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Abstract

Deep Image Prior (DIP) shows that some network ar-
chitectures inherently tend towards generating smooth im-
ages while resisting noise, a phenomenon known as spec-
tral bias. Image denoising is a natural application of this
property. Although denoising with DIP mitigates the need
for large training sets, two often intertwined practical chal-
lenges need to be overcome: architectural design and noise
fitting. Existing methods either handcraft or search for suit-
able architectures from a vast design space, due to the lim-
ited understanding of how architectural choices affect the
denoising outcome. In this study, we demonstrate from a
frequency perspective that unlearnt upsampling is the main
driving force behind the denoising phenomenon with DIP.
This finding leads to straightforward strategies for identify-
ing a suitable architecture for every image without labori-
ous search. Extensive experiments show that the estimated
architectures achieve superior denoising results than exist-
ing methods with up to 95% fewer parameters. Thanks to
this under-parameterization, the resulting architectures are
less prone to noise-fitting1.

1. Introduction

Image denoising is useful on its own and can be a plug-in
module for many other image restoration tasks [37, 38, 4].
Deep neural networks have become the tool of choice for
image denoising owing to their ability to learn natural im-
age priors from large-scale datasets. Yet, Deep Image Prior
(DIP) [33] requires only a single degraded image for im-
age resotration. Remarkably, DIP shows that a randomly
initialized convolutional neural network (CNN) can regu-
larize image restoration through its architecture and early-
stopping optimization. This is inspired by the phenomenon
that some network architectures act inherently as image pri-
ors, favoring generating smooth, natural images and re-

* These authors contribute equally.
1https://github.com/YilinLiu97/FasterDIP-devil-in-upsampling.git

Figure 1: Top: Performance (SSIM↑) under different levels of
Gaussian noises. Bottom: Denoising of a fine-grained (1strow)
and a coarse-grained image (2ndrow). Most existing methods,
including the recent image-specific ISNAS-DIP[1], struggle to
perform well simultaneously in both cases. Our simple strate-
gies are flexible in image-specific architectural adaptation with-
out requiring a search. Moreover, the results of the lightweight
ConvDecoder[10] and Deep Decoder[15] suggest that without
proper model setups, under-parameterization itself can neither en-
sure good denoising performance nor remove the need for early-
stopping.

sisting noises or degradations. However, image denois-
ing with DIP is greatly influenced by architectural design
[3, 1, 33, 15, 17], and the associated tendency to fit the orig-
inal noisy image, i.e., over-fitting [15, 16].

Architectural design for DIP remains an open problem.
One prevailing view is that model under-parameterization
limits noise over-fitting and thus mitigates the need for early
stopping [15]. However, our experiments reveal that multi-
ple model architectures can exist under a similar parameter
budget, where inappropriate model setups can still lead to
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noise fitting and over-smoothing (Fig.1, Fig.3). Another
line of work automates the architecture identification us-
ing Neural Architecture Search (NAS)[6, 17, 1]. Without
prior knowledge on suitable architectures, extensive search
incurs substantial computational costs, prohibiting image-
wise NAS for optimal restoration [1]. Arican et al. [1]
narrow the search space using training-free metrics, but the
need for candidate comparison dramatically prolongs the
restoration time (∼ 7 hours/image). Moreover, NAS-based
models, along with many DIP models, are typically heavily
parameterized and prone to over-fitting, as corroborated in
our experiments. Thus, their performance largely depends
on the timing of early stopping, which is typically image-
specific and hard to pinpoint without access to ground truth.

Directly identifying an effective under-parameterized ar-
chitecture for each image is challenging in light of the vast
number of different architectures and the absence of ground
truth for explicit supervision. To simplify the architectural
decisions for DIP, we rethink the architectural influences on
its performance in the context of image denoising.

We start by noting that denoising performance is at-
tributable to only a few componenets, primarily the unlearnt
upsampling operations. Our frequency analysis reveals that
the fixed upsampling operations tend to bias the architecture
towards low-frequency contents more strongly than linear
or convolutional layers, critically influencing both the peak
PSNR and the point of early stopping to avoid noise-fitting.

Importantly, this finding leads to empirical discovery on
the roles of typical architectural components in DIP: as-
suming a standard hourglass network, i) simply scaling the
depth and width can balance smoothing and preservation
of details, due to the low-pass filtering effects of the up-
sampling operations inserted in-between the layers. As we
observed, a wider and shallower network is better at pre-
serving details and therefore suitable for fine-grained im-
ages. This suggests that the "optimal" architecture can vary
across images, and image texture should be considered for
more effective denoising. ii) Skip connections make a deep
network perform similarly as a shallower one likely by re-
ducing the "effective upsampling rate". This implies the
possibility of discarding skip connections to simplify DIP
architectural design.

Based on these insights, we find it sufficient to restrict
the design choices to only the network depth and width,
reducing the problem to searching through only a handful
of sub-networks and adapting them according to the level
of image details. This can be done as a pre-processing
step without costly searching or evaluation. We show that
this simple strategy works with both the hourglass and de-
coder structures, and with proper setups, the estimated net-
works can denoise while preserving the details better than
the larger networks with only 5%∼40% number of param-
eters. The resulting under-parameterization alleviates the

need for early stopping. Our contributions are as follows:

• We pinpoint that unlearnt upsampling is the main driv-
ing force behind the spectral bias of DIP.

• Leveraging this insight, we empirically identify the in-
fluences of depth, width and skip connections, along
with their correlations with image texture, allowing for
quick, effective and more interpretable architectural
design for every image without the laborious search.

• We are the first to associate DIP architectural design
with image texture. To promote future research, we
build a Texture-DIP Dataset consisting of images from
three popular datasets, reclassified into several prede-
fined width choices – validated through experiments,
according to textural complexity.

• We show that with proper setups, a highly under-
parameterized subnetwork could match and even out-
perform larger counterparts, especially at a higher
noise level. We conducted extensive experiments on
synthetic and real-world noise to validate our findings
and approach.

2. Related Work
DIP Variants. Deep Decoder [15] is an under-

parameterized network proposed to avoid early stop-
ping. However, our investigations show that under-
parameterization alone is not sufficient for denoising. For
instance, ConvDecoder [10], a convolutional variant of
Deep Decoder, contains more parameters but demonstrates
less tendency to over-fit (Fig 1). In contrast to NAS-based
methods[6, 17, 1], our strategy leverages the observed rela-
tionship between the architecture and the image to prevent
the exhaustive search. Other variants such as DIP-RED [24]
and DIP-TV [20] augment DIP with additional priors.

Early-stopping criterion. Cheng et al. [7] perform
posterior inference in DIP so as to prevent the need for
early stopping by adding Gaussian noise to the gradients.
Similarly, Shi et al. [29] regularize the matrix norm of
the network weights to alleviate performance decay. How-
ever, tuning the regularization granularity can be challeng-
ing (Suppl. B). Jo et al. [18] combine DIP with Stein’s
unbiased risk estimator (SURE) [32] for training without
clean images, but SURE is limited to only a few known
noise types [31, 23]. Wang et al. [35] propose to track the
running variance of the outputs, but this also introduces new
hyper-parameters that require non-trivial tuning.

3. Investigation and Method
3.1. Preliminaries

Deep Image Prior. A noisy image y ∈ RN can be mod-
eled as: y = x+n, where x ∈ RN is the clean counterpart to



Figure 2: Spectral density of images of different levels of textural
complexity, obtained by azimuthally integrateing over the power
spectrum of the image.

be recovered and n is assumed to be i .i .d . Gaussian Noise
drawn from N (0, σ2I) with I being the identity matrix. DIP
parameterizes the clean image x via a network Gθ and is
optimized to fit the noisy image y, formulated as:

θ∗ = argmin
θ

L(y;Gθ(z)), x∗ = Gθ∗(z), (1)

where z denotes the fixed white noise input tensor. Such pa-
rameterization allows lower-frequency contents to be fitted
before the higher-frequency ones [3, 29], exhibiting high
impedance to image noises or degradations. Early-stopping
is often required to prevent excessive high frequencies from
being fitted, such as noise.

Image complexity. Ideally, DIP should denoise an im-
age while preserving textural details. We define image com-
plexity by its texture, which can be characterized by its
power spectral density (PSD). The spectral power of a nat-
ural image typically follows an exponential decay from low
frequencies to high frequencies [30]. High-frequency com-
ponents correspond to fine features such as details, while
low-frequency components correspond to coarse structures.
Hence, fine-grained images contain more high frequencies
than coarse-grained images, giving a flatter PSD curve in
(Fig.2). Each image is scored based on its texture features,
as described in Sec.3.5.

3.2. The importance of upsampling

We first identified the core architecture components that
affect the denoising performance of DIP. To this end, we an-
alyzed a decoder-only architecture by removing the encoder
from the typical encoder-decoder architecture [33], since a
decoder is the minimum requirement for reconstructing the
final image. Our base model for analysis is a 6-layered con-
volutional decoder (Conv-Decoder[10]), with 128 3× 3 fil-
ters per layer except for the last regression layer, followed
by batch normalization, ReLU activation function and up-
sampling. We further simplify the setup by replacing the
spatial filters with pixel-wise 1 × 1 filters, constructing a
non-convolutional variant dubbed MLP-Decoder.

(a) MLP-Decoder (b) Conv-Decoder

Noisy (baseline) 5 Layers w. Transposed Conv. 5 Layers w. Bilinear Up.

5 Layers w/o. Upsampling 4 Layers w/o. Upsampling 3 Layers w/o. Upsampling

Figure 3: Influences of architecture components on image de-
noising. (a) Without convolutional layers, upsampling still en-
ables denoising. Transposed convolutions lead to faster perfor-
mance drop due to earlier noise-fitting than bilinear upsampling.
Removing the upsampling decreases denoising capability, which
cannot be compensated by simply reducing the number of layers,
i.e., under-parameterization. (b) Convolutional layers alone ex-
hibit certain denoising effects but necessitate early stopping. In-
creasing the number of convolutional layers achieves higher peak
PSNR at the expense of earlier noise fitting (see red arrows). Bet-
ter results achieved when combined with upsampling.

Results for MLP-Decoder, shown in Fig.3 (a), suggest
that upsampling plays a vital role. Removal of upsampling
results in significant performance degradation of denoising,
which cannot be compensated by simply reducing the size
of the network for under-parameterization. This holds true
for other tasks such as super-resolution (Suppl.A). Fig.3 (b)
shows that learnable spatial filters alone also enable denois-
ing, in contrast to the pixel-wise filters, re-affirming the fre-
quency bias of the convolutional layers [3]. However, the
effects vanish as the network size increases and noise-fitting
occurs sonner. Convolutional layers together with upsam-
pling achieve better results as manifested in the higher peak
PSNR and longer denoising effects.

Discussion. These results suggest that an appropriate
upsampling operation is crucial for effective network image
priors, and that under-parameterization alone is insufficient.
Different upsampling operations induce varying extents of
denoising effects: transposed convolutions [25] tend to fit
noise faster than bilinear upsampling, necessitating early
stopping. In the next section, we investigate the behaviors
of these upsampling operations from a signal-processing
perspective to gain insights into their influences on denois-
ing performance.

3.3. Spectral effects of upsampling

The design choice for upsampling is typically standard:
bilinear/nearest neighbor (NN) interpolation or transposed
convolutions. These upsampling operations can all be de-
composed into two steps: (i) zero-insertion and (ii) filter-
ing. Given a target upsampling factor R, the low-resolution
feature map is first interleaved with (R-1) rows/columns of
zeros to increase its sampling rate, and then convolved with
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Figure 4: (Left) Frequency responses of the tested LPFs. Differ-
ent LPFs result in upsamplers with different extents of smoothing.
NN interpolation preserves most signals in the passband but also
the high-frequency replica in the stopband; L−100 attenuates the
signals most significantly (∼ 100dB) and suppresses the high-
frequency replica most. (Right) Denoising results on coarse- and
fine-textured images from Set9. Top rows: Peak PSNR values.
Bottom rows: PSNR values at the last training iteration.

a low-pass filter (LPF) to remove the alias high frequencies
introduced by zero-insertion. The key difference between
the upsampling operations lies in the nature of the filters.
The filters for transposed convolutions are learnable, but are
fixed for bilinear and nearest nighbor upsampling.

To better illustrate this, we consider the case of a 1D
signal x(n), n = 0, ..., N − 1, and its discrete Fourier rep-
resentation X(k) =

∑N−1
n=0 x(n)e

−i2π
N kn, k = 0, ..., N − 1.

For an upsampling factor of 2, we have

Xup(k̂) =

2N−1∑
n=0

xup(n)e
−i2π
2N k̂n (2)

=

N−1∑
n=0

xup(2n)e
−i2π
2N (2n)k̂ +

N−1∑
n=0

xup(2n+ 1)e
−i2π
2N (2n+1)k̂,

(3)

where k̂ = 0, . . . , 2N−1, xup(2n) = x(n), xup(2n+1) = 0

due to interleaved zero insertion. Hence, for 0 ≤ k̂ < N ,
Xup(k̂) = X(k).

For k̂ ≥ N , let k′ = k̂ −N , k′ = 0, ..., N − 1, we have

Xup(k̂) =

N−1∑
n=0

x(n)e
−i2π
2N (k′+N)2n (4)

=

N−1∑
n=0

x(n)e
−i2π
N nk′−i2nπ = X(k′), (5)

where Eq.5 exploits the periodicity of the complex expo-
nential function. Thus, zero-insertion will preserve the orig-
inal spectrum at [0, N) (passband) and additionally create
a mirrored copy at [N, 2N − 1] (stopband). The high-
frequency replica beyond N should be suppressed by the

Table 1: The iteration number [iter./5000] at the peak PSNR for
different upsamplers. The upsamplers are designed to mainly dif-
fer in the stopband. The peak PSNR is reached more slowly when
the attenuation is stronger (from left to right).

NN L14 L15 L16 L17

Coarse-grained 1783 1589 1681 2205 2214
Fine-grained 2424 2942 3898 4361 4957

subsequent LPF to avoid image artifacts. According to du-
ality and convolution theorem, convolving with NN or bi-
linear interpolation filter is equivalent to multiplication of
Xup(k̂) with a Sinc or Sinc2 function corresponding to
low-pass filtering, while transposed convolutional filter may
not necessarily be low-pass as it depends on the optimiza-
tion objective.

We experimentally demonstrate that different upsam-
pling operations bias the architecture towards different
spectral properties. Specifically, we constructed four up-
samplers by first interleaving the input with zeros and then
convolving it with handcrafted LPFs (shortened as L): L14,
L15, L−60 and L−100, with the subscript denoting the de-
cayed dB. By construction, L14 and L15 are very close to
NN in the passband (< 0.03dB) and only differ in the stop-
band. The frequency responses of the compared LPFs are
detailed in Fig. 4. We applied the customized upsamplers
on ConvDecoder and tested them on the fine- and coarse-
textured images from Set9 respectively. Similar findings
hold for the encoder-decoder architecture (Suppl. C).

From Fig. 4, upsampling critically influences both the
peak PSNR value and the timing for early stopping with
respect to images of different textural complexities. Up-
samplers (NN, L14, L15) with less attenuation on the high-
frequency replica are beneficial for generating fine-grained
images, but they tend to cause noise-fitting especially for
coarser-grained images. Also, they are generally the fastest
to reach the peak PSNR (Table 1). This explains why the
transposed convolution requires early-stopping, as the fil-
ters may not learn to attenuate the introduced high frequen-
cies effectively. Similar issues with the learned upsampling
are also prevalent in generative models [28, 5, 11, 12].

On the other hand, bilinear and L−60 exhibit a greater
amount of attenuation, more strongly biasing the network
against high frequencies and leading to longer-lasting de-
noising effects. They turn out to work sufficiently well for
both kinds of images, especially on the coarser-grained ones
which are typically the majority in the dataset. LPF−100

tends to over-smooth the output and performs the worst as
it attenuates both the passband and stopband signals sub-
stantially, though not requiring early stopping.

Discussion. These results lead us to conclude that the
upsamplers with fixed LPFs are key to the denoising effects
of DIP for their tendency towards smooth images (i.e., re-



Figure 5: Influences of width, depth, and skip connections, as-
suming upsampling inserted in-between the layers. (a) Tendency
to over-fit coarse-grained images increases with width. SSIM
scores averaged across the depths. (b) Tendency to over-smooth
fine-grained images increases with depth, but alleviated by skip
connections. SSIM scores are averaged across the widths.

duced high-frequency contents), which aligns well with the
spectral statistics of natural images (Fig.2). Probably due
to a good balance between the denoising performance and
persistency, bilinear upsampling has been widely adopted
in DIP models for various applications [33, 15, 13, 16].

3.4. Interactions with other architecture elements

After establishing the significance of upsampling, we
will now consider how it may interact with other common
architectural elements in affecting the ultimate output.

Convolutions + non-linearity. Ideal upsampling does
not modify the signal representations but only expands the
spectrum for the subsequent layers to add new frequency
contents. Convolution followed by nonlinearity such as
ReLU, is the only operation capable of introducing arbitrar-
ily high frequencies [19]. Increasing the number of layers
(depth) or channels (width) enhances the capability of gen-
erating new high frequencies, as theoretically and empiri-
cally proved in [26].

Intuitively, using an excessive number of layers or chan-
nels can accelerate the learning of both details and noise.
However, the effects can be attenuated by the fixed upsam-
pling operations between the layers. As shown in Fig.5,
when using fewer upsampling operations (i.e., a shallower
network), increasing the width of the network increases the
tendency to cause overfitting on simpler images while ben-
efiting the more complex images. Increasing the number
of upsampling operations (i.e., a deeper network) can al-
leviate over-fitting with stronger attenuation but results in

Figure 6: Position of upsampling. Placing the upsampling close
to the input (or encoder) can easily cause over-fitting, regardless
of the scaling factor. When close to the output (end of the de-
coder), upsampling with large scaling factors (e.g., 32×) causes
over-smoothing.

blurry outputs for fine-grained images. Increasing only the
upsampling factors without adding more layers can make
the output even more blurry (Fig.6). In other words, the fi-
nal output is determined by the balance between the genera-
tion of high frequencies by the layers and signal attenuation
caused by the upsampling operations.

Skip connections between the encoder and the decoder
often complicate the design space [6]. While they are not
directly responsible for denoising, they may lower the effec-
tive upsampling rate, making deep networks perform sim-
ilarly to shallower ones, i.e., resulting in lesser suppres-
sion of the high-frequency replica. This finding is validated
on a large-scale experiment comprising 7424 architectures
(Suppl. D). As examplified in Fig. 5 (b), skip connections
notably ameliorate the over-smoothing issue induced by the
same deep network. Overall, skip connections exert a more
pronounced influence on the deeper networks compared to
the shallower ones, as evident in the smaller deviation ob-
served when depth ≤3 in Fig.5 (b).

3.5. Practical application to architectural design

Based on the above findings and analysis, we argue that
it is possible to estimate an effective architecture for each
image without extensive search. Assuming every decoder
layer is followed by a 2× bilinear upsampling layer, our
strategies are as follows:

Depth estimation. We have shown that increased depth
tends to over-smooth the output, affecting fine-grained im-
ages much more than on coarse-grained images. For fine-
grained images, we have three options: a) add more skip
connections to a deep network; b) simply use a shallower
one; c) keep all the layers but reduce down-/up-sampling
layers. We recommend c for decoder-only architectures
since they are already under-parameterized; for hourglass
network this can easily lead to over-fitting (Fig.6). We find



Table 2: Quantitative results on Gaussian noise. σ denotes the noise level. All methods were trained with a fixed iteration number
(3000) throughout the experiments. The highest score is in bold, and the second highest is underlined.

Datasets DIP [33] Deep Decoder [15] ConvDecoder [10] NAS-DIP [6] ISNAS-DIP [1] Ours

σ = 25

Set9 [9]
PSNR 30.10 28.45 28.51 26.37 29.11 30.26
SSIM 0.893 0.848 0.854 0.753 0.862 0.900

Set12 [37]
PSNR 26.97 25.98 25.78 20.86 24.10 28.14
SSIM 0.812 0.789 0.786 0.534 0.745 0.884

CBSD68 [27]
PSNR 28.93 25.50 25.19 23.80 24.51 28.57
SSIM 0.892 0.809 0.793 0.693 0.745 0.888

σ = 50

Set9 [9]
PSNR 25.04 25.22 25.01 21.07 23.91 26.13
SSIM 0.761 0.764 0.769 0.593 0.698 0.833

Set12 [37]
PSNR 22.15 20.44 22.72 18.92 19.20 24.59
SSIM 0.623 0.687 0.706 0.476 0.537 0.805

CBSD68 [27]
PSNR 23.74 23.52 24.06 17.92 19.93 24.17
SSIM 0.746 0.725 0.767 0.323 0.573 0.774

# Params (Millions) 2.3M 0.1M 0.89M 4.4M Varied 0.05M∼0.92M

Table 3: Comparisons of desired properties. Restoration time
is computed on an image of size 512× 512 with 3000 iterations.

NAS [6] ISNAS [1] Ours

Image-Specific ✗ ✓ ✓
Architecture Search 3 days 5 mins –

Per-image Restoration ∼23 mins ∼7 hrs ∼6 mins
Early Stopping Required? Yes Yes No

b is generally better than a in trading off between good per-
formance and the need for early stopping, especially under
higher-level noise, as shown in our results section. This also
holds for coarse-grained images as they are not sensitive to
depth. More specifically, we find a 2-level hourglass net-
work sufficient for both types of images (Suppl. D).

Width estimation. Width is crucial for learning suffi-
cient details while avoiding over-fitting especially to a shal-
low network (less signal attenuation). We find that the width
needs to be set according to textural complexity of the im-
age: a finer-grained image requires more channels per layer
and vice versa. To further validate this, we treated width
estimation as a classification problem, and trained three
SVMs [8] with texture features as the inputs to classify the
images into three width choices {32, 64, 128}. Note that
these widths were empirically chosen for the datasets used
in this work and are by no means optimal for all cases, but
tuning for other images should be straightforward. The clas-
sification results and analysis are in Sec.4.4.

Image scoring. To more robustly classify image tex-
ture, we extracted both spatial and frequency features and
trained a Decision Tree [22] for feature selection. We used
the classic Gray Level Co-occurrence Matrix (GLCM) [14]
for deriving the spatial texture features from each image.
The most useful features turn out to be the following: corre-
lations measured at 0◦, homogeneity at 45◦, and contrast at

Table 4: Quantitative evaluation on Poisson noise. Deep De-
coder shortened as DD and ConvDecoder as CD.

Noise scale DIP DD CD NAS ISNAS Ours

ζ = 0.01
PSNR 31.58 29.81 29.51 29.70 30.12 30.95
SSIM 0.915 0.880 0.875 0.864 0.875 0.910

ζ = 0.1
PSNR 22.66 23.91 24.94 15.72 17.68 24.99
SSIM 0.640 0.718 0.776 0.417 0.496 0.789

ζ = 0.2
PSNR 20.36 21.13 21.87 12.99 14.64 22.55
SSIM 0.563 0.609 0.672 0.311 0.383 0.774

0◦. Frequency features are captured using a 1D PSD vector
obtained by first converting the 2D PSD from Cartesian co-
ordinates S(k, l) to polar coordinates, and then azimuthally
averaging over θ, defined as Ŝ (r) = 1

2π

∫ 2π

0
S (r, θ)dθ with

r =
√
k2 + l2 and θ = atan2(k, l), which represents the

mean magnitude of the frequencies with respect to the ra-
dial distance r. Refer to Suppl. E for more details.

4. Experiments

4.1. Implementation Details

We conducted the experiments on three popular datasets
and a real-world noisy dataset: Set9 [9] consisting of 9 col-
ored images, Set12 [37] consisting of 12 grey-scaled im-
ages, CBSD68 [27] consisting of 68 colored images, and
PolyU [36] consisting of 100 real noisy and clean image
pairs. We first report our results with 2-level hourglass ar-
chitecture with the same components as in DIP [33] when
comparing with the existing methods, and then extend our
strategy to ConvDecoder [10], a decoder-only architecture.
All models were trained for 3000 iterations.



Figure 7: Denoising results on a fine-grained image ("kodim01" from Set9) with Gaussian noise (σ = 25). Our estimated architecture
for this image is a two-level hourglass network with one skip connection and 128 channels, which is much smaller than others.

Figure 8: Denoising results on a real-world noisy image.

4.2. DIP variants

Gaussian Noise. Compared with the base DIP network,
the properly-designed under-parameterized networks esti-
mated with our strategy perform on par at a mild noise level
while excel at a higher noise level (Table 2). This cannot
be solely explained by under-parameterization since Deep
Decoder and ConvDecoder contain similar or even fewer
parameters while are unable to achieve similar results. Fig.

7 shows that a shallow and wide network can preserve the
details better than many deeper ones. Note that DIP is a 5-
level hourglass network with full skip connections, which
by our standard can also well preserve the details. In fact,
it is a very strong baseline under mild noise. NAS-DIP and
ISNAS-DIP suffer from various degrees of over-fitting on
different datasets. This also suggests that the point of opti-
mal stopping varies across images. Besides, they are time-
intensive in either searching or evaluation (Table 3). Simi-
lar conclusions hold for Poisson noise, which was tested on
Set9 [9] as shown in Table 4.

Table 5: Quantitative evaluation on PolyU, a real-world noisy
dataset. Deep Decoder and ConvDecoder shortened as DD, CD.

DIP DD CD NAS ISNAS Ours

PSNR 38.15 37.22 37.00 37.83 37.78 38.05
SSIM 0.982 0.978 0.976 0.982 0.977 0.984

Real-World Noise. We additionally evaluated all meth-
ods on the PolyU dataset [36]. We applied again the two-
level hourglass architectures with variable width estimated
for the images. Table 5 summarizes the numerical results.
Fig.9 shows that our method tends to preserve more details,
though this may not be reflected by the metrics. Simply
removing the skip connections from DIP causing blurring,
similar to the decoder-only architectures.

4.3. Decoder-only Architectures

We applied our strategy to ConvDecoder and tested it on
all three datasets. Here we keep all 5 layers but remove



Table 6: Application to ConvDecoder.

Datasets σ = 25 σ = 50

Before After Before After

Set9 PSNR 28.51 28.74 25.01 25.11
SSIM 0.854 0.873 0.769 0.784

Set12 PSNR 25.79 26.98 22.72 23.01
SSIM 0.786 0.854 0.706 0.742

CBSD68 PSNR 25.19 28.29 24.36 24.12
SSIM 0.793 0.877 0.767 0.768

# Params (Millions) 0.89M 0.06M∼0.89M 0.89M 0.06M∼0.89M

Figure 9: Qualitative improvement on ConvDecoder simply by
removing three upsampling layers in this case while preserving all
the convolutional layers.

a certain number of upsampling layers and scale the width
accordingly for the images. These simple changes effec-
tively alleviate the over-smoothing issue that often brought
by ConvDecoder as shown in Fig.8 and improve the quanti-
tative results as shown in Table 6.

4.4. More Analysis on Depth and Width

In practice, we find it more efficient to first determine
the depth, and then the width. This is because when the
network is deep enough (strong attenuation due to upsam-
pling), width becomes less influential, as evident in Fig.10
(b) and the small deviation in Fig.5 (b). However, to relax
the need for early stopping at a higher noise level, one may
prefer a shallower one, where width matters more (Fig.10
(a)). In this regard, we use the texture features of the im-
ages to predict the desired width. This makes intuitive sense
as noise-fitting is associated with the amount of high fre-
quency contents in the image, which is manifested in its tex-
ture. This is corroborated by the 0.86 Micro-average AUC
score shown in Fig.11 (a). The "optimal" width labels we
used to train the classifiers were obtained by experimenting
with all three width choices on a 2-level hourglass archi-
tecture. These width labels are also applicable to decoder
architectures as demonstrated by our experiments.

Although the width choices seem limited, we found the
images robust to the choice of width to some extent, and
simple averaging also works well for ambiguous cases (Ap-
pendix D). In fact, some images have multiple width labels.
We included these cases in the released Texture-DIP dataset.

Figure 10: (a) Width critically influences a shallower network,
while (b) it rarely has any impact on a sufficiently deep network.

Figure 11: (a) ROC curves with AUC scores for width classif-
cation on images from Set9, Set12 and CBSD68. 5-fold cross-
validation is performed and repeated 10 times. (b) Overview of
our Texture-DIP Dataset.

4.5. What about Transformers?

Transformers [34] have become integral parts of mod-
ern deep neural network architectures. We experimented
with Swin-UNet [2], an encoder-decoder pure transformer
consisting of Swin Transformer blocks [21] and skip con-
nections. Note that Swin-UNet relies on patch merging/ex-
panding layers for 2× down-/upsampling without involving
unlearnt upsampling. We replaced all the patch expanding
layers with 2× bilinear upsampling operations and com-
pared the performance of the modified network with the
original. We did not replace the patch merging layers with
the corresponding downsampling layers or strided convo-
lutions because we did not observe any significant differ-
ence. The results presented in Fig. 12 are consistent with
our findings on CNNs. For more implementation details,
please refer to our code.

5. Conclusion and Future Work
We presented simple but effective solutions to the chal-

lenging DIP architectural design in the context of image
denoising. Leveraging the spectral effects of upsampling
and its relationships with other architectural compoenents,
we show that simple architectural changes yield highly-



Figure 12: Visual comparisons on the transformer-based Swin-UNet [2] with and without bilinear upsampling.

effective under-parameterized networks that could surpass
the larger counterparts and does not critically rely on early-
stopping. Although this work focuses on denoising, insights
learned about upsampling can be employed in the future to
understand the relationship between architectural character-
istics and other image restoration tasks. We hope our study
could encourage efficient architectural design for DIP and
image synthesis in general.
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