48/.9834 39.10/.9855 39.10/.9852 39.45/.9858 38.37/.9832 39.00/.9851 39.19/.9853 38.90/.9849 42.97/.9939
4 36.80/.9776 40.70/.9877 39.21/.9853 38.68/.9838 39.03/.9855 39.09/.9853 39.35/.9859 38.36/.9834 38.68/.9848 39.00/.9851 38.68/.9848 42.67/.9935

IN
R

IA
[4

6]

-4 31.58/.9566 35.40/.9769 34.24/.9719 33.75/.9695 34.42/.9725 33.99/.9713 34.64/.9736 33.89/.9703 34.13/.9719 34.37/.9724 34.20/.9720 36.46/.9815
-3 31.55/.9566 35.39/.9768 34.22/.9717 33.71/.9695 34.43/.9726 34.04/.9715 34.62/.9736 33.95/.9703 34.12/.9715 34.39/.9726 34.10/.9710 36.67/.9826
-2 31.55/.9567 35.22/.9763 34.04/.9715 33.59/.9695 34.08/.9718 33.87/.9709 34.31/.9726 33.91/.9707 34.13/.9721 34.11/.9716 34.67/.9749 36.67/.9829
-1 31.49/.9573 35.26/.9767 34.88/.9767 34.59/.9760 34.92/.9770 34.56/.9757 35.51/.9790 34.69/.9766 35.42/.9790 35.26/.9783 35.55/.9799 36.79/.9837
0 31.33/.9577 35.01/.9769 35.39/.9804 35.28/.9832 36.15/.9842 35.80/.9843 36.36/.9840 36.09/.9849 36.57/.9853 36.59/.9855 36.59/.9859 36.67/.9853
1 31.53/.9573 35.04/.9762 34.82/.9765 34.83/.9768 34.56/.9772 34.73/.9772 35.44/.9793 34.93/.9773 35.30/.9782 35.21/.9784 35.25/.9795 36.80/.9840
2 31.55/.9567 35.29/.9765 34.16/.9721 33.75/.9698 34.43/.9735 33.99/.9717 34.49/.9737 33.75/.9706 34.07/.9720 34.46/.9740 34.08/.9726 36.75/.9832
3 31.56/.9565 35.41/.9768 34.10/.9710 33.65/.9689 34.39/.9725 33.94/.9711 34.54/.9732 33.61/.9687 34.02/.9712 34.37/.9725 34.04/.9715 36.75/.9829
4 31.58/.9565 35.43/.9769 34.18/.9715 33.80/.9696 34.40/.9724 34.01/.9713 34.63/.9736 33.72/.9695 34.03/.9713 34.36/.9723 34.02/.9715 36.59/.9821

ST
Fg

an
tr

y
[5

3]

-4 29.83/.9479 35.69/.9833 33.73/.9739 32.48/.9677 34.19/.9776 32.92/.9715 34.70/.9792 32.98/.9702 33.87/.9751 34.11/.9775 33.58/.9751 39.33/.9947
-3 29.80/.9479 35.79/.9832 33.78/.9740 32.59/.9688 34.44/.9781 33.12/.9723 34.78/.9794 33.25/.9714 33.92/.9750 34.34/.9778 33.89/.9755 39.68/.9950
-2 29.82/.9484 35.65/.9831 33.83/.9769 32.59/.9716 33.70/.9789 32.56/.9734 34.26/.9808 33.39/.9754 34.31/.9793 33.84/.9792 34.05/.9821 39.43/.9950
-1 29.72/.9490 35.44/.9830 35.56/.9860 34.37/.9837 35.89/.9881 34.09/.9831 36.46/.9890 34.89/.9860 36.53/.9895 36.34/.9895 36.65/.9903 39.65/.9952
0 31.06/.9498 36.33/.9831 38.36/.9904 37.95/.9898 39.64/.9929 38.72/.9909 39.61/.9926 38.77/.9915 39.86/.9936 40.54/.9941 40.40/.9942 42.17/.9957
1 29.72/.9490 34.87/.9830 34.97/.9862 34.67/.9846 34.64/.9890 34.10/.9851 35.60/.9902 34.96/.9862 35.78/.9893 35.66/.9906 35.15/.9901 38.81/.9949
2 29.79/.9483 35.01/.9829 33.66/.9779 32.88/.9721 33.85/.9821 32.61/.9740 33.85/.9816 32.90/.9750 33.97/.9800 34.15/.9827 32.70/.9798 38.58/.9947
3 29.77/.9477 35.20/.9831 33.45/.9731 32.50/.9676 33.96/.9779 32.90/.9715 34.18/.9787 32.41/.9683 33.53/.9743 33.94/.9777 33.02/.9741 38.53/.9949
4 29.80/.9477 35.19/.9832 33.39/.9733 32.53/.9679 33.72/.9774 32.78/.9714 34.18/.9792 32.41/.9685 33.43/.9745 33.76/.9773 32.78/.9739 38.46/.9947

groundtruth high angular resolution LFs, and selected the
corner 2×2 SAIs as inputs.

Our EPIT-ASR was initialized using the Xavier algo-
rithm [17], and trained using the Adam method [31] with
β1 = 0.9, β2 = 0.999. The initial learning rate was set
to 2×10−4 and halved after every 15 epochs. The training
was stopped after 80 epochs. During the training phase, we
performed random horizontal flipping, vertical flipping, and
90-degree rotation to augment the training data.

C.3. Qualitative Results

Figure IV shows the quantitative and qualitative results
achieved by different LF angular SR methods. It can be
observed that the magnitude of errors for our EPIT-ASR is
smaller than other methods, especially on the delicate tex-
ture areas (e.g., the letters in scene Dishes). As shown
in the zoom-in regions, our method generates more faithful
details with fewer artifacts.

14



31.5

32.0

32.5

33.0

33.5

34.0

34.5

35.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
32.0

33.0

34.0

35.0

36.0

37.0

38.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
38.0

39.0

40.0

41.0

42.0

43.0

44.0

45.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5

37.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
32.0

33.5

35.0

36.5

38.0

39.5

41.0

42.5

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

PS
N

R

Sheared Value

PS
N

R

Sheared Value

PS
N

R

Sheared Value

PS
N

R

Sheared Value

PS
N

R

Sheared Value

(a) EPFL Dataset (b) HCInew Dataset (c) HCIold Dataset

(d) INRIA Dataset (e) STFgantry Dataset

Figure II. Quantitative comparison of different SR methods on five datasets with different shearing values for 2× SR.
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Figure III. Quantitative comparison of different SR methods on five datasets with different shearing values for 4× SR.

15



StillLife LFEPICNN ShearedEPI
22.33/0.7128 22.31/0.7534

DistgASR EPIT-ASR
27.22/0.9079 33.70/0.9706

DistgASR EPIT-ASRLFEPICNN ShearedEPI
24.30/0.8232 24.11/0.8382 30.33/0.9664 37.69/0.9891

Dishes

DistgASR EPIT-ASRLFEPICNN ShearedEPI
28.18/0.8933 29.65/0.9270 35.39/0.9806 33.61/0.9733

Bicycle

DistgASR EPIT-ASRLFEPICNN ShearedEPI
27.66/0.8435 27.65/0.8553 34.16/0.9624 34.38/0.9628

Herbs

FS-GAF
27.28/0.9037

FS-GAF
32.59/0.9501

FS-GAF
30.60/0.9501

FS-GAF
33.06/0.9530

LFASR-geo
25.56/0.8914

LFASR-geo
29.50/0.9563

LFASR-geo
33.73/0.9718

LFASR-geo
31.98/0.9355

P4DCNN
26.65/0.8706

P4DCNN
24.83/0.8498

P4DCNN
29.19/0.9188

P4DCNN
26.65/0.8706

SAAN
23.46/0.8329

SAAN
27.16/0.9287

SAAN
32.75/0.9658

SAAN
31.24/0.9309

DistgASR EPIT-ASRLFEPICNN ShearedEPI
35.99/0.9694 37.80/0.9841 42.15/0.9910 41.56/0.9903

Buddha2 FS-GAF
35.58/0.9769

LFASR-geo
41.29/0.9899

P4DCNN
36.37/0.9754

SAAN
41.10/0.9894

Figure IV. Visual results achieved by different methods on scenes StillLife, Dishes, Bicycle, Herbs and Buddha2 for 2×2 →
7×7 angular SR. Here, we show the error maps of the reconstructed center view images, along with two zoom-in regions for qualitative
comparison. The PSNR and SSIM values achieved on each scene are reported for quantitative comparison. Zoom in for the best view.
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