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Figure 1: Visual comparison results of spatially scalable image compression methods for arbitrary scale factors. The
image of Layer 2 is reconstructed from the image of Layer 1 with scale factor 2.0× for each method. The ‘acc. bits’ indicates
the accumulated bits up to the corresponding layers.

Abstract
Recently, neural network (NN)-based image compres-

sion studies have actively been made and has shown im-
pressive performance in comparison to traditional methods.
However, most of the works have focused on non-scalable
image compression (single-layer coding) while spatially
scalable image compression has drawn less attention al-
though it has many applications. In this paper, we propose
a novel NN-based spatially scalable image compression
method, called COMPASS, which supports arbitrary-scale
spatial scalability. Our proposed COMPASS has a very flex-
ible structure where the number of layers and their respec-
tive scale factors can be arbitrarily determined during in-
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ference. To reduce the spatial redundancy between adjacent
layers for arbitrary scale factors, our COMPASS adopts an
inter-layer arbitrary scale prediction method, called LIFF,
based on implicit neural representation. We propose a com-
bined RD loss function to effectively train multiple lay-
ers. Experimental results show that our COMPASS achieves
BD-rate gain of -58.33% and -47.17% at maximum com-
pared to SHVC and the state-of-the-art NN-based spatially
scalable image compression method, respectively, for var-
ious combinations of scale factors. Our COMPASS also
shows comparable or even better coding efficiency than the
single-layer coding for various scale factors.
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1. Introduction
Recently, image compression has become increasingly

important with the growth of multimedia applications. The
exceptional performance of neural network (NN)-based
methods in computer vision has led to active research on
NN-based image compression methods [38, 3, 36, 4, 27, 18,
8, 19, 21, 28, 14, 2, 26], resulting in remarkable improve-
ments in coding efficiency. However, although the same
content is often consumed in various versions in multime-
dia systems, most existing NN-based image compression
methods must separately compress an image into multiple
bitstreams for their respective versions, thus leading to low
coding efficiency. To resolve this issue, there have been a
few recent studies [37, 34, 16, 43, 13, 24, 23, 25] on NN-
based scalable image compression, where various versions
of an image are encoded into a single bitstream in a hierar-
chical manner with multiple layers. Each layer is in charge
of en/decoding one corresponding version of the image, and
typically, redundancy between adjacent layers is reduced by
a prediction method for higher coding efficiency.

The scalable coding methods are divided into two
classes: quality scalable codecs for the images of different
quality levels and spatially scalable codecs for the images
of different sizes. In this paper, we focus on the spatially
scalable coding that has not been actively studied compared
with the quality scalable coding. Upon our best knowledge,
only one previous study [25] deals with the spatially scal-
able coding in the recent deep NN-based approach.

In conventional tool-based scalable coding, SVC [31]
and SHVC [6] have been standardized by MPEG [17] for
video coding standards, as extensions to H.264/AVC [40]
and H.265/HEVC [35], respectively. Despite of signifi-
cant coding efficiency improvement compared with sepa-
rate single-layer compression of different versions (simul-
cast coding), the scalable coding has not yet been widely
adopted for real-world applications [6, 32]. One reason may
be lower coding efficiency of the accumulated bitstream for
the larger version compared with the single-layer coding of
the same size. The scalable coding often yields lower cod-
ing efficiency due to its insufficient redundancy removal ca-
pability between the layers.

In addition, for the existing NN-based method [25], only
one fixed scale factor 2 is used between adjacent layers as
shown in Figure 1. This limitation makes it not practical
for real-world applications that require a variety of scale
combinations. For example, an image of 4,000×2,000 size
needs to be encoded into SD (720×480), HD (1,280×720)
and FHD (1,920×1,080) versions which are not in powers
of 2 scales compared to the input size. Therefore, in order to
support for the one-source-multiple-use (OSMU) with spa-
tially scalable image compression, it is worthwhile for spa-
tially scalable image compression to support arbitrary scale
factors between the different layers.

To address the aforementioned issues, we propose
a novel NN-based image COMPression network with
Arbitrary-scale Spatial Scalability, called COMPASS. Our
COMPASS supports spatially scalable image compression
that encodes multiple arbitrarily scaled versions of an image
into a single bitstream in which each version of the image is
encoded with its corresponding layer. Inspired by LIIF [7]
and Meta-SR [15], we adopt an inter-layer arbitrary scale
prediction method in the COMPASS, called Local Implicit
Filter Function (LIFF), based on implicit neural represen-
tation that can effectively reduce the redundancy between
adjacent layers and also supports arbitrary scale factors. In
addition, it should be noted that our COMPASS exploits
only one shared prediction/compression module for all the
enhancement layers, thus it effectively provides the exten-
sibility in terms of the number of layers and also reduces
the number of model parameters. For effective and stable
optimization of the hierarchically recursive architecture of
COMPASS, we introduce a combined RD loss function.

Based on its superior inter-layer prediction capability,
our COMPASS significantly improves the coding efficiency
compared to the existing scalable coding methods [6, 25],
and achieves comparable or even better coding efficiency
compared to the single-layer coding for various scale fac-
tors. Note that the coding efficiency of the single-layer cod-
ing has been regarded as the upper bound of the scalable
coding efficiency. Furthermore, to the best of our knowl-
edge, our COMPASS is the first NN-based spatially scalable
image compression method that supports arbitrary scale fac-
tors with high coding efficiency. Our contributions are sum-
marized as:

• The COMPASS is the first NN-based spatially scalable
image compression method for arbitrary scale factors.

• The COMPASS adopts an inter-layer arbitrary scale
prediction, called LIFF, which is based on implicit
neural representation to reduce redundancy effectively
as well as to support the arbitrary scale factors. Addi-
tionally, we propose a combined RD loss function to
effectively train multiple layers.

• Our COMPASS significantly outperforms the existing
spatially scalable coding methods [6, 25]. Further-
more, to the best of our knowledge, the COMPASS
is the first work that shows comparable or even bet-
ter performance in terms of coding efficiency than the
single-layer coding for various scale factors, based on
a same image compression backbone.

2. Related Work
Neural Network-based Image Compression. Recently,
there have been proposals to optimize neural network
(NN)-based image compression methods in an end-to-end



manner. Toderici et al. [38] first proposed a deep con-
volutional NN-based image compression method, while
Ballé et al. [3] and Theis et al. [36] adopted the entropy
model-based approaches that jointly minimize the rate and
distortion terms in the optimization phase. Subsequent
models, such as hyperprior [4], auto-regressive mod-
els [27, 18], Gaussian Mixture Models [8, 19], non-local at-
tention modules [21], channel-wise auto-regressive entropy
models [28] and the checkerboard context model [14], have
improved coding efficiency. There are also a few generative
model-based studies [2, 26] for human perception-oriented
compression. Recently, several NN-based variable-rate
compression models [9, 10, 30, 33, 22, 20] have been
studied to support the multiple compression quality levels
with a single trained model. Despite the significant im-
provements in coding efficiency and functionality brought
about by the NN-based image compression networks,
there remains an issue with coding efficiency when en-
coding different versions of an image as described in Sec. 1.

Spatially Scalable Image Compression. For OSMU
applications that supports various-sized display devices,
images often need to be compressed and transmitted to
target devices with appropriate spatial sizes. To meet this
requirement, the scalable extensions of traditional coding
standards, H.264/AVC [40] and H.265/HEVC [35] have
been developed as SVC [31] and SHVC [6], respectively.
Recently, NN-based approaches for scalable image com-
pression [37, 34, 16, 43, 13, 24, 23, 25] have also been
proposed. However, most of these works focus on quality
scalability and only Mei et al. [25] deals with spatial scal-
ability. Mei et al. [25] proposed a hierarchical architecture
which outperforms the simulcast coding and SVC [31], and
shows comparable performance with SHVC [6] in terms
of coding efficiency. However, it can only support fixed
integer scale factors with powers of 2. Moreover, they
didn’t provide any experimental evidence on the extended
multiple enhancement layers more than 2, although they
proposed the layer extension concept.

Arbitrary Scale Super-Resolution. With the advance-
ment of neural networks, several recent works have pro-
posed super-resolution with arbitrary scale factors, such as
[15, 7, 12, 39, 41]. Hu et al. [15] introduced Meta-SR, the
first neural network-based method for super-resolution with
arbitrary scales. In Meta-SR, the Meta-Upscale module
takes the relative coordinate and scale factor as input to dy-
namically predict the upscaling filters. Wang et al. [39] pro-
posed an asymmetric super-resolution method using condi-
tional convolution. Cheng et al. [7] presented a continu-
ous image representation method with Local Implicit Image
Function (LIIF), and achieved outstanding performance for
large scale (×30) super-resolution which is out of training
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Figure 2: The COMPASS supports spatially scalable coding
of K+1 arbitrary scaled versions of an image using a base
layer (BL) and one or more enhancement layers (ELs). The
EL-k (1 ≤ k ≤ K) exploits a shared subnetwork that the
Inter-layer Arbitraty Scale Prediction and Residual Com-
pression modules. I0 indicates the smallest-sized input im-
age in the BL. I1, ..., IK are the input images in the ELs in
an increasing order of scale factors where IK is the largest-
sized input image. Note that the scale factor between two
adjacent layers can be any arbitrarily positive value.

distribution. Xu et al. [41] used periodic encoding with the
implicit function. Inspired by these arbitrary scale super-
resolution methods [7, 15], we adopt them for the inter-layer
arbitrary scale prediction in our COMPASS. We refer to this
method as the Local Implicit Filter Function (LIFF), which
can effectively reduce redundancy between adjacent layers
with arbitrary scale factors.

3. Proposed Method
3.1. Overall architecture

Figure 2 depicts a flow diagram of our COMPASS.
The COMPASS comprises of two types of layers: a
base layer (BL) that encodes the lowest resolution image,
and one or more enhancement layers (ELs) that sequen-
tially encode multiple higher resolution images of arbitrary
scales. For spatially scalable coding of (K+1)-scaled im-
ages {I0, ..., IK} of gradually increasing sizes with arbi-
trary scale factors, the COMPASS operates with multiple
coding in the BL and K ELs, each of which encodes the
correspondingly scaled input image. It should be noted that
the COMPASS exploits the shared modules for all the ELs,
each of which recursively operates as depicted in Figure 2.
In the BL, the smallest-sized input image I0 is fed into a
CNN-based image compression module to reconstruct Î0.
In the EL-k, the corresponding input image Ik and the re-
constructed image Îk−1 of the previous layer are fed into
the current enhancement layer to reconstruct Îk. Specifi-
cally, in the EL-k, the inter-layer arbitrary scale prediction
module can effectively estimate and reduce the spatial re-
dundancy between Îk−1 and Ik for arbitrary scale factor.
Therefore, the residual compression module only encodes
the resulting essential residues in reconstructing Îk with
high coding efficiency. Figure 3 shows the overall architec-
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Figure 3: Overall architecture of our COMPASS. It consists of a base layer (BL) depicted in the sky blue box and one or
more enhancement layers (ELs) depicted in the light purple boxes which operate in an iterative manner. Note that we exploit
the shared modules (LIFF and residual compression) for multiple ELs.

ture of our COMPASS. We describe the operation of COM-
PASS with K+1 layers as:

Îk =

{
IC(Ik), if k = 0 (BL)
Ĭk + Îkres, if k > 0 (EL-k)

(1)

where, for k > 0,

Ĭk = ψ(Îk−1, sk, rk) and Îkres = RC(Ikres), (2)

where IC(·) refers to an image compression module of
the BL and RC(·) refers to a residual compression module
of the EL-k, as shown in Figure 3. We adopt the Mean-
scale [27] architecture for both the compression modules.
Ĭk ∈ RHk×Wk×3 refers to an arbitrarily upscaled predic-
tion for the EL-k, and it is predicted from the smaller re-
construction Îk−1 by the LIFF module which is denoted as
ψ(·), and Ikres indicates a residual image between Ik and Ĭk.
The LIFF module takes a local grid rk ∈ RHkWk×2 and a
scale token sk ∈ RHkWk×2 as additional inputs, which are
described in details in Sec. 3.2. Since the output of convo-
lutional layers are progressively reduced in half due to the
convolution of stride 2 in the encoder part, the input to the
encoder part is often padded into the size of a power of 2
in a lump at the beginning. This actually deteriorates the
coding efficiency in our image compression with arbitrary
scale factors. Therefore, we adopt a convolutional-layer-
wise padding scheme where (i) a replicate padding with the
padding size of 1 is performed if the width or height size of
the input is an odd number in each convolutional layer of

the encoder part of the residual compression module; and
(ii) we crop out the padded region for the output of the cor-
responding convolutional layer of the decoder part.

3.2. LIFF: Inter-layer arbitrary scale prediction

To achieve high coding efficiency with the COMPASS,
it is essential to effectively reduce the redundancy between
adjacent layers. For this, we adopt an inter-layer arbitrary
scale prediction method using a local implicit filter function
(LIFF) which is based on the local implicit image function
(LIIF) [7] and Meta-SR [15]. Our LIFF module first trans-
forms the reconstruction Îk−1 of the previous layer into the
feature domain and then increases its resolution to match
the arbitrarily upscaled prediction Ĭk through a simple in-
terpolation. Our LIFF module also generates the color pre-
diction filter for each pixel coordinate and then estimate the
RGB color pixel-wise by applying the generated filter to
the extracted feature slice corresponding to the target pixel
coordinate. The procedure of the LIFF module is divided
into 3 stages: 1) Feature Extraction, 2) Filter Generation,
3) Pixel-wise Prediction, as illustrated in the orange box of
Figure 3.
Feature Extraction. We extract feature information from
the reconstruction Îk−1 of the previous layer through an
RDN-like feature extractor Eφ [42], and apply feature un-
folding [7] and nearest-neighbor upsampling to generate the
feature map F k ∈ RHk×Wk×C .
Filter Generation. We generate the color prediction filter



Figure 4: A predicted image via the LIFF module. (a) the
reconstruction of the previous layer k-1, (b) the output (pre-
dicted image) of the LIFF module, (c) the input image of
the current layer k, (d) the residual image as the input of the
residual compression module.

fk ∈ RHkWk×C×3 using a filter generation MLP as

fk = ϕ(⌈Ḟ k
, rk, sk⌋; θ), (3)

where Ḟ
k ∈ RHkWk×C refers to the flattened feature map,

ϕ(·) refers to the filter generation MLP with parameters θ,
and ⌈·⌋ refers to channel-wise concatenation. The local grid
rk ∈ RHkWk×2 and the scale token sk ∈ RHkWk×2 fol-
low the same process as in the LIIF [7]. The local grid rk is
a normalized relative coordinate between the reconstruction
Îk−1 of the previous layer and the upscaled prediction Ĭk,
which is formulated as rk(i, j) = pk(i, j) − pk−1(i′, j′).
pk(i, j) refers to a normalized coordinate of the upscaled
prediction Ĭk at pixel coordinate (i, j), and pk−1(i′, j′) in-
dicates a corresponding normalized coordinate of the re-
construction Îk−1 of the previous layer at pixel coordinate
(i′, j′). We adopt the nearest-neighbor to find the pixel
correspondence. The normalized coordinate is calculated
as pl(i, j) = [−1 + (2i + 1)/H l,−1 + (2j + 1)/W l],
where i ∈ [0, H l − 1] and j ∈ [0,W l − 1]. The scale
token sk indicates the height/width ratio between Îk−1

and Ĭk. sk then contains all the same ratio values of
(2 ·Hk−1/Hk, 2 ·W k−1/W k).
Pixel-wise Prediction. To determine the RGB color of the
arbitrarily upscaled prediction Ĭk at pixel coordinate (i, j),
we apply the color prediction filter fk

n for the generated fea-

ture map Ḟ
k

n by a simple matrix multiplication as

Ĭk(i, j) = Ḟ
k

n ⊙ fk
n, (4)

where n ∈ [0, HkW k−1] indicates the batch index number
which is corresponding to the pixel coordinate (i, j) of the
prediction Ĭk via n = i+j ·Hk. Note that the LIFF module
can calculate this pixel-wise prediction for all coordinates in
parallel as Ĭk = Ḟ

k ⊙ fk.
Figure 4 shows a predicted image Ĭk via the LIFF mod-

ule and its associated residual image Ikres to be compressed
for the given reconstructed image Îk−1 of the previous layer
k-1, and an uncompressed input image Ik (ground truth) in
the current layer k. Compared to Îk−1 in Figure 4-(a), Ĭk in
Figure 4-(b) shows much closer result to Ik in Figure 4-(c),
thus leading to a smaller amount of residues Ikres in Fig-
ure 4-(d).

3.3. Optimization

We train the whole elements of our COMPASS in an end-
to-end manner with the frozen pre-trained image compres-
sion module of the BL. To boost up the training, we use the
separately pre-trained LIFF and residual compression mod-
ules. To train the COMPASS architecture, we use a com-
bined RD loss function as:

L =

K∑
k=1

Rk + λ ·Dk, (5)

whereRk andDk represent a rate term and a distortion term
for the EL-k, respectively. As in other NN-based image
compression methods [3, 4, 27, 18], the rate and distortion
are jointly optimized, but we use the summation of those for
the K ELs. It should be noted that we use the same λ value
for the K ELs to maintain the R-D balance over the whole
layers. The rate term Rk is the estimated rate amount for
the EL-k. Specifically, it is determined as the summation of
cross-entropy values for latent representations yk and zk.
yk is the latent representation transformed from an input
residual image Ikres via the encoder network of the resid-
ual compression module, and zk is the latent representa-
tion transformed from the representation yk via the hyper-
encoder network of the residual compression module, as in
the previous hyperprior-based models [4, 27, 18]. The rate
term Rk is represented as Rk = Hk(ỹk|z̃k) + Hk(z̃k),
where Hk(ỹk|z̃k) and Hk(z̃k) are the cross-entropy terms
for noisy latent representations ỹk and z̃k for the EL-k, re-
spectively. The cross-entropy values are calculated based
on the Gaussian entropy model used in the Mean-scale
model [27]. As in other NN-based image compression
methods [3, 4, 27, 18], we sample the noisy latent represen-
tations ỹk and z̃k for the EL-k with the additive uniform
noise to fit the samples to the approximate probability mass
function (PMF) P (·) of the discretized representations yk

and zk for the EL-k. Dk is a mean squared error (MSE) be-
tween the reconstructed image Îk and input image Ik for
the EL-k. Îk is represented as Îk = Ĭk + Îkres, where
Îkres = DRC(ŷk) and ŷk = Q(ERC(Ikres)). Note that
ERC(·) and DRC(·) refer to the encoder and decoder net-
works of the residual compression module RC(·), respec-
tively, and Q(·) is a rounding function.

Here, we use a rounded latent representation ŷk rather
than the noisy representation ỹk for calculating the distor-
tion term. We first used the noisy representation ỹk as the
input into the decoder network DRC , but we obtained very
poor optimization results. On the other hand, when we feed
the rounded representations ŷk instead of ỹk, the coding
efficiency is much improved. The suboptimal performance
of the COMPASS with noisy representations could be at-
tributed to the propagation of small errors in the reconstruc-
tions, caused by the additive uniform noise, to the follow-
ing ELs. This propagation of errors could result in a sig-



Methods BD-rate↓ Params.

SHVC [6] -33.34% -
Simulcast (Factorized [3]) -41.71% -
Simulcast (Mean-scale [27]) -22.90% -
Mei et al. [25] (original) -32.12% 40.7M
Mei et al. [25] (enhanced) -14.23% 52.8M
Single-layer (Mean-scale [27]) 4.74% -

COMPASS (proposed) - 15.5M

Table 1: Coding efficiency and model size comparison. BD-
rate gains of our COMPASS over the various methods are
measured in the final EL where the negative values indicate
BD-rate gains of our COMPASS. The ‘Params.’ indicates
the total number of parameters.

Figure 5: The rate-PSNR performance curves of the final
ELs for SHVC [6], the simulcast coding, Mei et al. [25],
the single-layer coding, and our COMPASS. The ‘acc. bits’
indicates the accumulated bits up to the final EL.

nificant discrepancy between the training and inference, ul-
timately leading to poor results. The hierarchical and re-
cursive operation of the COMPASS may also contribute to
this issue. Whereas, using the rounded representation can
certainly prevent the mentioned error propagation because
it does not cause any discrepancy between the training and
inference phases at all. To deal with the discontinuity due to
the rounding operations, we just bypass the gradients back-
ward. In contrast to the distortion term, it should be noted
that our COMPASS still uses the noisy representation ỹk

to calculate the rate term Rk to fit the samples to the ap-
proximate PMF P (·). Further details in optimization are
described in Appendix A.

4. Experiments

We first describe the experimental setup in terms of two
aspects: coding efficiency with a fixed scale factor of 2
and coding efficiency with arbitrary scale factors. Then we
present the corresponding experimental results.

Methods Scale Factors (vs. BL)

1.2× 1.6× 2.0× 2.4× 2.8×
SHVC [6] -53.88% -42.58% -35.87% -26.24% -22.34%

Simulcast
(Factorized [3]) -53.04% -44.87% -31.89% -34.62% -31.59%

Simulcast
(Mean-scale [27]) -44.04% -31.40% -16.29% -16.35% -12.38%

Mei et al. [25]
(original) -36.26% -29.44% -28.20% -33.19% -36.31%

Mei et al. [25]
(enhanced) -29.09% -17.45% -13.52% -20.63% -23.94%

Single-layer
(Mean-scale [27]) -8.19% -3.70% 8.80% 0.31% 0.94%

Table 2: Coding efficiency comparison for the two-layer
scalable coding with arbitrary scale factors. BD-rate gains
of our COMPASS over the various methods are measured
in the final EL where the negative values indicate BD-rate
gains of our COMPASS.

Methods Scale Factors (vs. BL)

2.4× 2.8× 3.2× 3.6× 4.0×
SHVC [6] -58.33% -51.51% -46.72% -43.65% -33.34%

Simulcast
(Factorized [3]) -61.04% -55.09% -50.42% -47.11% -41.71%

Simulcast
(Mean-scale [27]) -49.85% -42.20% -35.33% -30.81% -22.90%

Mei et al. [25]
(original) -47.17% -38.73% -34.34% -33.56% -32.12%

Mei et al. [25]
(enhanced) -38.23% -26.46% -19.70% -17.08% -14.23%

Single-layer
(Mean-scale [27]) -6.60% -4.23% -1.25% -0.74% 4.74%

Table 3: Coding efficiency comparison for the three-layer
scalable coding with arbitrary scale factors. BD-rate gains
of our COMPASS over the various methods are measured
in the final EL where the negative values indicate BD-rate
gains of our COMPASS. We set the scale factor of the EL-1
relative to the BL to 2, equally.

4.1. Coding efficiency with a fixed scale factor of 2

Experimental setup. To validate the coding efficiency of
our COMPASS, we compare it with SHVC [6], the simul-
cast coding, Mei et al. [25], and the single-layer coding with
the Mean-scale model [27], in terms of BD-rate. We con-
duct the coding efficiency comparison of each method for
three-layer scalability (one BL and two ELs) with a fixed
scale factor of 2 between adjacent layers. For a fair compar-
ison, we used both Mei et al. [25]’s original version with the
Factorized model [3] and its enhanced one with the Mean-
scale model [27] as the same image compression model as
ours. Note that we set the same numbers of channels for all
image compression modules with N = 128 and M = 192



*. Following the typical validation procedures [6, 32] for
the scalable coding, we measure the BD-rate performance
for the final ELs with the largest scales (spatial sizes) of re-
constructions, but we also provide the BD-rate results for
the BL and intermediate ELs in Appendix B. For the simul-
cast and single-layer coding, we use the pre-trained models
from CompressAI-Pytorch [5]. The BD-rate performance
of SHVC [6] is measured using the All-Intra Mode of the
SHVC reference software (SHM-12.4) [1] with the QP val-
ues of 30, 32, 34, 36, 38 and 40. The RGB inputs are con-
verted into the YUV420 format and the reconstructions are
converted back to the RGB format to achieve the best pos-
sible performance of SHVC [6]. More specifically, we use
the Kodak Lossless True Color Image dataset [11] that con-
sists of 24 768×512-sized (or 512×768-sized) images. For
the downscaling of the input images, we use the bicubic in-
terpolation function implemented in Pytorch [29]. For the
feature extractor of the LIFF module in our COMPASS, we
set the number of residual dense blocks (RDBs) and con-
volutional layers of each RDB to 4. The number of output
channels and the growth rate of each RDB are set to 64 and
32, respectively. For the filter generation MLP of the LIFF
module, we set the number of hidden layers to 5, each of
which has 256 output channels. The COMPASS is built us-
ing the open-source CompressAI Pytorch library [5].
Experimental results. Table 1 shows the coding efficiency
performance in terms of BD-rate for our COMPASS against
the compared methods. It should be noted in Table 1 that
each compared method becomes an anchor for comparison
against our COMPASS. Therefore, the negative percentage
values indicate that our COMPASS outperforms the cor-
responding methods in BD-rate coding efficiency by those
amounts while the positive values imply under-performance
of the COMPASS. Figure 5 shows the rate-PSNR perfor-
mance curves for Table 1. As shown in Table 1 and Figure 5,
our COMPASS significantly outperforms all the spatially
scalable coding methods except the Single-layer (Mean-
scale [27]). It is worthy to note that, although that Mei et al.
[25]’s enhanced version uses the same image compression
module (Mean-scale [27]) as the COMPASS and focuses
only on the fixed scale factor of 2, -14.23% of BD-rate gain
is achieved by our COMPASS that supports various differ-
ent scale factors, which will be discussed in Sec. 4.2. It
is noted in Table 1 that our COMPASS has a less number
of parameters, compared to Mei et al. [25]’s method. Fur-
thermore, impressively, our COMPASS achieves compara-
ble results to the single-layer coding with the Mean-scale
model [27], while the existing scalable coding methods [6]
show considerably lower coding efficiency compared with
their single-layer coding as described in [6, 32] due to low
inter-layer prediction accuracy. In addition, our COMPASS

*N and M refer to the output channels of the encoder network and
hyper-encoder network of the image compression modules, respectively.

shows the BD-rate gains of -24.97% and -35.87% compared
to SHVC [6] at the BL and the EL-1, respectively. Further
comparisons for the other layers are provided in Appendix
B.

4.2. Coding efficiency with arbitrary scale factors

Experimental setup. We show the effective coding effi-
ciency of our COMPASS at arbitrary scales by comparing it
with the six coding methods. For this, five scale factors are
used for each of two experiments. The first experiment is
conducted with five two-layer scalabilities (one BL and one
EL (EL-1: 1.2×, 1.6×, 2.0×, 2.4×, and 2.8×)) while the
second one is with five three-layer scalabilities (one BL and
two ELs (EL-1: 2.0× and EL-2: 2.4×, 2.8×, 3.2×, 3.6×,
and 4.0×)). More experiment results are provided for more
combinations of scale factors in Appendix B. For Mei et
al. [25] which only supports a fixed scale factor of 2 be-
tween adjacent layers, we upscale or downscale the output
images using bicubic interpolation to match with other scale
factors. The other experimental conditions such as datasets
and channel numbers are the same as those in Sec. 4.1.
Experimental results. Table 2 shows the comparison re-
sults of the two-layer scalable coding. As shown, our COM-
PASS significantly outperforms all the spatially scalable
coding methods over the entire range of the different scale
factors from 1.2× to 2.8×. Furthermore, it achieves compa-
rable results to the single-layer coding with the Mean-scale
model [27] over the entire range. Surprisingly, our COM-
PASS even outperforms it for the scale factors of 1.2× and
1.6×. This is because the input images for the single-layer
coding need to be padded to a multiple of 64 in order to be
processed into the CNN architecture of the image compres-
sion network, which can lead to lower the coding efficiency.
In contrast, our LIFF module is effective at handling the ar-
bitrary scale factors. For the three-layer scalable coding, as
shown in Table 3, our COMPASS also outperforms all the
spatially scalable coding methods as the two-layer scalable
coding, and even exhibits a superiority to the single-layer
coding with the Mean-scale model [27] over the whole scale
factors only except scale factor 4.0×. The superiority of our
COMPASS stems from the fact that the LIFF module can
well perform the inter-layer prediction for arbitrary scale
factors.

4.3. Visual comparison

Figure 6 shows the visual comparison results of our
COMPASS with SHVC [6], the simulcast coding, and Mei
et al. [25] for the three-layer scalable coding with a scale
factor of 2 between adjacent layers. The images shown in
Figure 6 are the largest reconstructions obtained from the
final EL. We set the accumulated bits as close as possible
between the methods. As shown, the subjective qualities
of the reconstructions by our COMPASS are significantly



Figure 6: Visual comparison results for kodim23.png, kodim03.png, kodim17.png images in Kodak Lossless True Color
Image dataset [11] (best viewed in digital format). The ‘acc. bits’ indicates the accumulated bits up to the final EL. We match
the accumulated bits among the compared methods as much as possible. Zoom for better visual comparison.

better than those from the other methods, and especially,
the high-frequency components such as edges and textures
are more clearly reconstructed. More visual comparison re-
sults are provided in Appendix C, where we also provide the
reconstructions with the multi-layer configuration greater
than three layers to verify the extensibility of our COM-
PASS in terms of the number of layers.

4.4. Ablation study

To verify the effectiveness of the proposed elements (or
optimization strategy) in our COMPASS, we measure the
coding efficiency of the ablated models and compare the re-
sults with those of the full model of our COMPASS in terms
of BD-rate. In the comparison, the ablated elements are the
LIFF module described in Sec. 3.2, the convolutional-layer-
wise padding described in Sec. 3.1, and the adoption of
rounded representations replacing the noisy representations
for calculation of the distortion term in training described in
Sec. 3.3. It should be noted for the ablated model without
the LIFF module that a bicubic interpolation is used instead.
For the ablated model without the convolutional-layer-wise
padding, we pad the input images to match their sizes to
the multiple of 64 in both vertical and horizontal axes. For
the ablated model without using the rounded representa-
tions in training, we use the noisy representations instead
of the rounded representations. As shown in Table 4, our
full COMPASS model significantly outperforms all the ab-
lated models, which represents that each proposed element
of the COMPASS model effectively contributes to the en-
hancement of coding efficiency.

Inter-layer
prediction

Conv. layer
padding

Rounded
latent rep.

BD-rate↓
(vs. full model)

Bicubic ✓ ✓ 9.27%
LIFF ✗ ✓ 18.95%
LIFF ✓ ✗ 13.00%

Table 4: Ablation study results about the proposed elements
or optimization strategies in our COMPASS.

5. Conclusion

In this paper, we propose a new NN-based spatially scal-
able image compression method, called COMPASS, which
can achieve high coding efficiency while supporting arbi-
trary scale factors between adjacent layers, not limited to
doubling the scales. To be an effective architecture, all the
enhancement layers share the LIFF module and the resid-
ual compression module, which are recursively performed
into higher scale factors. The LIFF module is adopted for
the inter-layer arbitrary scale prediction, which can effec-
tively reduce the spatial redundancy between layers for ar-
bitrary scale factors. We also propose the combined RD loss
function to effectively train multiple layers. Experimental
results show that our COMPASS significantly outperforms
SHVC [6], the simulcast coding, and the existing NN-based
spatially scalable coding method [25] in terms of BD-rate
for all combinations of scale factors. Our COMPASS also
uses a smaller number of parameters than the existing NN-
based spatially scalable coding method [25]. To the best of
our knowledge, the COMPASS is the first work that shows
comparable or even better performance in terms of coding
efficiency than the single-layer coding for various scale fac-
tors, based on a same image compression backbone.
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