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Abstract

As the physical size of recent CMOS image sensors (CIS)
gets smaller, the latest mobile cameras are adopting unique
non-Bayer color filter array (CFA) patterns (e.g., Quad,
Nona, Q×Q), which consist of homogeneous color units
with adjacent pixels. These non-Bayer sensors are supe-
rior to conventional Bayer CFA thanks to their changeable
pixel-bin sizes for different light conditions, but may intro-
duce visual artifacts during demosaicing due to their in-
herent pixel pattern structures and sensor hardware char-
acteristics. Previous demosaicing methods have primarily
focused on Bayer CFA, necessitating distinct reconstruc-
tion methods for non-Bayer patterned CIS with various CFA
modes under different lighting conditions. In this work, we
propose an efficient unified demosaicing method that can be
applied to both conventional Bayer RAW and various non-
Bayer CFAs’ RAW data in different operation modes. Our
Knowledge Learning-based demosaicing model for Adap-
tive Patterns, namely KLAP, utilizes CFA-adaptive filters for
only 1% key filters in the network for each CFA, but still
manages to effectively demosaic all the CFAs, yielding com-
parable performance to the large-scale models. Further-
more, by employing meta-learning during inference (KLAP-
M), our model is able to eliminate unknown sensor-generic
artifacts in real RAW data, effectively bridging the gap be-
tween synthetic images and real sensor RAW. Our KLAP
and KLAP-M methods achieved state-of-the-art demosaic-
ing performance in both synthetic and real RAW data of
Bayer and non-Bayer CFAs.

1. Introduction
Demosaicing (DM) is the process of interpolating single-

channel input images into RGB output images within an
embedded Image Signal Processor (ISP). With the grow-
ing demand for high-quality mobile camera images, CMOS
image sensor (CIS) resolution has increased dramatically,
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even reaching 200 million pixels in the latest smartphones.
However, as image sensors cannot infinitely increase in size,
pixel size has been reduced to enhance resolution. Smaller
CISs are more vulnerable to noise and degradation in im-
age restoration capabilities because they are more sensi-
tive to variations in light reception, especially in low-light
condition [14, 28, 45, 46]. As a result, modern high-end
smartphones have started using image sensors that group
adjacent homogeneous pixels, resulting in non-Bayer Quad,
Nona, and Quad-by-Quad (Q×Q) sensors [24, 45, 48],
while still retaining some of the properties of the standard
Bayer CFA [5] pattern. Quad, Nona, and Q×Q sensors
combine the same color pixel arrays of 2×2, 3×3, and 4×4
respectively, resulting in homogeneous pixel units (i.e., Gr,
R, B, and Gb) for each sensor, as shown in Fig. 1(a).

Demosaicing for modern non-Bayer CFAs is more com-
plex and computationally demanding than for standard
Bayer CFAs. This is because as the number of pixel ar-
rays within each unit increases, the distance between the
units becomes greater, requiring interpolation with inaccu-
rate pixel values from distant locations. Therefore, there
is growing interest in using deep learning for demosaicing
methods, leading to active research on both Bayer pattern
demosaicing [78, 51, 13, 8, 68, 1, 40, 76, 57, 23, 31, 22]
and non-Bayer pattern demosaicing [33, 32, 25, 3, 58, 11].

However, the aforementioned methods focus on a single
CFA pattern task and do not cover demosaicing tasks for
other CFA patterns. Modern mobile phones with non-Bayer
patterned CIS adapt their CFA modes dynamically based on
lighting conditions, controlled by the CIS’s ISP. Using inde-
pendent models (IMs) for each pattern, tailored to different
CFA modes, would demand loading and operating multi-
ple models within the limited circuit space of the CIS. This
would result in excessive memory and power consumption
if the models were kept standby on the mobile application
processor (AP) and switched accordingly. Moreover, the
task of tuning models for each CFA would be laborious.

Currently, no existing method can handle dynamically
changing CFA modes in a non-Bayer patterned CIS as a
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Figure 1: (a) Overview of our unified model (UM) for demosaicing all the Bayer and non-Bayer CFAs, called the Knowledge
Learning-based demosaicing model for Adaptive Patterns using Meta-test learning (KLAP-M) with Bayer or non-Bayer
patterns, even when ground truth is unavailable and unknown artifacts are present. (b) Comparing CIS RAW demosaicing
results of KLAP (KLAP-M without meta-test learning) and KLAP-M (KLAP with meta-test learning).

unified model (UM). Inspired by recent works for all-in-one
image restoration affected by multiple types of unknown
degradation [37, 10, 36], we propose a unified demosaicing
method for all Bayer and non-Bayer CFA patterns. How-
ever, these all-in-one image restoration methods do not con-
sider real unknown artifacts, so we will further investigate
them to address the scenario of real CIS RAW with ‘un-
known’ artifacts, missing or mostly lacking ground truth
(GT). Since such unknown artifacts may fail to yield high-
quality phone camera photos, we are motivated to propose a
UM with robust meta-learning-based DM methods that can
handle these obstacles.

In this work, we propose efficient unified DM methods
that are capable of handling various non-Bayer patterned
CISs with a new pipeline to bridge the gap between syn-
thetic and real CIS RAW images. Our proposed Knowledge
Learning-based demosaicing model for Adaptive Patterns
(KLAP) is capable of simultaneously handling multiple
CFAs’ demosaicing, which consists of two following steps.
Firstly, we train a baseline UM using the two-stage knowl-
edge learning (TKL) [10], making it more efficient to find
Adaptive Discriminative filters for each specific CFA Pat-
tern (ADP). Secondly, we fine-tune the UM model trained
in the first stage using ADP. ADP is a metric that ap-
plies FAIG [67] to the update logic of our neural net-
work, allowing us to find a small set of discriminative fil-
ters that can be used as independent parameters for spe-
cific CFA DM tasks. Lastly, we propose KLAP-M, KLAP
(TKL+ADP) with Meta-test learning. KLAP-M integrates
self-supervised learning into KLAP to address domain gaps
between synthetic RAW and real CIS RAW images caused
by unknown artifacts in real-life scenarios. Our proposed
meta-test learning for demosaicing consists of pixel binning
loss based on CIS domain knowledge and self-supervised
denoising techniques. Fig. 1(a) provides an overview of our

KLAP-M approach, which handles both Bayer and Non-
Bayer patterns. Additionally, Fig. 1(b) shows the results
of our meta-test learning technique, addressing the domain
gap in real RAW images.

Our contributions are summarized as follows: (1) Our ef-
ficient unified network, KLAP, effectively performs demo-
saicing for multiple CFAs, (2) KLAP-M, a version of KLAP
that incorporates a meta-learning approach, effectively re-
duces unknown visual artifacts in genuine CIS RAW images
that are caused by diverse sensor characteristics and shoot-
ing environments, (3) KLAP and KLAP-M achieve state-
of-the-art performance on the synthetic benchmark dataset
and real CIS RAW samples captured by CIS chips.

2. Related Works
2.1. Deep Learning-based Demosaicing

IMs for DM only. Traditional demosaicing without ap-
plying deep learning techniques either apply a fixed DM
filter to each pixel without considering other parameters
as features or utilize spectral and spatial features available
in neighboring pixels to interpolate the unknown pixel as
closely as possible to the original [42, 19]. Due to the com-
plexity of various CIS CFAs, traditional methods are cum-
bersome, leading to an increasing interest in deep learning-
based demosaicing models. Stojkovic et al. [59] suggested
IMs of each Bayer and Quad demosaicing based on CDM-
Net [12]. Kim et al. [33, 32] applied the duplex pyramid
network structure to Quad CFA and Nona CFA, respec-
tively. Sharif et al. [58] proposed a GAN-based spatial-
asymmetric attention for Nona CFA reconstruction. For
Q×Q CFA, Cho et al. [11] proposed an efficient pyramidal
network using progressive distillation based on PyNet [23].

Multi-tasks joint with DM. There have been propos-
als to combine DM methods with other closely related ISP



tasks, such as denoising (DN) and super-resolution (SR).
Some [13, 66, 8, 40, 27, 34] proposed convolutional neu-
ral networks approach for joint DM and DN to improve
the quality of the restored image. Ma et al. [41] and Xu
et al. [71] proposed models for simultaneous DM and SR.
Xing et al. [68] introduced a multi-task learning approach to
jointly address three tasks: DM, DN, and SR. Previous stud-
ies mainly concentrate on multi-task approaches for single
CFA demosaicing and known noise sources. In contrast,
our proposed method introduces a unified model that han-
dles both Bayer and non-Bayer CFAs, incorporating meta-
learning to ensure robust performance even in the presence
of unknown noise.

2.2. Image Restoration for Multi-tasks

IMs for multi-tasks. Beyond DM tasks, recent pa-
pers [77, 43, 75, 65, 64, 54, 9] have introduced various ap-
proaches that share a common framework capable of ad-
dressing multiple image restoration tasks, including denois-
ing, deblurring, and deraining. While the mentioned IM
excels in individual tasks, it necessitates multiple network
parameters as multiple networks are needed to handle all
the required tasks.

Unified model (UM) for multi-tasks. To overcome the
drawbacks of IMs, Chen et al [10] proposed a single UM for
two-stage knowledge learning mechanism based on multi-
teacher and single student approach for multiple degrada-
tions on images that contains rain, haze, and snow. Li et
al. [36] proposed a single UM using a contrastive-based de-
graded encoder, called the degradation-guided restoration
network (DGRN), which adaptively works with three degra-
dations: rain, noise, and blur. Park et al. [47] introduced a
single UM equipped with dedicated filters for degradation,
achieving remarkable results in rain-noise-blur and rain-
snow-haze tasks. To the best of our knowledge, there is
currently no reported method that can handle all Bayer and
non-Bayer demosaicing tasks using a single unified model.

2.3. Meta-learning-based Image Restoration

For image reconstruction, a large number of samples
are usually necessary, but it may not be feasible in many
real-world situations. Meta-learning, also known as learn-
to-learn, provides a promising solution to the problem
of adapting models quickly to new data. This learning
method empowers models to achieve efficient task perfor-
mance even with limited additional incoming data. Finn et
al. [17] proposed an algorithm for model-agonistic meta-
learning that achieved state-of-the-art performance in few-
shot learning tasks. Meta-SR [20] enables super-resolution
for arbitrary scale factors by applying the Meta-Upscale
Module. We propose the use of meta-learning to achieve
robust results, even in the presence of unknown artifacts in
CIS RAW images.

3. Deep Demosaicing for Each Non-Bayer CFA
3.1. Operating Principles of Non-Bayer Sensors

With the decreasing size of camera sensors, the physical
area of light captured by a pixel has been reduced. Con-
sequently, the introduction of non-Bayer sensors allows for
capturing more light. In case of Q×Q as an example, when
there is sufficient light, as scenario (3) and (4) in Fig. 2,
Q×Q sensors can handle the entire resolution with Bayer
DM (after ‘re-mosaicing’) and direct Q×Q DM. On the
other hand, especially in low-light conditions, Q×Q CIS
pixels have the advantage of using ‘pixel binning’ to en-
hance their light sensitivity and reduce the noise [80, 74],
sacrificing their resolution (but still acceptable), resulting in
clear image quality with reduced noise (shown as scenario
(1) and (2) in Fig. 2). Pixel binning is the merging of neigh-
boring pixels in an image through summation or averaging
in ISP, typically done by the ISP after pixel-readout. Quad
DM or Bayer DM methods are specifically required in such
cases. Supporting a diverse range of CFA pattern modes
remains crucial in non-Bayer patterns. However, employ-
ing separate DM networks for each pattern increases net-
work parameters, leading to larger CIS chip area. Multiple
DM models necessitate frequent model switching, consum-
ing more memory and power in mobile environment. Our
proposed unified DM model handles all non-Bayer sensor
patterns, including standard Bayer sensors, providing effec-
tive solutions for this issue. It offers flexibility for different
CIS product lines and CFA pattern modes, reducing prod-
uct development time with minimal fine-tuning required for
specific product characteristics.

3.2. Data Synthesis for Demosaicing All CFAs

To train input images resembling real CIS RAW, we pro-
pose a data synthesis pipeline that generates realistic RAW-

Figure 2: DM scenario in real CIS. For example, in the case
of Q×Q CIS: (a) In low-light conditions, the Q×Q sensor
converts its pattern to either the (1) Quad or (2) Bayer mode
(pixel-binning), sacrificing resolution, and then performs
DM. (b) In normal conditions, the Q×Q sensor can either
re-mosaic the pattern to the Bayer mode and then perform
DM or directly perform Q×Q DM, with full resolution.



Figure 3: Overview of our realistic RAW image synthesis
pipeline for Bayer and Non-Bayer demosaicing. The r-CM
(reverse Color-related Mapping functions) towards RAW-
like synthesis consists of invertible linear operations that re-
late RGB color spaces.

like images. Using a high-quality sRGB dataset, we follow
the front-end of Fig. 3 to generate synthetic RAW-like im-
ages. This involves applying four reverse color-related map-
ping functions (r-CM) from the ISP chain, including color
tone degradation, inverse gamma correction, inverse color
correction, and inverse auto white balance correction func-
tions. We analyzed and adjusted the previous ISP chains,
resulting in a pipeline structure similar to previous meth-
ods. [63, 62, 55, 6, 70]. Using this method, we generate
RGB synthetic GT labels for demosaicing training. Fur-
thermore, we add Gaussian and Poisson noise to simulate
various types of real noise [55, 14, 6, 70]. Each image
is then converted into a mosaic pattern for Bayer, Quad,
Nona, and Q×Q CFA, as depicted in the bottom row of
Fig. 3. This process generates the training inputs. The re-
verse color mapping (r-CM) consists of linear operations
and can be easily "re-reversed" to obtain the original color
mapping (CM). CM makes final output images only after
DM that closely resemble human-viewed realistic images.
Our proposed synthetic dataset generation pipeline consid-
ers demosaicing for both Bayer and Non-Bayer patterns and
incorporates a realistic noise model that combines Gaussian
and Poisson noise. More detailed information is Sec. S.1 in
the supplementary material.

3.3. Domain Gap in Synthetic and Real CIS RAW

Synthetic data-trained models often struggle with real
data due to the domain gap issue, a persistent problem
in image restoration tasks [55, 6, 26]. The domain gap
arises from variations in sensor hardware characteristics
due to differences in circuit structure, manufacturing pro-
cesses, and component variations across CIS brands and
product lines. The upper image in Fig. 1(b) shows visual
artifacts in real CIS RAW, mainly caused by crosstalk ef-
fects [29, 30, 38] between inner and outer pixels (details in
Sec. S.2 in the supplementary). Moreover, unknown ar-
tifacts can emerge in different shooting environments and
vary across CIS types. To address this, we propose a meta-
learning method to minimize the domain gap, enabling the

effective handling of unexpected unknown artifacts.

4. Unified Deep Demosaicing for Multiple
Bayer and Non-Bayer CFAs

Fig. 4 displays the proposed single unified DM method
for all Bayer and non-Bayer sensor patterns (KLAP) and
its additional meta-learning during inference framework for
robustness (KLAP-M). In Step 1 as Fig. 4(a), our approach
augments the network capacity of the integrated model us-
ing the Two-stage Knowledge Learning [10] (TKL). This
maximize the effectiveness of the Adaptive Discriminative
filters for each specific CFA Pattern (ADP) discovered in
the subsequent step. In Step 2 as Fig. 4(b), we further en-
hance the UM using a small number of specialized network
kernels for each DM task. Lastly, as Fig. 4(c), we introduce
a meta-test learning framework that ensures robust DM out-
put in the presence of unknown artifacts.

4.1. Step 1: Two-stage Knowledge Learning

This step aims to train the baseline of unified DM model
(baseline UM) for all CFAs using the two-stage knowl-
edge learning [10] (TKL), with independent DM models
for each CFA (IMs). The IMs, with the same network ar-
chitecture, have independent network parameters ({θi}ki=1)
dependent on each CFA-specific DM task (k). Note that
the IM achieves high performance as a specialized model
for each task, but requires a model k times larger than UM
(θum).

First, we pre-train each individual IM based on
NAFNet [9], renowned for its high performance despite
having few network parameters. Then, in the knowledge
collection (KC) stage, set the IMs specialized for each CFA
DM task as the teacher network and UM as the student net-
work to learn and collect knowledge from the teacher. In
the knowledge examination (KE) stage after KC, train only
using the student network and GT labels without guidance
from the teacher network. We applied TKL method to in-
crease the model’s capacity after feature-level guidance for
each CFA pattern, in order to maximize the effect of top fil-
ter detection in FAIG (Filter Attribution method based on
Integral Gradient) [67] (see actual results in Tab. 1).

4.2. Step 2: Adaptive Discriminative Filters for a
specific CFA Pattern

Xie et al. [67] proposed FAIG, which can detect discrim-
inative filters of specific degradation. FAIG measures inte-
grated gradient (IG) [60, 61] between baseline and target
models. Inspired by FAIG and its application in another
domain [47], we applied CNN for Adaptive Discriminant
filters for a specific CFA Pattern (ADP) using the lever-
aged FAIG method. FAIG score is as follows : FSj =
FAIGj(θum, θi, xi), for multiple CFA filters i = 1, . . . , k



Figure 4: The overview of our proposed unified DM model, Knowledge Learning-based demosaicing model for Adaptive
Pattern (KLAP) and KLAP with Meta-test learning (KLAP-M). KLAP consists of 2 steps: (a) two-stage knowledge learning
(TKL) for training baselines, (b) fine-tuning using Adaptive Discriminant filters for each specific CFA Pattern (ADP). (c)
KLAP-M employs meta-learning to reduce unknown artifacts in real RAW images during inference.

and all kernels j. Once the FAIG scores are computed, they
are then ranked in descending order. The top q% of kernels
are selected for each demosaicing process, with q represent-
ing a fixed value between 0.5 and 5.

We propose ADP, implemented by the masks Mc that
are selected kernels using FAIG as illustrated in Fig. 4 and
defined as follows:

θiadp = θium +

k∑
c=1

αcθ
i
c ∗M i

c (1)

where i is kernel index, ∗ is point-wise multiplication, θium
refers to the pre-trained integrated model in Step 1, and αc

is a coefficient for a specific CFA pattern and is set up either
as 1 or 0. Note that in a real non-Bayer CIS on a mobile de-
vice, the pattern mode i is determined by the mobile AP af-
ter detecting the lighting conditions. Also θic is an additional
kernel for specific CFA pattern. The ratio q in the mask is
determined empirically to be 1%. For example, the ratio
of 1% in the mask is 1% for 4 demosaicing types, our pro-
posed method uses an additional 4% of the entire network
parameters as compared to the baseline UM. More detailed
information is in the supplementary Sec. S.3. Our proposed
KLAP, a combination of TKL and ADP, achieves state-of-
the-art performance in various CFA DM tasks by replacing
only relevant CNN kernels in UM from TKL.

4.3. Meta-learning during Inference

As shown in Fig. 4, we propose meta-learning during in-
ference (meta-test learning) to mitigate unknown artifacts
caused by sensor characteristics or shooting environments.
By performing a few network updates during inference,
this approach produces robust results. Our proposed meta-
learning during inference consists of pixel binning loss and
Noise2Self (N2S) loss, one of the self-supervised denois-
ing techniques. As mentioned in Sec. 3.1, pixel binning
compensates for resolution loss by increasing the light sen-
sitivity, thus reducing noise. Based on CIS domain knowl-
edge, we propose a self-supervised denoising method using
a pixel binning loss to remove unknown artifacts.

Lpix = |G(xJc , θadp)− U(G(m(xJc), θadp′))| , (2)

where x and Jc denote the CIS RAW data and mask used
by N2S, m and U represent average-based pixel-binning
operation and up-sampling operation, respectively. G is a
unified network structure and θadp is network parameters
of ADP. θadp′ is the initial network parameters that are not
updated.

Additionally, we apply modified N2S loss to maintain
robustness against noise (Poisson and Gaussian noise) that
may occur depending on the shooting environment and to
prevent blur caused by pixel binning loss:

LN2S = |G(xJc , θadp)J − xJ | (3)



where xJ and xc
J are represent independent images using

the mask scheme. Additional information about the pixel
binning loss and N2S loss can be found in the supplemen-
tary material (See Sec. S.4.2.)

The total loss for meta-learning during inference is as
follows:

Ltotal = λpixLpix + λN2SLN2S (4)

where λpix and λN2S are used to balance different loss con-
ditions and is experimentally found through visualization.

5. Experimental Results
As stated in Sec. 3.2, we generate synthetic DF2K Bayer

and Non-Bayer CIS (DF2K-CIS) dataset utilizing DF2K, a
combination of two open source datasets, DIV2K [2] and
Flickr2K [39]. The training set comprises 2,500 images,
with a validation set of 50 images and a test set of 1000 im-
ages. Furthermore, we propose to use the DF2K-CIS test
dataset with strong noise to evaluate the effectiveness of
our proposed meta-test learning in generating robust results.
The DF2K-CIS strong noise test dataset comprises 200 im-
ages with noise parameters four times larger than those used
in training. Then, we evaluate our proposed meta-learning
method, KLAP-M, using 7 Q×Q CIS RAW images (48MP)
with a resolution of 8000× 6000, 1 Quad CIS RAW image,
and 3 Bayer CIS RAW images (50MP) with a resolution of
8192 × 6144, all of which are 10-bit images captured di-
rectly by each type of CIS chip. In the meta-test learning,
KLAP-M is trained using the loss function in Eq.(4) with
λpix = 1 and λN2S = 0.02. Note that Meta-test (KLAP-M)
does not utilize IMs but instead employs a unified model,
and we conducted KLAP-M evaluations on each new full
image for each sensor type. More implementation details
and demosaicing RAW results can be found in Sec. S.5, S.7
and S.8. of the supplementary materials

5.1. Results on Synthetic RAW Dataset

5.1.1 Comparison of Ablation Studies and KLAP with
Other Methods

Ablation study for KLAP. We perform ablation stud-
ies on the proposed KLAP approach based on NAFNet [9],
including TKL and ADP, as shown in Fig. 4 (a) and (b),
using the DF2K-CIS test dataset. Tab. 1 summarized the
performance of PSNR (dB) and the number of parameters
(Million). Baseline UM is a simple integrated model trained
on all tasks, while total IMs require 4 times more network
parameters than UM. Baseline UM-Large (Baseline UM-L)
refers to a modified version of NAFNet [9] with increased
network blocks. In TKL and ADP in the table, each step
is independently applied to the baseline UM. TKL-to-IM
refers to the re-trained IMs after applying TKL.

Using TKL and ADP independently leads to only a
marginal improvement of 0.05 dB and 0.11 dB, respec-

Table 1: Ablation study for our proposed KLAP and Quan-
titative performance comparison (Chen [10] and Li [36]) on
DF2K-CIS test dataset in terms of PSNR (dB) and the num-
ber of parameters (Million). Baseline-UM is a simple uni-
fied model. TKL is Baseline UM applying TKL, and ADP
is Baseline UM applying ADP independently. TKL-to-IM
involves fine-tuning IM after applying TKL. Chen [10] and
Li [36] are based on MSBDN [15] and AirNet, respectively,
while other experiments are based on NAFNet [9]. Note
that Avg. denotes mean of all CFA’s PSNR, and Par. de-
notes the number of parameters.

Method Ba. Qu. No. QxQ Avg. Par.
IM 42.18 41.80 41.14 41.42 41.64 68.4

TKL-to-IM 42.36 41.89 41.58 41.60 41.86 68.4
Baseline UM 41.90 41.40 41.03 41.09 41.35 17.1

Baseline UM-L 41.95 41.44 41.08 41.13 41.40 19.4
Chen [10] 41.43 40.89 40.54 40.49 40.84 28.7

Li [36] 38.28 38.08 38.23 36.94 37.88 7.6
TKL 41.89 41.44 41.11 41.15 41.40 17.1
ADP 42.06 41.50 41.14 41.16 41.46 17.8

KLAP (Ours) 42.25 41.75 41.42 41.41 41.71 17.8

tively, compared to Baseline UM. Our proposed KLAP
(TKL+ADP) further improved performance by 0.4 dB with
a slightly increased number of network parameters com-
pared to Baseline UM. Notably, Our KLAP achieved signif-
icantly higher performance than Baseline UM-L (41.71dB
vs. 41.40dB) with fewer parameters (17.8M vs. 19.4M). In
addition, fine-tuning each IM with pre-trained TKL resulted
in a notable improvement compared to the original IMs, at-
tributed to the inclusion of contrastive learning loss in TKL.
Our proposed KLAP method, which combines TKL and
ADP, significantly improves demosaicing performance for
all CFAs.

Comparisons among other unifying methods. We
evaluate the performance of our KLAP with NAFNet [9]
on a DF2K-CIS test dataset and summarize the results in
Tab. 1 in terms of PSNR (dB) and the number of param-
eters. We use the official codes provided by the authors
of Airnet [36] and Chen [10]. The Chen [10] method uses
the MSBDN-based TKL method. Despite a slight increase
in network parameters by 0.7M (about 4%) in NAFNet, our
KLAP yields significantly improved performance by 0.4 dB
compared to the IM method. Notably, our KLAP yields the
highest PSNR among all-in-one methods [10, 36] while us-
ing smaller network parameters compared to existing meth-
ods applied to NAFNet networks. Fig. 5 shows DM results
on synthetic datasets for visual comparisons. We adjust CM
in Sec. 3.2 for visualization. The images on the 1st to 4th
rows are input synthetic RAW images and their DM outputs
of UM, Chen [10], Li [36], and our KLAP are on the 2nd,
3rd, 4th, 5th column of Fig. 5, respectively. This shows
that our KLAP outperforms other state-of-the-art unifying
methods on DF2K-CIS test datasets.



Figure 5: Comparisons of demosaiced images (top) from different methods and their difference maps (bottom) on the
synthetic RAW (DF2K-CIS) test dataset. The PSNR (dB) value displayed in the top-left corner is for the entire image. As
shown in the figure above, our proposed KLAP achieves the best performance in synthetic RAW test dataset.

5.1.2 Performance and Selected Filter Locations

To demonstrate the superiority of FAIG [67] over ran-
dom selection, we evaluate various mask selection strate-

Figure 6: Performance comparisons among different filter
location selections (0%, 0.1%, 0.5%, 1%, 3%, and 5%, re-
spectively) for UM with ADP: Random selection method
and FAIG adjusting ADP on DF2K CIS test dataset.

gies in our ADP method on synthetic datasets with both
Bayer and non-Bayer patterns. The mask selection ratios
are set to 0.1%, 0.5%, 1%, 3%, and 5%. We use a UM with
TKL-based NAFNet [9] and add adaptive network kernels
in proportion to the q ratio. Two mask selection methods
are investigated: random selection and the FAIG method
introduced in Sec. S.3. Fig. 6 summarizes our results, in-
dicating that our ADP adopting FAIG outperforms random
filter selection, underscoring the effectiveness of selecting
discriminative filters for each CFA DM task. This implies
that discriminative filters can be defined as task-specific (in
our case, each CFA DM) filters, rather than randomly se-
lected filters.

5.1.3 Analysis of Robustness in Strong Noise

To validate the robustness of Meta-test learning in
KLAP-M, we evaluate KLAP-M on the DF2K-CIS with
strong noise test dataset and summarize the results in a ta-
ble. The DF2K-CIS with strong noise dataset has four times
larger noise parameters compared to the DF2K-CIS training
dataset. As shown in Tab. 2, KLAP shows slightly more ro-
bust results compared to existing methods. Furthermore,
when KLAP-M is applied, it achieves an average improve-
ment of 1.8 dB in PSNR with only 10 iterations.



Figure 7: Qualitative DM results on the real CIS RAW. Note that KLAP with meta-test learning (KLAP-M) shows robust
performance in real CIS RAW, despite of existence of sensor-generic unknown artifacts.

Table 2: Performance comparisons among different meth-
ods of robustness with strong noise in terms of PSNR (dB)
on DF2K-CIS test dataset with strong noise. The noise pa-
rameters used in the test are four times larger than the noise
parameters used in the training, and the number of meta-
learning iterations in KLAP-M is fixed to 10.

CFA Chen [10] Li [36] KLAP KLAP-M
Bayer 32.60 31.61 32.98 33.32
Quad 32.48 31.58 32.93 35.41
Nona 32.44 31.64 32.88 35.06
Q× Q 32.45 31.38 32.86 35.41

Figure 8: Ablation study of our proposed KLAP-M. The
comparison shows the effect of each component of meta-
learning in KLAP-M.

5.2. Results on Real CIS RAW

We evaluate the performance of our KLAP with meta-
learning on a real RAW dataset and present the results in
Figure 7. The number of iterations for meta-learning is fixed
at 45. In the Bayer case, our method, as well as Chen [10]
and Li [36]’s methods, show robust results on real data.
However, In the case of demosaicing Q×Q, Chen and Li’s
methods are unable to alleviate artifacts, while our method
significantly mitigates resulting artifacts during inference
by reducing domain gap through meta-learning. Figure 8
shows the ablation study of KLAP-M and demonstrates

superior performance compared to other method combina-
tions. Note that the Bayer output is an image that has been
squared by 0.7 from the original outputs for visual compar-
ison purposes. We represent the two Q×Q output images,
with their pixel values (range of 0 to 1) cubed, to compare
the artifact mitigation performance with other models.

5.3. Limitations

To utilize deep learning-based DM models for CIS, the
requirement of a specialized circuit with embedded AI ac-
celerators can be a limiting factor.

6. Conclusion

Our proposed demosaicing method uses task-specific
kernels to cover all CFAs and incorporates a meta-testing
framework to produce efficient and robust results. This
approach boasts low computational complexity, robustness
to unknown artifacts, and high-quality demosaiced images.

Acknowledgments This work was supported in part
by the National Research Foundation of Korea(NRF)
grants funded by the Korea government(MSIT) (NRF-
2022R1A4A1030579), Basic Science Research Pro-
gram through the NRF funded by the Ministry of
Education(NRF-2017R1D1A1B05035810) and Creative-
Pioneering Researchers Program through Seoul National
University. The CIS RAW data and CIS domain knowledge
were supported by CIS Development Representative at SK
hynix.



References
[1] SM A Sharif, Rizwan Ali Naqvi, and Mithun Biswas. Be-

yond joint demosaicking and denoising: An image process-
ing pipeline for a pixel-bin image sensor. In CVPR, 2021.

[2] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In
CVPRW, 2017.

[3] Boaz Arad, Radu Timofte, Rony Yahel, Nimrod Morag,
Amir Bernat, Yaqi Wu, Xun Wu, Zhihao Fan, Chenjie Xia,
Feng Zhang, et al. Ntire 2022 spectral demosaicing challenge
and data set. In CVPRW, 2022.

[4] Joshua Batson and Loic Royer. Noise2self: Blind denoising
by self-supervision. In ICML, 2019.

[5] Bryce E Bayer. Color imaging array. United States Patent
3,971,065, 1976.

[6] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,
Dillon Sharlet, and Jonathan T Barron. Unprocessing im-
ages for learned raw denoising. In CVPR, 2019.

[7] Jaeseok Byun, Sungmin Cha, and Taesup Moon. Fbi-
denoiser: Fast blind image denoiser for poisson-gaussian
noise. In CVPR, 2021.

[8] Jierun Chen, Song Wen, and S-H Gary Chan. Joint demo-
saicking and denoising in the wild: The case of training un-
der ground truth uncertainty. In AAAI, 2021.

[9] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.
Simple baselines for image restoration. ECCV, 2022.

[10] Wei-Ting Chen, Zhi-Kai Huang, Cheng-Che Tsai, Hao-
Hsiang Yang, Jian-Jiun Ding, and Sy-Yen Kuo. Learning
multiple adverse weather removal via two-stage knowledge
learning and multi-contrastive regularization: Toward a uni-
fied model. In CVPR, 2022.

[11] Minhyeok Cho, Haechang Lee, Hyunwoo Je, Kijeong Kim,
Dongil Ryu, Jinsu Kim, Jonghyun Bae, and Albert No.
Pynet-qxq: A distilled pynet for qxq bayer pattern demosaic-
ing in cmos image sensor. arXiv preprint arXiv:2203.04314,
2022.

[12] Kai Cui, Zhi Jin, and Eckehard Steinbach. Color image
demosaicking using a 3-stage convolutional neural network
structure. In IEEE ICIP, 2018.

[13] Valéry Dewil, Adrien Courtois, Mariano Rodríguez, Thibaud
Ehret, Nicola Brandonisio, Denis Bujoreanu, Gabriele Facci-
olo, and Pablo Arias. Video joint denoising and demosaicing
with recurrent cnns. In WACV, 2023.

[14] Steven Diamond, Vincent Sitzmann, Frank Julca-Aguilar,
Stephen Boyd, Gordon Wetzstein, and Felix Heide. Dirty
pixels: Towards end-to-end image processing and percep-
tion. ACM Transactions on Graphics TOG, 2021.

[15] Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang,
Fei Wang, and Ming-Hsuan Yang. Multi-scale boosted de-
hazing network with dense feature fusion. In CVPR, 2020.

[16] Egor Ershov, Alex Savchik, Denis Shepelev, Nikola Banić,
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Figure S.1: Overview of our pipeline for synthesizing realistic RAW images, specifically for Q×Q patterns.

S.1. Detailed Data Synthesis for Demosaicing
All CFAs

As described in our paper, we generate synthetic ground
truth (GT) by sequentially applying a 4-step reverse Color-
related Mapping (r-CM) process. Then, we add mixed Pois-
son and Gaussian noise and performed mosaicing (i.e., CFA
patterning) on the entire image to create synthetic RAW-
like images (as shown in the blue shaded area in Fig. S.1).
The r-CM process consists of the following modules: color
tone degradation, inverse gamma correction, inverse color
correction, and inverse auto white balance functions. The
color matrix (CM) is the inverse of the reverse color matrix
(r-CM) and can only be applied to the output of the demo-
saicing (DM) model.

Note that we need to use r-CM for data synthesis on the
open-source dataset to generate GT images, while CM can

∗ Equal contribution, † Corresponding author.

be “optionally” applied after demosaicing for better visual-
ization in our paper.

Color tone degradation. Typically, color enhancement
is performed in the latter part of the ISP chain. Therefore,
we position the color tone degradation function at the be-
ginning of r-CM. Inspired by [6], we adopt a tone mapping
function that uses a simple inverse smoothing curve, to per-
form color tone degradation on open-source dataset images
in the r-CM process. Note that the color tone enhancement
function in CM is the inverse of color tone degradation in
r-CM.

Inverse gamma correction. In the ISP chain, gamma
correction is applied to image data to correct for the non-
linear perception of brightness by the human eye. We use
a gamma value setting of 2.2, which is standard for most
cameras [16, 50, 69, 52]. In r-CM, the inverse function of
gamma correction is applied, while in CM, standard gamma
correction is performed.



Figure S.2: The cumulative pixel value distribution of each
homogeneous pixel unit (Gr, R, B, and Gb) in 7 Q×Q CIS
RAW image samples. In our CIS RAW data, we observe
a significant difference in signal values between inner and
outer pixels in each Gr, R, B, and Gb pixel unit, which is
mainly caused by crosstalk effect.

Inverse color correction. We use a color correction
function to adjust the colors captured by a camera’s sen-
sor to appear as they would to the human eye. The specific
function we used is as follows:Rcorrected

Gcorrected

Bcorrected

 = A

R
G
B

 ,

where A is a 3x3 color correction matrix (CCM), which is
applied to the pixel values (R, G, and B) to obtain the cor-
rected RGB values (Rcorrected, Gcorrected, and Gcorrected).
We obtain the CCM information from the CIS manufactur-
ing company and apply it to our inverse color correction
function after calculating the CCM’s inverse.

Inverse auto white balance. We empirically adjusted
the gains for R, G, and B channels in the auto white bal-
ance function to make white portions of the CIS RAW ap-
pear white as perceived by the human eye. The inverse auto
white balance in r-CM is obtained by reversing the values
applied in the white balance module of the CM process.

Noise synthesis. We use the following practical mixed
Poisson and Gaussian noise model [55, 6, 70]:

xn = Poisson(γyn)/γ + ϵn,

ϵ ∼ N (0, σ2
ϵ I), n = 1, . . . , N,

(1)

where y and x are clean image and corrupted image, respec-
tively. Poisson generates pixel intensity-dependent Pois-
son noise caused by photon sensing, γ is a gain parame-
ter which depends on the sensor and analog gain. ϵ is sig-
nal independent Gaussian noise with standard deviation σ,
and N is the number of samples. DF2K-CIS train and test
datasets are generated using the following imaging parame-
ters: γ = 0.01 and σ = 0.02. DF2K-CIS with strong noise
test dataset are generated with parameters that are 4 times
larger than those of DF2K-CIS: γ = 0.04 and σ = 0.08.

S.2. Domain Gap Example: Inherent Grid Ar-
tifacts in CIS RAW

The differences in the distribution of pixels within each
pixel unit are primarily caused by "crosstalk" effects, which

result from mutual interference of each pixel signal in CIS
hardware [29, 30, 38]. As shown in Fig. S.2, in CIS QxQ
RAW (before demosaicing), we observe that the signals in
the center of each pixel unit, especially in the R channel,
are stronger than those in the outer pixels, while the edges
of each pixel unit, particularly the four corners, are weaker.
In addition to the cause of crosstalk phenomenon, the asym-
metry between the inner and outer pixels in each pixel unit
can vary across CIS devices, and this can manifest in var-
ious forms depending on the circuit configuration, compo-
nent characteristics, product lines, and process capability of
the CIS chip. The difference in pixel values in each of the
homogeneous color units in CIS RAW may be causing grid
artifacts.

S.3. Adaptive Discriminative Filter-based
Model for Specific CFA Pattern (ADP)

S.3.1. Filter Attribution Integrated Gradients

Xie et al. [67] propose FAIG, which identifies dis-
criminative filters of specific degradation in blind super-
resolution (SR) by computing integrated gradient (IG) [61,
60] between the baseline and desired models. In FAIG,
the baseline model is denoted as θfrom and the model be-
ing updated is denoted as θto for each desired task. The
function ρ(β), where β ∈ [0, 1], represents an uninter-
rupted straight line between the baseline and target mod-
els. In that case, any certain route in ρ(β) is represented
by ρ(β) = βθfrom + (1 − β)θto, where ρ(1) = θfrom
and ρ(0) = θto. The FAIG on the continuous line space
between two models is discretized as follows:
FAIGi(θfrom, θto, x)

≈

∣∣∣∣∣ 1N [θfrom − θto]i

N−1∑
t=0

[
∂L(ρ(βt), x)

∂ρ(βt)

]
i

∣∣∣∣∣ , (2)

where N represents the total number of steps used in the
integral approximation, and N is set to 100 as in FAIG. βt

and i are t/N and the kernel index, respectively. We apply
FAIG, originally proposed for denoising and deblurring, to
multiple CFA sensor patterns in our demosaicing tasks.

S.3.2. Mask Ratio of FAIG in ADP

We choose a mask ratio (q) as 1% in ADP for each CFA
in our KLAP framework, to balance demosaicing perfor-
mance and efficiency (as shown in Sec. 4.2 and Fig. 4(b)).
Increasing q improves performance but with diminishing
returns and increased parameters (Tab. S.1). Compared to
Baseline-UM (B.UM), our proposed method using mask ra-
tio 1% for all 4 demosaicing types requires an additional 4%
of network parameters.

Furthermore, our KLAP achieves significantly better re-
sults even when increasing the size of the Baseline UM
method by 3.5 times, as shown in Fig. S.3.



Figure S.3: Performance comparisons between Baseline
UM with increased network sizes (17.1M, 19.4M, 25.5M,
34.4M, 51.7M, and 64.8M) and KLAP (Ours) with mask
ratios q% (0%, 0.1%, 0.5%, 1%, 3%, 5%, 10% and 15%, re-
spectively) on DF2K-CIS test dataset. The network size of
KLAP (Ours) with mask ratios of q% (0%, 0.1%, 0.5%, 1%,
3%, 5%, 10%, and 15%) are 17.1M, 17.2M, 17.8M, 17.8M,
19.2M, 20.5M, 23.9M, and 27.4M, respectively. Our ap-
proach produces significantly higher performance results
even with 3.5 times larger Baseline UM method.

S.4. Meta-learning during Inference
S.4.1. Definition of the term “meta-test”

In our paper, we name the process of fine-tuning with
meta-learning during inference as meta-test learning in
KLAP-M. The term “meta-test” typically refers to the pro-
cess of improving performance on various generalization
scenarios with only a few trials on unseen data [72, 18,
79, 44, 53, 56]. In general, the meta-test process works

Table S.1: Investigation of experiments according to KLAP
(Ours) with filter location selection ratios (i.e., mask selec-
tion ratios in FAIG [67]; q%) in the DF2K-CIS test dataset.
B.UM denotes the baseline UM. Note that Avg. and Par.
denotes mean of all CFAs’ PSNR (dB) and the number of
parameters (M).

Method q Ba. Qu. No. QxQ Avg. Par.
B.UM 0 41.90 41.40 41.03 41.09 41.35 17.1
KLAP 0.1 42.16 41.50 41.16 41.19 41.50 17.2
KLAP 0.5 42.20 41.71 41.38 41.38 41.67 17.4
KLAP 1 42.25 41.75 41.42 41.41 41.71 17.8
KLAP 3 42.31 41.80 41.46 41.45 41.75 19.2
KLAP 5 42.34 41.82 41.49 41.48 41.78 20.5
KLAP 10 42.38 41.88 41.55 41.53 41.83 23.9
KLAP 15 42.41 41.92 41.59 41.58 41.87 27.4

in conjunction with the meta-training process. The meta-
training process optimizes the model to improve the accu-
racy of meta-test samples using source data. We use ADP
in the second step of our KLAP framework to only adjust
the important kernel (θc) for each CFA demosaicing during
training in order to improve the accuracy of meta-test. This
can be seen as a type of meta-training process. In our paper,
we define the process of fine-tuning only θc in KLAP dur-
ing model inference as meta-test learning to achieve robust
results even for undefined artifacts caused by CIS device
features and shooting environments.

S.4.2. Noise2Self and Pixel Binning Loss.

To aid in a more thorough understanding in our meta-
test learning process, KLAP-M, we provide a more detailed
explanation of Noise2Self (N2S) [4] loss and pixel-binning
loss in Fig. S.4 (a) and (b).

Noise2Self (N2S) loss. We choose Noise2Self [4]
among many self-supervised denoising methods [82, 81, 35,
21, 4, 7]. To calculate N2S loss, the L1 loss is computed be-
tween an output of an image inputted into KLAP, where the
empty pixels of xJc are interpolated, and xJ . In our study,
we utilize the same masking scheme for each J as outlined
in the N2S paper [4]. Each J samples a single pixel se-
lected within each 4×4 window (i.e., 6.25% of the number
of pixels in each image). In the original N2S method, the
interpolation function for xJc use a 3×3 kernel to compute
the average value of the surrounding pixels for interpola-
tion. However, we consider the characteristics of the RGB
channel and calculate the average value of the surrounding
values corresponding to that channel for interpolation. In
the case of Bayer, we set a size of window to 6×6 and use
5×5 kernel for interpolation to prevent overlap. The use of
N2S loss term has the effect of removing independent noise.

Pixel-binning loss. As mentioned in Sec. 3.1 in our pa-
per, pixel binning is applied differently depending on the in-
put pattern status of the CFA. Similarly, the proposed pixel
binning loss based on CIS domain knowledge is also ap-
plied differently according to the CFA pattern. When using
the average-based pixel binning operation (m), the Q×Q
CFA pattern is converted to Quad or Bayer pattern. Nona
and Quad patterns are converted to Bayer pattern. Note
that pixel binning operation (m) does not exist in the Bayer
pattern. The upsampling operation (U ) employs a bilinear
function to restore the original resolution, which may have
been altered due to the pixel binning operation (m).

S.5. Implementation Details
In our experiments, we use a patch size of 240×240

to cover all of Bayer, Quad, Nona, and Q×Q CFAs. The
model is trained using the ADAM optimizer with a batch
size of 32 and an initial learning rate of 2×10−4. We apply
the cosine annealing learning rate decay technique with a



Figure S.4: The specific processes for calculating 2 loss functions in our proposed method, KLAP-M, which is KLAP with
meta-test learning: (a) Noise2Self (N2S) loss, and (b) Pixel-binning loss.

Table S.2: Performance comparisons with existing DM
methods for specific sensors in IMs

Method Bayer Quad Nona QxQ Par.
IM [11] 37.03 37.38 36.65 36.44 4.2
IM [32] 41.33 40.81 39.85 37.02 13.8
IM [73] 41.89 41.19 40.60 40.74 83.0
KLAP 42.25 41.75 41.42 41.41 17.8

minimum learning rate of 1 × 10−6. To ensure a fair com-
parison, we evaluate the proposed method on the same con-
ditions with an NVIDIA A6000 GPU using PyTorch [49].
Our architecture is similar to the NAFNet [9] architecture,
which has state-of-the-art performance in IM-based image
restoration. We use the official codes provided by the au-
thors of Chen [10] and Li [36]. In the Table 1, TKL denotes
the method of applying NAFNet-based TKL, and Chen de-
notes the method of applying MBSDN-based TKL.

S.6. Demosaicing Methods Comparison
As the pioneers in integrated DM tasks for various sensor

CFAs, we compared our proposed KLAP method with state-
of-the-art integrated image restoration methods [10, 36] due
to the lack of existing unified DM research. We conduct ex-
periments on recent DM methods [11, 32] for specific sen-
sors, as well as [65], one of the winners in the MIPI ‘22 [73]
competition. The results, as shown in Tab. S.2 indicates that
none surpassed ours.

S.7. Additional RAW Evaluation
MIPI ‘22 competition [73] emphasizes Quad-to-Bayer

re-mosaicing, not demosaicing, so the definition of ground
truth (GT) differs from our research focus. Nevertheless,
we conducted inference on the MIPI inputs using KLAP
and KLAP-M, as shown in Fig. S.5, effectively reducing vi-

sual artifacts and validating their performance. The MIPI
challenge uses synthetic inputs without RGB GT, empha-
sizing the challenges of acquiring real CIS RAW data. This
highlights the importance of our self-supervised learning
approach for real sensor RAW in real-world scenarios.

S.8. Results
Fig. S.6 illustrates the qualitative results of the Baseline-

UM (2nd column) with NAFNet, existing methods ( Chen
(3rd column), Li (4th column)) and our proposed KLAP
(5th column), evaluated on the synthetic RAW (DF2K-CIS)
test dataset. Fig. S.7 presents the qualitative results of
prior arts (Chen (2nd column), Li (3rd column)) and our
proposed KLAP (4th column) and KLAP-M (5th column)
on the synthetic RAW (DF2K-CIS) with strong noise test
dataset. Our proposed KLAP method visually outperform
other state-of-the-art methods on DK2K-CIS test dataset,
and our proposed KLAP-M method shows visually superior
results compared to other state-of-the-art methods on the
DK2K-CIS test with strong noise dataset, thanks to meta-
learning during inference. Fig. S.8 shows our proposed
KLAP-M inference output on the real CIS RAW data. With-
out meta-learning applied (0 iteration) in Fig. S.8, artifacts
exist. On the other hand, as the number of meta-learning
iterations increases, the artifacts gradually disappear. We
selected 45 iterations for real data using this method. Fur-
thermore, we observed that similar results were obtained
even with further increases in iterations.

Fig. S.9 shows our proposed KLAP-M inference output
on the real CIS RAW data set.



Figure S.5: Results of KLAP and KLAP-M on MIPI ‘22 Quad.

Figure S.6: Comparisons of demosaiced images (top) from different methods and their difference maps (bottom) on the
synthetic RAW (DF2K-CIS) test dataset. The PSNR (dB) values displayed in the top-left corner of each image are calculated
using the entire image.



Figure S.7: Comparisons among different methods of robustness on DF2K-CIS with strong noise test dataset. The noise
parameters used in the test are four times larger than the noise parameters used in the training. The number of meta-learning
iterations in KLAP-M is set to 10, based on empirical determination through visualization of outputs in our experiments.



Figure S.8: The demosaiced output images of Q×Q CIS RAW (48MP) with various iterations of KLAP-M.



Figure S.9: Additional images of CIS RAW data. (a) CIS Q×Q RAW data, (b) demosaiced output images obtained using
KLAP-M inference, and (c) the same images as in (b) after applying CM (Color-related Mapping function). Note that in (c),
it can be perceptually observed that CM works well not only on synthetic RAW images but also on real CIS RAW images.


