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Abstract

Existing shadow detection datasets often contain missing
or mislabeled shadows, which can hinder the performance
of deep learning models trained directly on such data. To
address this issue, we propose SILT, the Shadow-aware It-
erative Label Tuning framework, which explicitly consid-
ers noise in shadow labels and trains the deep model in
a self-training manner. Specifically, we incorporate strong
data augmentations with shadow counterfeiting to help the
network better recognize non-shadow regions and alleviate
overfitting. We also devise a simple yet effective label tun-
ing strategy with global-local fusion and shadow-aware fil-
tering to encourage the network to make significant refine-
ments on the noisy labels. We evaluate the performance of
SILT by relabeling the test set of the SBU [55] dataset and
conducting various experiments. Our results show that even
a simple U-Net [42] trained with SILT can outperform all
state-of-the-art methods by a large margin. When trained
on SBU / UCF [78] / ISTD [56], our network can success-
fully reduce the Balanced Error Rate by 25.2% / 36.9% /
21.3% over the best state-of-the-art method.

1. Introduction
Detecting shadows is very challenging, since shadows

have no specific shapes, colors, or textures, and their in-
tensity may just be slightly lower than the surroundings.
Thanks to the advances in deep learning, many works [81,
80, 3, 73] have been developed and they show great progress
in detecting shadows. They mostly propose new and deli-
cate network architectures and train the network directly on
shadow datasets with labeled shadow regions.

However, it can be observed that labels in existing
datasets [78, 13] may not be accurate. For example, as
Fig. 1 shows, the training samples may lack details (row
1); some shadows could be incomplete (row 2); some self
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(a) Training images
in existing datasets

(b) Original labels
in existing datasets

(c) Our refined
labels

Figure 1. Column (b): Labels in existing datasets may not be ac-
curate. Column (c): Our automatically-refined annotations. Note
that row 1 is from UCF [78] and rows 2-4 are from SBU [55].

shadows may be missed (row 3); and the annotations could
be rough (row 4). Fundamentally, there are two main rea-
sons. First, the annotations of the SBU [55] dataset are
generated from a manually lazy-labeled dataset using an
LSSVM-based method, so the resulting annotations can be
noisy, and some detailed and background shadows may be
ignored. Second, the perception of shadow can be sub-
jective, especially for self shadow and soft shadow. Since
datasets are typically prepared by several human annotators,
shadow and non-shadow regions could be labeled inconsis-
tently in the same dataset. Hence, existing methods trained
on such noisy datasets could be easily biased by the noisy
labels, which hinder them to achieve better performance.

To learn from data with noisy labels, it is intuitive to
adopt a self-training framework [65], i.e., train a network
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Figure 2. Comparison of label quality produced by a naı̈ve self-
training framework and our SILT framework. Our SILT frame-
work generates more accurate labels with finer details.

on noisy data; use the trained network to relabel the train-
ing data; and repeat these two steps alternately to refine the
labels. Yet, directly adopting self-training to detect shadows
may not work well for the following reasons:

• Overfitting the training data. Considering the limited
size of existing datasets, the trained network is prone
to remember every single sample. So, if we directly
use it to relabel the training data, the network may be
too conservative to try large refinements on the noisy
labels. As Fig. 2 column 1 shows, the network could
fail to label some obvious shadows due to overfitting.

• Error accumulation. Existing methods often falsely
predict dark objects as shadows. So, the iterative self-
training process may easily accumulate such predic-
tion errors and wrongly encourage the network to label
all dark objects as shadows; see Fig. 2 column 3.

In this paper, we present the Shadow-aware Iterative La-
bel Tuning (SILT) framework by formulating the follow-
ing strategies to address the above challenges. Firstly, we
adopt a shadow-aware data augmentation strategy that in-
volves shadow counterfeiting and incorporating dark re-
gions and noise into input images. This enhances the abil-
ity of the deep network to recognize non-shadow regions
by teaching it to identify these regions amidst the added
noise. Secondly, we propose a global-local fusion approach
that involves splitting the input image into multiple patches
and using the network to predict masks for each patch and
the entire image. This approach helps alleviate overfit-
ting. We then perform shadow-aware filtering that consid-
ers both the image brightness information and the previous
shadow masks to select accurate shadow masks while filter-

ing out inaccurate predictions. Thirdly, we collect a set of
zero-labeled non-shadow images with dark objects to train
the network to better identify non-shadow regions. Using
the above techniques, we can effectively train a simple U-
Net [42] in SILT to iteratively refine the noisy labels in the
original datasets. Examples demonstrating the effectiveness
of the proposed approach are shown in Fig 1 (c).

For quantitative evaluation, we relabel the test set of
SBU [55] to obtain high-quality and accurate shadow
masks, due to the existing issue of noisy labels. With this
carefully relabeled test set, we conduct various experiments
and demonstrate the superiority of our approach in produc-
ing more precise shadow detection results compared to ex-
isting state-of-the-art methods. Furthermore, we find that
our refined training set can significantly improve the per-
formance of these state-of-the-art methods. The code, pre-
trained model, and dataset are publicly available at https:
//github.com/Cralence/SILT.

2. Related Works
Shadow detection. Single-image shadow detection has
been studied for a long time. Earlier methods detect shad-
ows mainly based on physical features such as geometrical
properties [43, 39], spectrum ratios [49], color [22, 10, 52,
54], texture [78, 10, 52, 54], edge [22, 78, 17], etc. How-
ever, due to the physical nature of the shadow, it is hard
to quantify shadow by a few situation-invariant features.
Therefore, these methods work well mainly on simple cases
and are less effective on complex real-world shadows.

With deep convolutional neural networks (CNN), fea-
tures can be automatically learned instead of hand-crafted.
Since then, the performance of shadow detection improves
significantly. Khan et al. [20] first use a CNN followed by
a conditional random field to achieve pixel-wise shadow
detection. After that, many architectures [44, 55, 36, 16,
14, 56, 23, 79, 73, 6, 3, 80, 15, 81, 7, 74, 62, 18, 53, 59,
57, 58] are proposed to adopt deep neural networks for
shadow detection. Besides, various high-level shadow fea-
tures are designed, e.g., direction-aware spatial context [16,
14], distraction-aware [73], shadow edges [44, 3], shadow
count [3], etc. Further, several datasets are built, e.g.,
SBU [55] and ISTD [56]. Trained on these data, deep neural
networks can learn to detect shadows in more situations.

However, prior works mostly do not consider the noisy
label problem. One relevant work [55] is an LSSVM-based
noisy label recovery method, which adopts image cluster-
ing to recover the annotations from a lazily labeled dataset.
However, the SBU dataset refined by this method still con-
tains many noises. In this work, we reformulate shadow
detection as a noisy label problem by explicitly consider-
ing the noisy labels in the training data and present a new
shadow-aware iterative label tuning framework to learn to
detect shadows from noisy labels.
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Figure 3. The architecture of Shadow-aware Iterative Label Tuning (SILT) for learning to detect shadows from data with noisy labels.

Learning with noisy labels. Existing works for the clas-
sification task have widely studied the noisy label issue.
Various aspects have been exploited, e.g., network archi-
tectures [2, 64, 9, 11], losses [8, 31, 61, 72, 76, 77], regular-
izations [33, 48, 63], etc. On the other hand, some methods
aim to first detect [41, 75] noises then re-weight [40] or cor-
rect [47, 50, 51, 68, 12] the detected noises. To perform im-
age segmentation with noisy labels, some methods improve
the robustness of the network to noise by designing meta-
structures [30] or leveraging reliability of annotators [70]
and noisy gradient [34]. Others correct errors by exploiting
early-learning phase [28], using local visual cues [45] and
formulating spatial label smoothing regularization [71].

Self-training. Self-training methods [67, 37, 24] typically
first train a teacher network on a small labeled dataset.
Then, we can use it to generate pseudo-labels for a large un-
labeled dataset and take the pseudo-labels to train a student
network; by iterate this process, the quality of the pseudo-
labels can be gradually improved. Recently, self-training
methods achieve state-of-the-art performance in tasks like
image classification [25, 65] and segmentation [32, 38, 26].

Our method differs from previous works in self-training
and noisy labels in two aspects. First, we only have
small but noisy datasets, while previous self-training meth-
ods typically adopt a huge unlabeled or badly-labeled
dataset [24, 65, 47, 12, 64], sometimes together with a
small and clean dataset [24, 65]. Thus, we propose global-
local fusion in label tuning to mitigate the over-fitting is-
sue. Second, in shadow detection, errors appear more with
a common pattern, compared with general image classifi-
cation and segmentation, so it is hard to tackle the error
accumulation issue. Thus, we propose shadow counterfeit-
ing in network tuning to enhance the discriminating abil-
ity of the deep network to recognize non-shadow regions
and shadow-aware filtering in label tuning to select accurate
shadow masks while filtering out inaccurate predictions.

3. Methodology
Fig. 3 shows the overall architecture of the proposed

Shadow-aware Iterative Label Tuning (SILT) framework,

which automatically tunes the labels in the noisy dataset in
a shadow-aware manner. For each round n ∈ {1, 2, ..., N},
where N is the total number of rounds, we denote the in-
put images as X , and its corresponding shadow masks as
Yn−1. When n = 1, the corresponding Y0 is the orig-
inal noisy label. There are two stages in each round of
SILT: Network Tuning and Label Tuning. In network tuning,
we train a shadow detection network supervised by previ-
ously tuned labels Yn−1, during which we introduce strong
data augmentation with shadow counterfeiting; see details
in Sec. 3.1. In label tuning, we tune the shadow masks
using the previous freeze-weight network with global-local
fusion and shadow-aware filtering strategies; see details in
Sec. 3.2. By iteratively performing these two stages, the la-
bels gradually become more accurate and contain more fine
details.

3.1. Network Tuning with Shadow Counterfeiting

Dark objects are easily misclassified as shadow regions
and the errors could be accumulated in the self-training
frameworks [65, 12]. In order to let the network learn to
distinguish the shadow and dark non-shadow objects, we in-
troduce the shadow counterfeiting in network tuning. This
strategy is implemented by two data augmentations, namely
Distraction and RandomNoise, which add different types of
dark regions (counterfeited shadows) to train the network to
recognize the dark regions as non-shadows.

Specifically, in Distraction (Fig. 4 (a)), we randomly
choose an area in the training image and fill it with dark
color. The area is a randomly generated polygon, and we
multiply the value of the pixels in that polygon by a factor
of 0.3. In RandomNoise (Fig. 4 (b)), we randomly add black
points in the training images. We label both augmentations’
newly added regions/pixels as non-shadow regions. These
two augmentations introduce ”counterfeited” shadows with
various sizes and numbers to the training data, thereby im-
proving its ability to distinguish between shadows and dark
non-shadows. To mitigate overfitting, we add other com-
mon data augmentations following previous works [69, 4].
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Figure 4. An illustration of shadow counterfeiting.

Figure 5. Visualizations of global-view and local-view prediction.

3.2. Label Tuning

In label tuning, we aim to employ the network to cor-
rect wrong labels and add missing labels in the training
data. However, the network may easily overfit the wrong
labels since the shadow detection datasets [78, 55] are rela-
tively small compared with other datasets used for general
computer vision tasks, e.g., ImageNet [5] for image classi-
fication and COCO [27] for object detection. To solve the
above issues, we present the label tuning strategy, which
first adopts global-local fusion to enhance details as well as
alleviate overfitting and then uses shadow-aware filtering to
filter out inaccurate and vague predictions.

3.2.1 Global-Local Fusion

As shown in the right part of Fig. 3, unlike the previous
works [25, 65] that use the network to relabel their train-
ing data directly, we first split the input image into four
parts, resize them to the size of the original input image,
and adopt the network to predict the shadow mask for each
part. Lastly, we obtain a unified output ŷlocal, referred to as
local-view prediction, by combining different local parts.

The benefits of such operations are two-fold. First, in-
spired by the concept of multi-scale inference [35], a higher
resolution input image helps the network to predict more
detailed shadow masks. More importantly, taking crop-and-
resized patches as input avoids directly using the raw train-
ing data, which mitigates overfitting and encourages noisy
label correction, as depicted in the first row of Fig. 5.

Besides the local-view prediction, we further take the
whole image as input to generate the global-view prediction
ŷglobal, which helps to distinguish the large shadow region
by considering the global image context, as shown in the

second row in Fig. 5. After obtaining the predictions from
the global view and the local view, we combine them into
the final prediction ŷn by

ŷn =

{
max(ŷglobal, ŷlocal), ŷglobal > Rfilt

ŷglobal, ŷglobal ⩽ Rfilt

, (1)

where Rfilt is the threshold to ensure the priority of ŷglobal,
since the global-view result is more reliable by considering
the global image context. We empirically set the Rfilt as
0.1 during the experiments.

3.2.2 Shadow-aware Filtering

The prediction ŷn contains the continuous values, and some
ambiguous regions, e.g. dark non-shadow objects, usually
have low confidence. If we keep these ambiguous regions,
the confidence value will accumulate stage by stage and
finally mislead the network to recognize these regions as
shadow regions with high confidence. To avoid this situa-
tion, we pass the prediction ŷn through a threshold map to
generate a binary mask.

We observe that the network often has lower confidence
in predicting shadows in bright regions while has higher
confidence in dark regions. But the dark regions are eas-
ily to be mislabeled. Therefore, we prefer to adopt a lower
threshold for bright regions, thus making the network eas-
ier to refine the wrong labels in those regions. Meanwhile,
we prefer a higher threshold for dark regions, which helps
to filter out the wrong labels of dark non-shadow objects
predicted by the network. For this purpose, we construct a
shadow-aware filter map to perform binarization with dif-
ferent thresholds according to the image brightness.

Specifically, to obtain the illumination intensity, we
transform the RGB image into Y CbCr color space [19] and
take the first channel as brightness map Y . Then, we con-
struct a shadow-aware filter map F , which gives a smaller
threshold when the brightness is high and vice versa. In
detail, we set Rmin and Rmax as two hyper-parameters de-
noting the minimum and maximum value of the threshold
map, respectively, and for each pixel i, the corresponding
threshold Fi is defined as:

Fi =
RmaxYmax −RminYmin

Ymax − Ymin
−Rmax −Rmin

Ymax − Ymin
·Yi , (2)

where Ymax and Ymin denote the maximum and minimum
brightness value of the image, respectively, and Yi is the
brightness at the pixel i. Note that Fi is defined as Rmax

when Yi takes Ymin and as Rmin when Yi takes Ymax. Dur-
ing the experiments, we empirically set Rmin as 0.5 and
Rmax as 0.6. Through the above formulation, we adopt
a higher threshold to make a strict selection in dark re-
gions and use a lower threshold to avoid filtering out correct
masks in bright regions.
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After we obtain the newly generated shadow mask ŷn ,
we compare it with the previous shadow mask yn−1 and use
it to replace the previous shadow mask when ŷn contains at
least Rcorr percentage of the previous shadow mask. Other-
wise, we will keep the previous shadow mask as the final re-
sult. This is because the major part of the original/previous
shadow mask is usually reliable, especially in the larger re-
gions. We empirically set Rcorr as 0.95 in the following
experiments.

4. Experiments

4.1. Datasets and Evaluation Metrics

We employ three mostly-used datasets. The first one is
SBU [55], which contains 4089 training images and 638
testing images. The second is UCF Shadow Dataset [78],
which includes 360 images. The third is ISTD [56], which
has 1330 training images and 540 testing images. SBU
and UCF contain more noisy labels, whereas ISTD is rel-
atively cleaner. For evaluation metrics, we choose the
most widely-used Balanced Error Rate (BER), Shadow Er-
ror Rate (BERS), and Non-shadow Error Rate (BERNS).

4.1.1 Relabeled SBU test set

Considering that the test sets in existing shadow datasets
also contain wrong labels, we decide to relabel the test set
of SBU [55] to better evaluate the performance of various
shadow detection networks. Specifically, we hired three
experts to do the relabeling work. Before relabeling, we
showed them some examples to clarify the definitions and
identifications of shadow, especially the self shadow. Then,
they used Affinity Photo [1] on the iPad with Apple Pen-
cil to draw shadow labels image by image. Specifically,
they were required to zoom in to label the details. It took
on average five minutes to relabel each image. Finally, we
cross-validated the refined labels from three experts and in-
tegrated them to obtain the final ground truth masks.

In total, our relabeled test set contains 638 test images
and masks with fine details. In the original test set, 11.34%
of the mask pixels have been changed. Among them,
11.05% are incomplete masks (new=1, old=0), while only
0.29% are wrongly-labeled masks (new=0, old=1). There-
fore, incomplete masks contribute the most to inaccurate
annotations. Meanwhile, out of the 638 masks in our rela-
beled test set, 517 of them have modifications larger than
5%, and 374 of them have modifications larger than 20%.
Figure 6 shows comparison examples between our relabeled
test set and the original SBU test set. Ours features more de-
tailed shadow masks and exhibits more consistent labeling
regarding self shadows and background shadows.

Figure 6. Comparison of our relabeled SBU test set and original
SBU test set.

Figure 7. Examples of our additional dataset.

4.1.2 Additional Non-shadow Training Data

We collect some images from the Internet to further help
train the network to distinguish shadows and dark objects
and alleviate error accumulation problem. Specifically, we
search for some images that contain dark objects but no
shadows, see Figure 7. Therefore, their shadow masks
should be zeros, and no hand labeling is needed. Consider-
ing that too many training images with zeros as labels may
deteriorate training, we only choose 89 images in total as
our additional training data, which is 2% of the total number
of the SBU. Note that we only use this additional training
data when training on SBU [55], as the size of the training
set of UCF [78] and ISTD [56] is very small.

4.2. Experiment Details

We adopt a simple U-Net structure [42] as our shadow
detection network. For a fair comparison, we use differ-
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Table 1. Quantitative Comparison of our method with recent state-of-the-art methods on three benchmark datasets. (a) and (b) are evaluated
on our relabeled SBU test set; (c) is evaluated on original ISTD test set.

Training set Param.(M) SBU (a) UCF (b) ISTD (c)
Method Year BER↓ BERS BERNS BER↓ BERS BERNS BER↓ BERS BERNS

BDRAR
DSC
DSD
MTMT
FSD
FDRnet
SDCM

ECCV2018
CVPR2018
CVPR2019
ICCV2021
TIP2021

ICCV2021
ACM MM22

42.46
79.03
58.16
44.13
4.40
10.77
10.95

6.49
8.08
5.60
7.41

10.87
5.93
5.71

9.68
12.25
7.86
13.68
20.39
10.93
9.07

3.29
3.91
3.34
0.97
1.34
1.71
2.36

11.48
14.15

-
-

17.66
12.91
11.45

18.81
24.86

-
-

32.38
22.50
20.69

4.15
3.44

-
-

2.93
3.32
2.22

2.69
3.42
2.17
1.72
2.68
1.55
1.41

0.50
3.85
1.36
1.36
3.69
1.22
1.19

4.87
3.00
2.98
2.08
1.66
1.88
1.69

ours (EfficientNet-B3)
ours (ConvNeXt-B)
ours (ResNeXt-101)
ours (EfficientNet-B7)
ours (PVT v2-B3)
ours (PVT v2-B5)

12.18
100.68
90.50
67.80
49.42
86.14

5.23
5.11
5.08
4.62
4.36
4.19

6.22
7.07
4.86
4.24
5.29
4.28

4.23
3.15
5.30
4.90
3.43
4.09

9.18
8.62
9.27
7.97
7.25
7.23

12.32
11.54
12.71
9.41
7.39
7.78

6.04
5.70
5.82
6.54
7.12
6.69

2.00
1.15
1.53
1.46
1.11
1.16

1.62
0.82
1.20
1.01
0.79
0.85

2.37
1.48
1.86
1.90
1.44
1.47

Table 2. Comparison results of the recent state-of-the-art methods trained on the original dataset and our refined dataset. Evaluations are
done on our relabeled SBU test set.

Trained on original dataset Trained on our refined dataset % Reduction
Method Year BER↓ BER↓ BERS↓ BERNS↓ BER BERS

SBU [55]

BDRAR [79]
DSC [16]
FSD [15]
FDRnet [80]
SDCM [81]

ECCV2018
CVPR2018

TIP2021
ICCV2021

ACM MM22

6.49
8.08

10.87
5.93
5.71

5.35
5.62
6.13
5.48
4.87

5.57
5.38
8.19
7.44
4.32

5.12
5.86
4.08
3.52
5.41

17.6%
30.4%
43.6%
7.5%

14.4%

42.5%
56.1%
59.8%
31.9%
55.7%

UCF [78]

BDRAR [79]
DSC [16]
FSD [15]
FDRnet [80]
SDCM [81]

ECCV2018
CVPR2018

TIP2021
ICCV2021

ACM MM22

11.45
14.15
17.66
12.91
11.45

9.59
10.71
13.39
9.12
8.37

9.55
12.49
21.21
11.97
8.23

9.64
8.93
5.57
6.27
8.51

16.2%
24.3%
24.2%
29.4%
26.9%

49.2%
49.8%
34.5%
72.1%
60.2%

ent encoder networks with similar parameter size as previ-
ous SOTA networks, i.e., ResNeXt-101 [66], ConvNeXt-
B [29], EfficientNet-B3 [46], EfficientNet-B7 [46], PVT
v2-B3 [60], and PVT v2-B5 [60]. Following previous
works, we initialize the backbones with the weights pre-
trained on ImageNet [5]. We set the total number of self-
training rounds N as seven, and in each round, we train the
network for 20 epochs with a batch size of six. We set the
learning rate to 1 × 10−4 for PVTs and 5 × 10−4 for other
networks, and use Adamax [21] as the optimizer. We resize
each image to 512 × 512 while training, refining, and in-
ferring, and calculate the BERs on the original image size.
For models trained on SBU and UCF, we test the models on
our relabeled SBU test set. Besides, we employ the original
ISTD test set to evaluate the models trained on ISTD, as the
test set in ISTD is better labeled. Note that we obtain the
best result in round 6, 5, and 3 for models trained on SBU,
UCF, and ISTD, respectively.

4.3. Comparison with the State-of-the-art Methods

We compare our training framework with seven previ-
ous SOTA networks, namely BDRAR [79], DSC [16, 14],

DSD [73], MTMT [3], FSD [15], FDRnet [80], SDCM [81].
We use their public pre-trained models on the SBU and
ISTD, and re-trained models on the UCF for evaluation.

Table 1 shows the results. We can see that our U-Net
with various backbones outperforms all the previous SOTA
networks by a large margin. On SBU, the PVTv2-based
variant achieves the best performance, with a 25.2% and
45.5% decrease in BER and BERS compared with the best
previous work. On UCF, our PVTv2-based variant achieves
a 36.9% and 60.7% decrease in BER and BERS compared
with the best previous work. Note that we do not re-train
MTMT and DSD, which require additional training data.
On ISTD, our PVTv2-based variant also reduces the BER
and BERNS by 21.3% and 13.3%, respectively.

Fig. 8 shows the qualitative comparisons of our method
with the recent state-of-the-art methods. From the results,
we can see that our method is able to detect more fine
shadow details with the help of the proposed SILT.

To show the effectiveness of our SILT, we further re-
trained the previous state-of-the-art networks on our tuned
SBU and UCF dataset. The comparison results are shown
in Table 2, where all the previous networks achieve signifi-
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(a) Input images (b) BDRAR
[79]

(c) DSC
[16]

(d) DSD
[73]

(e) MTMT
[3]

(f) FSD
[15]

(g) FDRnet
[80]

(h) SDCM
[81]

(i) Ours (j) Ground truth

Figure 8. Qualitative comparison of our method with recent state-of-the-art methods.

cant improvements, especially in terms of BERS . It proves
that the performance of existing networks is limited by the
noisy labels and our tuned labels help to train a better deep
model than using the original labels. It also shows that our
SILT framework is applicable to various kinds of network
architectures, not limited to the U-Net.

4.4. Ablation Study

4.4.1 Component Analysis

We conduct the ablation study by applying our SILT on
SBU [55] dataset and testing it on our refined SBU test
set. In the experiments, we use a U-Net [42] with PVT v2-
B5 [60] as the backbone. In total, we consider the follow-
ing baseline networks: 1) Base: directly train a U-Net [42]
on the noisy dataset. 2) ST: directly apply a self-training
framework, where we train a network, use the trained net-
work to relabel the training data, and repeat these two stages
alternately. 3) ST + Filter: add shadow-aware filtering in la-
bel tuning, but without global-local fusion. 4) ST + Fusion:
add global-local fusion in label tuning, but without shadow-
aware filtering. 5) ST + LT: full label tuning but without
shadow counterfeiting. 6) ST + LT + SDA: add the com-
mon strong data augmentations, e.g., RandomPerspective,

Table 3. Component analysis on the proposed SILT.
BER↓

Base
ST
ST+Filter
ST+Fusion
ST+LT
ST+LT+SDA
ST+LT+SDA+SC

6.62
5.82
5.44
4.67
4.52
4.46
4.37

Full 4.19

GaussianBlur, etc. 7) ST + LT + SDA + SC: further use
shadow counterfeiting in the network tuning stage. 8) Full:
further add an additional unlabeled non-shadow dataset to
the training data.

Table 3 shows the BER of each variant evaluated on our
relabeled SBU test set, where we can see that (i) simply ap-
plying a self-training framework (ST) to refine noisy labels
gives a limited improvement; (ii) each component in our
framework design improves the quality of shadow masks in
training data, thus promoting the performance of shadow
detection; and (iii) our full pipeline with the additional non-
shadow training set achieves the best performance, showing
the effectiveness of the proposed method.
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(a)

(b)
Figure 9. Comparison of the baseline networks in terms of error
rates in each round.

Table 3 shows that global-local fusion (ST + Fusion)
brings the largest improvement. Fig. 9 (a) shows the BER
in each round of the self-training framework with and with-
out global-local fusion. Compared with ST, the ST + Fu-
sion effectively alleviates overfitting in the first few training
rounds. Fig. 9 (b) shows that our full pipeline with shadow-
aware filtering and shadow counterfeiting reliefs error accu-
mulation in shadow regions.

4.4.2 Architecture Analysis

Round number. In Fig. 10, we show the results where we
use label tuning for different rounds in the training stage.
We can observe that (i) after the first round, we are able
to relabel the large shadow regions in the images; (ii) fine
details are gradually added in the shadow masks during the
training process; and (iii) if using a large number of training
rounds (the last column), the shadow masks become noisy
again due to the error accumulation. Hence, we empirically
set the round number as seven.

Hyper-parameters: Rmin and Rmax. Rmin and Rmax

are two hyper-parameters in equation (2), which control the
threshold to split the non-confident predictions into shadow
and non-shadow regions. Table 4 shows the BER of differ-
ent combinations, where when the difference between Rmin

Figure 10. Shadow masks refined by different rounds of SILT.

Table 4. BER values of different Rmin and Rmax.
Rmax

0.4 0.5 0.6 0.7 0.8

Rmin

0.4 4.77 4.44 4.40 4.41 -
0.5 - 4.53 4.19 4.75 -
0.6 - - 4.45 4.36 4.80

Table 5. BER values of different Rcorr

Rcorr 0.91 0.93 0.95 0.97 0.99
BER 4.59 4.32 4.19 4.51 4.52

Table 6. BER values of different Rfilt

Rcorr 0.05 0.075 0.1 0.125 0.15
BER 4.70 4.47 4.19 4.42 4.62

and Rmax is neither 0 nor too large, the shadow-aware fil-
tering gives the best results, and we set Rmin and Rmax as
0.5 and 0.6 in experiments.

Hyper-parameters: Rcorr. Rcorr controls the least ra-
tio of the previous mask that is contained in the new mask.
A larger Rcorr leads to fewer label corrections, while a
smaller Rcorr introduces more wrong labels. As shown in
Table 5, we empirically set Rcorr as 0.95.

Hyper-parameters: Rfilt. Rfilt determines how much
we take the local-view prediction into account. A smaller
Rfilt keeps more local-view prediction, and vice versa. As
shown in Table 6, we empirically set Rfilt as 0.1.
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4.4.3 Analysis on Additional Data

Dataset Name SBU UCF ISTD
with additional dataset 4.19 7.60 1.18
w/o additional dataset 4.37 7.23 1.16

Table 7. The BER values of PVT v2-B5 based model trained on
different datasets with and without additional dataset.

For a fair comparison, we conduct the ablation study on
the additional non-shadow data to test its effectiveness. The
results of our PVT v2-B5 based model trained on the three
datasets are listed in Table 7. As the results of UCF and
ISTD show, data with excessive hard negative cases would
deteriorate the training, leading to a performance degrada-
tion. Meanwhile, the results on all the three datasets show
that, without the additional dataset, SILT is still, or even
more, competitive.

4.5. Discussion on Non-Shadow Error Rate

From Table 1, we can observe that our method has a
higher Non-shadow Error Rate (BERNS) than the prior
ones. We hypothesize that a model trained on a well-labeled
dataset tends to produce balanced BERS and BERNS val-
ues. In contrast, the previous training datasets with lots of
missing masks lead the networks to predict fewer shadow
regions, resulting in BERS much higher than BERNS .

To validate our assumption, we randomly split the rela-
beled SBU test set into a new training set of 538 images
and a new test set of 100 images. Then, we train the SOTA
method SDCM [81] on this new training set [denoted as
SDCM(c)] and test it on the new test set. We also used this
same test set to evaluate the performance of our SILT and
SDCM [81] that trained on the original SBU training set
[denoted as SDCM(a)] and our SILT relabeled training set
[denoted as SDCM(b)]. We conduct the experiments three
times, and each time, we randomly select a new test set of
the size of 100.

The results are shown in Table 8, where we can ob-
serve that (i) from (c), SDCM achieves lower BER and
balanced BERS and BERNS with a smaller well-labeled
training set, supporting our hypothesis; (ii) the comparison
among SDCM (a-c) shows that our SILT-relabeled training
set improves shadow detection performance and indicates
the high quality of our SILT-relabeled dataset;

5. Conclusion
We revisit the shadow detection task by considering

noise in the shadow labels, and design SILT, a novel
Shadow-aware Iterative Label Tuning framework, to enable
effective model training on data with noisy labels. Tech-
nically, we present a label tuning strategy to encourage the

Table 8. Comparison results of the state-of-the-art (SOTA)
method [81] trained on three different training sets: (a) the origi-
nal SBU training set, (b) our SILT relabeled training set, and (c)
a subset of manually relabeled SBU test set (538 images). The
evaluation was conducted on the rest of the relabeled SBU test set.

Exp.
Time

SDCM(a) SDCM(b)
BER BERS BERNS BER BERS BERNS

1 5.29 8.95 1.63 4.43 3.95 4.91
2 5.44 7.33 3.55 5.27 4.48 6.06
3 5.18 7.85 2.51 4.42 4.27 4.57

AVG. 5.30 8.04 2.56 4.70 4.23 5.18
SDCM(c) Ours

BER BERS BERNS BER BERS BERNS

1 4.39 4.68 4.10 3.99 4.38 3.60
2 5.73 5.21 6.25 4.34 3.54 5.15
3 4.26 4.34 4.18 3.61 3.79 3.44

AVG. 4.79 4.74 4.84 3.98 3.90 4.06

network to get rid of overfitting and try large refinement on
the shadow labels. Also, we design two shadow-specific
data augmentation strategies, which add “fake” shadows
into the training images to improve the ability of the net-
work to distinguish the shadows and dark objects. Consid-
ering the noise in existing datasets, we carefully relabel the
test set of SBU [55] for evaluation and conduct various ex-
periments. The experimental results show that with SLIT,
even a simple network can achieve state-of-the-art perfor-
mance on shadow detection.

Limitations. Our SILT may fail to distinguish the shadow
regions and dark non-shadow regions that have very similar
colors and textures to the shadow regions. This is a very
challenging issue in the shadow detection task, which de-
tects shadow regions from single images. In the future, we
aim to explore depth information to more accurately detect
shadows in 3D space, since the shadows are usually pro-
jected on the 2D background.
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