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Abstract

Despite substantial advances, single-image super-
resolution (SISR) is always in a dilemma to reconstruct
high-quality images with limited information from one in-
put image, especially in realistic scenarios. In this paper,
we establish a large-scale real-world burst super-resolution
dataset, i.e., RealBSR, to explore the faithful reconstruction
of image details from multiple frames. Furthermore, we in-
troduce a Federated Burst Affinity network (FBAnet) to inves-
tigate non-trivial pixel-wise displacements among images un-
der real-world image degradation. Specifically, rather than
using pixel-wise alignment, our FBAnet employs a simple
homography alignment from a structural geometry aspect
and a Federated Affinity Fusion (FAF) strategy to aggre-
gate the complementary information among frames. Those
fused informative representations are fed to a Transformer-
based module of burst representation decoding. Besides, we
have conducted extensive experiments on two versions of
our datasets, i.e., RealBSR-RAW and RealBSR-RGB. Exper-
imental results demonstrate that our FBAnet outperforms
existing state-of-the-art burst SR methods and also achieves
visually-pleasant SR image predictions with model details.
Our dataset, codes, and models are publicly available at
https://github.com/yjsunnn/FBANet.

1. Introduction

As a fundamental research topic, Super-Resolution (SR)
attracts long-standing substantial interest, which targets high-
resolution (HR) image reconstruction from a single or a
sequence of low-resolution (LR) observations. In recent
years, we have witnessed the prosperity of Single Image
Super-Resolution (SISR), e.g., SRCNN [7], EDSR [19], SR-

*Corresponding author: Liang Lin, Jie Chen
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Figure 1: SR predictions with different numbers of burst im-
age inputs in our RealBSR dataset, where more burst inputs
facilitate more accurate reconstruction of image details.

GAN [16], RDN [33] and ESRGAN [28]. Nevertheless,
SISR intrinsically suffers from a limited capacity of restor-
ing details from only one LR image, typically yielding over-
smooth LR predictions, especially for large-scale factors.
With real detailed sub-pixel displacement information, Multi-
Frame Super-Resolution (MFSR) [31, 1, 2, 21, 20] provides
a promising potential to reconstruct the high-quality image
from multiple LR counterparts, which is valuable for many
sensitive realistic applications, e.g., medical imaging, and
remote satellite sensing.

After the pioneering work [25] of Tsai and Huang in
1984, the research on MFSR has not achieved as tremendous
progress as SISR. Typically, they are overwhelmed by two
challenges: 1) the difficulty of fusing multiple LR inputs,
which especially is aggravated for real-world data; 2) the lim-
itation of artificially-synthesized data, accounting for a poor
generalization for real-world scenarios; To address those
challenges, a recent work [1] has made seminal contributions
to the first real-world burst SR dataset benchmark, BurstSR,
and a novel architecture, DBSR. Subsequently, MFIR pro-
poses a deep reparametrization to reformulate the classical
MAP objective in a deep feature space [2]. BIPNet [8]

1

ar
X

iv
:2

30
9.

04
80

3v
1 

 [
cs

.C
V

] 
 9

 S
ep

 2
02

3

https://github.com/yjsunnn/FBANet


introduces a set of pseudo-burst features for information ex-
change among multiple burst frames. BSRT [20] employs a
pyramid flow-guided deformable convolution network in a
Transformer architecture.

Despite great progress achieved, two aspects still need
to be revisited. 1) Method: Align-fusion-reconstruction
paradigm-based methods usually fuse multiple burst images
according to their similarity to a reference image, following
their alignment via the optical flow or deformable convo-
lution. However, this fusion strategy largely relies on the
reference image and is limited to exploring more information
among burst images. 2) Dataset: BurstSR captures multiple
LR images with a smartphone in burst mode and a corre-
sponding HR image with a DSLR camera. Thus, several
unexpected issues are nontrivial: a) data misalignment (even
distortion) among burst LRs and their HR counterparts; b)
cross-device gap between LRs and HR captured by different
cameras; and c) unfair model evaluation on warped SR pre-
dictions by introducing GT HR. Moreover, BurstSR can be
cast as a coupled task of burst image SR and enhancement.

To address these issues, we propose the Federated Burst
Affinity Network (FBAnet), and make an attempt to build
a new real-world burst image SR dataset, named RealBSR.
Our RealBSR dataset is captured in quick succession a se-
quence of LR images and one HR image under a contin-
uous shooting mode with the optical zoom strategy, like
RealSR [3]. It provides a real-world benchmark for image
detail reconstruction of real-world burst SR applications,
avoiding the color style change in terms of the original LR
data, especially, burst RAW inputs have no ISP process and
often, for faithful high-resolution image predictions, espe-
cially for sensitive applications, e.g., medical imaging.

Our FBAnet employs a simple-yet-effective alignment
algorithm via a homography matrix from a structural and
global aspect. Then, a Federated Affinity Fusion (FAF)
module is introduced to aggregate inter- and intra-frame in-
formation through affinity difference maps, aiming to not
only focus on pixels consistent with the reference frame for
global content reconstruction but also highlight the distinc-
tion among frames to absorb complementary information.
The fused representations pass through the burst represen-
tation decoding module to integrate local features extracted
by convolutions with the global long-range dependencies of
self-attentions for HR image reconstruction.

In a nutshell, our contributions are summarized below:

• We make an effort to establish a Real-world Burst Super-
Resolution benchmark, i.e., RealBSR, which has two
versions consisting of RAW and RGB images. Re-
alBSR has a great potential to inspire further researches
for realistic burst SR applications.

• We propose a Federated Burst Affinity network to ad-
dress real-world burst image super-resolution, which
derives the affinity difference maps of burst images to

federate inter- and intra-frame complementary informa-
tion for reconstructing more image details.

• We have conducted extensive experiments on RAW
and RGB versions of RealBSR to benchmark existing
state-of-the-art methods. Empirically, the efficacy of
our FBAnet has been justified with superior SR perfor-
mances from quantitative and qualitative aspects.

2. Related Work
2.1. Single Image Super-Resolution

SRCNN [7] pioneers CNN to image SR, inspiring nu-
merous follow-ups. Fueled by the evolving of deep neural
networks [13, 10, 14, 26], a series of seminal SISR meth-
ods have been built to achieve significant advances, e.g.,
VDSR [15], EDSR [21], SRResNet [17], ESRGAN [28],
DRN [11], SwinIR [18], etc. Nevertheless, considering
the over-cost collection of real-world LR-HR image pairs,
those methods turn to map synthetic LR images to their HR
counterparts, which is constantly criticized for poor model
generalization in practical scenarios. To facilitate the ex-
ploration of real-world image SR, great efforts have been
made on building functional benchmarks, e.g., SRRAW [32],
RealSR [3], and DRealSR [30], following the optical zoom
manner to capture paired LR-HR images. Meanwhile, LP-
KPN [3] has been proposed to employ a Laplacian-based
network for non-uniform kernel estimation. Encountering
heterogeneous image degradation, CDC [30] proposes a
gradient-weighted loss to adapt to diverse challenges in re-
constructing different regions.

2.2. Multi-Frame Super-Resolution
With great potential to remedy the intrinsic ill-posed SISR

problem, MFSR pursues absorbing authentic sub-pixel de-
tails contained in the image sequences towards real-world ap-
plications. In the early times of MFSR, Tsai and Huang [25]
contribute the first fair solution. Afterward, taking advan-
tage of deep learning, TDAN [24] introduces deformable
convolutions to mitigate the misalignment problem between
neighboring frames and the reference frames. Similarly,
EDVR [27] and EBSR [21] build a pyramid structure facili-
tating the motion compensation during the alignment proce-
dure. MFIR [2] presents a deep reparametrization algorithm
that transforms Maximum A Posteriori (MAP) formulation
to the latent space for better reconstruction. BIPNet [8]
introduces a pseudo-burst feature fusion method to allow
flexible information exchange among frames. In addition,
BSRT [20] builds the reconstruction module based on Swin
Transformer, which further improves the performance.

For real-world burst image SR, Bhat et al. [1] establish
a dataset consisting of LR burst images captured from a
smartphone and HR counterparts from a DSLR camera and
introduce an encoder-decoder-based model to deal with un-



known pixel-wise displacement with optical flow estimation
and merge aligned frames with an attention mechanism.

One typical challenge of burst SR lies in the fusion strat-
egy. It is common to use the affinity maps between one frame
and base frame as fusion weights. However, this would be
stuck in a devil: it just focuses on what is similar to the base
frame for all the other frames and uses those similar pixels
as complementary to the base frame; but, it is limited to
excavate comprehensively complementary relations among
frames. Besides, when examining the line of research works
conducted on the BurstSR dataset, three issues are also wor-
thy of being taken into serious consideration (Sec. 3), i.e.,
data misalignment among LRs and HRs, cross-device distri-
bution because of different imaging cameras for capturing
LRs and HRs, and unfair model evaluation with warped SR
predictions via their ground-truth HRs.

In this work, we propose to leverage the federated affin-
ity fusion strategy in our FBAnet model, comprehensively
investigating complementary pixel displacements among a
sequence of burst images. Meanwhile, we build a real-world
burst image super-resolution dataset, named RealBSR, aim-
ing to facilitate further exploration of real-world burst SR.

3. RealBSR: A new Benchmark
BurstSR is the only existing dataset for real-world burst

image super-resolution and enhancement, which has three
typical issues. 1) Data Misalignment. The distortion be-
tween LRs and their HR counterparts is distinct. It possibly
results in a severe misalignment between paired LR and HR
images. Such serious mismatches yield counterproductive
super-resolution results with few details reconstructed from
burst LR images. 2) Cross-Device Distribution. Since LR se-
quences and HR counterparts are captured by a smartphone
and a DSLR, respectively, the difference of imaging devices
would inevitably lead to a cross-device gap between them.
Therefore, it has to cast this task on the BurstSR dataset as
a combination of burst image super-resolution and enhance-
ment. 3) Evaluation Deficiency. The evaluation routine for
BurstSR is that a generated final SR image is warped with
the reference of its ground-truth HR and then this warped
SR image is used to compute the evaluation metrics with the
same ground-truth HR. This is rather problematic and even
not fair to truly evaluate the model performance with the aid
of GTs. Besides, the calculated metric values (e.g., PSNR)
cannot well reflect the visual quality, which means pursu-
ing a higher PSNR on the BurstSR dataset is not positively
related to better reconstruction quality. This evaluation strat-
egy greatly attributes to data misalignment and cross-device
distribution, inviting a great challenge for evaluation.

In this work, we build a real-world burst super-resolution
dataset, named RealBSR. It consists of 579 groups (RAW
version) and 639 groups (RGB version) for the scale factor
4. Each group has 14 burst LR images and a GT HR image.

3.1. Collection and Processing

We use the optical zoom strategy for data collection, sim-
ilar to RealSR [4] and DRealSR [30]. With a Sony DSLR
camera (Alpha 7R), we capture a sequence of 14 LR images
by pressing the camera shutter and optically zoom the cam-
era to shoot an HR image. Those images are collected in
various scenes, e.g., buildings (museum, church, office build-
ing, tower, etc.), posters, plants/trees, sculptures, and ships.
Our indoor and outdoor images have 21 and 618 groups,
respectively. For each group of burst data, since LR and
HR images have different fields of view, we employ SIFT
to crop LR sequences under the reference of collected HR
counterpart.

Considering the distortion of RAW images is not ad-
dressed by the camera, their center regions are cropped into
our RAW version dataset, named RealBSR-RAW. Besides,
the RGB version of RealBSR, termed RealBSR-RGB, is also
provided. Since the collected RGB images are processed by
the camera ISP, it also needs color and luminance correction
between LRs and their HR counterparts.

To facilitate the model training, we crop the inputs
into 160×160 patches, similar to RealSR. Accordingly, the
RealBSR-RAW dataset has 20,842 groups of paired patches
for training and 2,377 groups for testing. Similarly, the
RealBSR-RGB dataset has 19,509 groups of paired patches
for training and 2,224 groups for testing.

3.2. Characteristic Analysis

Pixel Shift is computed between the base frame (the first
LR frame) and the other 13 frames. In Fig. 2a, 50% offsets
between frames are under 1 pixel, but 25% offsets in the
range of (1,2) and 25% larger than 2 pixels, indicating the
model still needs an alignment module to eliminate large
offsets. Instead of other external factors like moving objects
and inconsistent colors, the large pixel shifts in RealBSR
are caused by intense hand tremors. In Fig. 2b, the sub-
pixel shifts are distributed evenly in the range of (0,1) which
provides abundant information for SR improvement.

Image Diversity. We employ grey-level co-occurrence ma-
trix (GLCM), which is widely used to measure image tex-
tures [12], to analyze the image diversity. With GLCM,
we derive five second-order statistic features from all the
training images, i.e., Haralick features [12], including im-
age contrast, entropy, dissimilarity, correlation and energy,
Fig. 2c. Contrast measures the intense changes between
contiguous pixels, and dissimilarity is similar to contrast
but increasing linearly. Energy measures texture uniformity,
and entropy measures the disorder of the image, which is
negatively correlated with energy. Correlation measures the
linear dependency in the image.
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(a) Pixel shift computed by SIFT
method according to keypoint shift
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Figure 2: Characteristic analyses of our RealBSR dataset.
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Figure 3: Limitation examples in BurstSR [1].

4. FBAnet: A New Method
4.1. Overview

In comparison with SISR, MFSR pursues favorable pixel-
wise displacements to facilitate realistic detail reconstruction.
Since it is not easy to exactly figure out the displacement
association among different burst LR images, how to fuse
burst images remains intractable. What’s worse, stemming
from physical camera shake during imaging, it occurs more
unexpected and non-uniform pixel shifts. To address this
issue, we propose a federated burst affinity network to move
towards real-world burst SR by effectively integrating infor-
matic sub-pixel details contained in multiple frames.

Our FBAnet follows a conventional alignment-to-fusion
paradigm, Fig. 4. Formally, given an LR image sequence
{xi}Ni=1 of N burst observations as the input, our model
will yield a high-resolution image prediction ŷi for a scale
factor s, where their ground-truth (GT) HR counterpart is de-
noted as yi. With the randomness of pixel-wise shift among
different burst images, the fused features would not be per-
fect enough to directly support the reconstruction of image
details. Without loss of generality, the first frame x1 is re-
garded as the reference frame to align the other images in
the sequence by their homography matrix H . Then, FBAnet
employs a federated affinity fusion strategy to aggregate mul-
tiple frames and utilizes two hourglass Transformer blocks
to take over the fused features for the final decoding phase
of high-resolution image prediction.

4.2. Homography Alignment
Captured in a quick succession, the pixel-wise displace-

ments among burst images mainly stem from camera mo-
tion and scene variations, which are usually regarded to

be complementary for reconstructing more details. Before
fusing them, we align those images firstly, avoiding the in-
formation confusing or discrepancy and leading to blurry
super-resolution predictions even with unpleasant artifacts.

We employ a simple homography matrix [23] for the
alignment from a global and structural manner. Specifically,
a 3×3 homography matrix Ht between i-th frame xi and the
base frame x1 indicates the transformation with respect to
Correlation Coefficient Maximization (ECC) criterion [9].
Each frame is warped with the homography matrix by taking
the base frame as reference for alignment.

4.3. Federated Affinity Fusion
To take full advantage of potential information, the

aligned images pass through the fusion module. As fused
outputs should not only be consistent with the base frame
but also incorporate additional signals from other frames,
we propose a Federated Affinity Fusion (FAF) module to ag-
gregate inter-frame and intra-frame information, Fig. 4. Our
FAF determines how informative the final result could be by
assigning pixel-wise fusion weights on each frame, which
serves the core of the whole burst paradigm. It is noteworthy
that one-order affinity maps, i.e., the differences between
two affinity maps, are leveraged to determine the weights,
rather than the affinity or attention maps. Specifically, we
extract deep features Fi from aligned images with two con-
volutional layers. The affinity map A between two frames is
the dot product of their features, i.e., Ai,j = Fi · Fj .

1) Vanilla Affinity Fusion (VAF): Following wisdom that
higher similarity or affinity indicates more important pixels
for fusion, it is intuitive that those affinity maps are utilized
to weight each frame, which is common in existing works,
e.g., TSA in EDVR [27]. The fused feature map of VAF
can be formulated as M =

∑N
i=1 A1,i ◦ Fi, where ◦ is the

element-wise product. As intuitively illustrated in Fig. 5a,
VAF focuses on pixels from other frames consistent with the
reference ones in the base frame. Consequently, informa-
tion similar to the base frame would be kept (e.g., Pixel-A
in Fig. 5a), while important details only appear in other
frames are ignored (e.g., Pixel-B in Fig. 5b).
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Figure 5: Intuitive illustration of FAF. FAF considers more
complementary details from other frames (e.g., Pixel-B in
(a)), besides those similar to base frame (e.g., Pixel-A). (b)
FAF can rectify the fusion information, avoiding negative
effects from easy reconstruction regions with very high simi-
larity and encouraging those subpixels for fusion.

2) FAF: Despite the higher affinity of xi (∀i ̸= 1) indi-
cating the higher similarity to the base frame x1, there also

underlies two adverse effects, especially for real-world burst
images: (a) Their easy reconstruction regions (e.g., the flat)
would also have large affinity values for xi, ∀i ̸= 1, which
would unexpectedly drive the model to pay more attention
to those regions, resulting in over-fitting. (b) As for the
imperfect alignment and pixel shift, even the key pixels in
detail-rich regions may not have large affinity values to be
highlighted for fusion.

To address these issues, our FAF additionally considers
the affinity difference maps to distinguish specific differ-
ences between one frame from other frames. Consequently,
our FAF would pay attention to those complementary details
do not appear in the base frame, e.g., Pixel-B in Fig. 5a. The
affinity difference map of the i-th frame can be expressed as

D1 = A1,1; Di = d(A1,i, A1,1), when i ̸= 1, (1)
where d(·) is the difference function.

The final fused feature can be defined as,

M =
∑N

i=1
Di ◦ Fi

= A1,1 ◦ F1︸ ︷︷ ︸
self−affinity feature

+
∑N

i=2
d(A1,i, A1,1) ◦ Fi︸ ︷︷ ︸

frame−specific feature

. (2)

Analysis: As Eq. (2) indicates, the fused feature map con-
sists of two components, i.e., (i) attentive features of the base
frame based on its self-affinity, (ii) frame-specific features
that are relatively independent of the base frame providing
more complement from other frames. Given Di computed
in the Euclidean space, Eq. (2) can be derived as

M = A1,1 ◦ F1 +
∑N

i=2
(Fi − F1) · F1 ◦ Fi. (3)

The second terms in Eq. (2) & (3) can be regarded as
the combination of difference maps (Fi–F1) and correlation
maps F1 ◦Fi. The former would alleviate the issue that VAF
encourages the fusion of redundant information similar to
the base frame too much, which is too easy for reconstruc-
tion, e.g., the flat. The latter would alleviate the adverse



effects derived from the misalignment due to large motions.
Thus, FAF rectifies the fusion information to alleviate the
adverse effects resulting from the large misalignment and
the overfitting to the easy reconstruction of regions with high
affinity, as illustrated in Fig. 5b.

3) FAF*: Following the similar federating spirit, we can
further extend this design of FAF. That is, the affinity maps
and their different maps can take more complex federated
interactions of frames into consideration, rather than only
taking the base frame as a reference. Specifically, for t-th
frame, its affinity difference map can be compared to any
other frame. Thus, Di = d(A1,i, A1,m), i,m ̸= 1 and the
fused features is computed similar to Eq. (2),
M =

∑N

k=1
(Ak,k ◦ Fk +

∑N

i=1,i̸=k
d(Ak,i, Ak,k) ◦ Fi). (4)

4.4. Burst Representation Decoding

To aggregate global information for finer high-frequency
detail reconstruction, we utilize the self-attention mechanism
to model long-range pixel relations. Specifically, our FBAnet
adopts a burst representation decoding module to explicitly
model inter-dependencies among channels. This module
has two cascaded blocks, shown in Fig. 4. A block has an
encoder and a decoder, both of which cascade three Locally-
enhanced Window (LeWin) Transformer blocks [29]. Each
block has a LayerNorm, multi-head self-attention, a Lay-
erNorm, and a Locally-Enhanced Feed-Forward (LeFF)
layer [29]. The module is followed by pixelshuffle [22]
for producing the final HR predictions.

Our training objective includes a Mean Absolute Error
(MAE) loss for SR image reconstruction. In addition, on the
RAW-version dataset, to mitigate the negative effects brought
by a slight misalignment of the RAW-version dataset, we
also introduce the CoBi loss [32] to ease the training and
enhance the visual quality of final results. While on the
RGB-version dataset, we adopt the Gradient Weighted (GW)
loss [30] for high-frequency detail reconstruction.

5. Experiments
5.1. Experimental Settings

Datasets. We conduct experiments on the two versions
(RAW and RGB) of the proposed RealBSR benchmark at
scale factor 4, real-world BurstSR [1] and a synthetic burst
SR dataset, SyntheticBurst [1, 8], with fair comparisons.
Implementation Details. We align frames in a burst se-
quence using OpenCV to estimate homography matrixes,
before training. Input images are augmented using flip and
rotation in the training stage. The AdamW optimizer is em-
ployed and the initial learning rate is set to be 1e-4. Besides,
we adopt the cosine annealing schedule to set the learning
rate of each parameter group.
Evaluation Metric. On RealBSR-RAW, we adopt four
evaluation metrics, i.e., PSNR, SSIM, LPIPS, and PSNR-

Task Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR-Linear ↑

B
ur

st
SR

DBSR [1] 20.906 0.635 0.134 30.484

MFIR [2] 21.562 0.638 0.131 30.979

BSRT [20] 22.579 0.662 0.103 30.826

BIPNet [8] 22.896 0.641 0.144 31.311

FBAnet (ours) 23.423 0.677 0.125 32.256

Table 1: Performance comparisons on our RealBSR-RAW.

Task Method PSNR ↑ SSIM ↑ LPIPS ↓

SISR
LP-KPN [4] 29.268 0.863 0.160
CDC [30] 30.014 0.880 0.132
SwinIR [18] 29.924 0.876 0.139

M
F

SR B
ur

st

DBSR [1] 30.715 0.899 0.101
MFIR [2] 30.895 0.899 0.098
BSRT [20] 30.782 0.900 0.101
BIPNet [8] 30.665 0.892 0.111
FBAnet (ours) 31.012 0.898 0.102

Vi
de

o EDVR [27] 29.708 0.876 0.115
BasicVSR [5] 29.274 0.860 0.156
BasicVSR++ [6] 30.682 0.896 0.115

Table 2: Performance comparisons on our RealBSR-RGB.

Method
SyntheticBurst [1] (real) BurstSR [1]

PSNR SSIM LPIPS PSNR SSIM LPIPS
Bicubic 36.17 0.909 - 46.29 0.982 -

DBSR [1] 40.76 0.960 - 47.63 0.982 0.032
MFIR [2] 41.56 0.960 - 48.02 0.984 0.028

FBAnet (ours) 42.23 0.970 - 48.24 0.988 0.026

Table 3: Evaluation on synthetic and real BurstSR data. ’-’
indicates that the LPIPS results are not provided in [1] and
thus are omitted.

Linear [1]. The first three metrics are computed in the RGB
space, and the last one is in the linear sensor space. On
RealBSR-RGB, it follows the evaluation routine in the RGB
image space and thus three metrics (PSNR, SSIM, LPIPS)
are adopted. On BurstSR, the predicted SR images have to be
warped by taking GT HRs as a reference before computing
metrics [1], while without post-processing on our RealBSR.

5.2. Comparison with the State-of-the-art Methods

We compare our model with four state-of-the-art burst
SR methods, i.e., DBSR [1], MFIR [2], BSRT [20], and BIP-
Net [8], and three video SR methods, including EDVR [27],
BasicVSR [5] and BasicVSR++ [6].
Comparison with burst SR methods: On RealBSR-
RAW, Tab. 1, our FBAnet achieves the best results on PSNR,
SSIM, and PSNR-Linear metrics. Notably, FBAnet im-
proves the performance by ∼ 0.5dB in terms of PSNR
and ∼ 0.945dB in terms of PSNR-Linear. Similar to the
performance on RealBSR-RAW, PSNR of our FBAnet on
RealBSR-RGB is also superior to other burst SR methods,
validating the effectiveness of our method. Fig. 6 visu-
alizes SR results of competing methods and ours in both
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Figure 6: Result visualization of existing methods including Real-world SISR (blue), video SR (green), and burst SR (red).

RealBSR-RGB and RealBSR-RAW datasets. On RealBSR-
RGB, it is clear that the state-of-the-art burst SR methods
are prone to generate realistic but blurry textures, e.g., the
building in Fig. 6. On RealBSR-RAW, the SR predictions of
DBSR, MFIR and BIPNet have differences in image color,
compared with that of our FBAnet. Moreover, on Synthet-
icBurst and real-world BurstSR, all the evaluation methods
are trained from scratch in Tab. 3 and performance gains are
also achieved by our FBAnet over existing methods.
Comparison with video SR methods: To further evalu-
ate the results of video SR methods in the real-world burst
SR task, we also introduce three state-of-the-art video SR
methods (i.e. EDVR, BasicVSR and BasicVSR++) for com-
parison. Since the video SR algorithms are always based
on RGB dataset, we train all these methods from scratch on
RealBSR-RGB dataset. In Tab. 2, our FBAnet outperforms
the state-of-the-art video SR algorithms by ∼0.5dB gains (vs.
BasicVSR++) at least and 1.489dB gains (vs. EDVR) at most.
In Fig. 6a, it is clearly observed that visualization results of
EDVR, BasicVSR and BasicVSR++ produce blurry details
of the building, while our proposed FBAnet reconstructs
realistic and sharp textures.
SISR vs. Burst SR: To verify the benefits brought by burst
SR data, we provide comparisons under the real-world SISR
task. The compared methods are two representative real-
world SISR methods (i.e., LP-KPN [4] and CDC [30]) and a
Transformer-based SISR method (i.e., SwinIR [18]). Those
SISR methods only take the base frame of burst sequences
as input. Compared to MFSR methods, SISR methods are
characterized by generating relatively sharp and clean out-

Alignment Fusion Decoding PSNR ↑ SSIM ↑ LPIPS ↓
Alignment

No alignment FAF (ours) ours 30.223 0.878 0.125
Optical flow FAF (ours) ours 30.857 0.889 0.117
Deformable FAF (ours) ours 30.782 0.891 0.111
Homography FAF (ours) ours 31.012 0.898 0.102

Fusion
Homography VFA/TSA [27] ours 30.724 0.896 0.107
Homography FAF (ours) ours 31.012 0.898 0.102
Homography FAF* (ours) ours 31.197 0.901 0.101

Decoding
Homography FAF (ours) BSRT [20] 30.890 0.895 0.106
Homography FAF (ours) ours 31.012 0.898 0.102

Table 4: Evaluation about alignment, fusion, and decoding.

puts, which could be observed from Fig. 6a, while suffering
from the absence of informative details.

5.3. Evaluation and Analysis

Alignment: We have ablatively investigated the homography
alignment module and also compared it with other different
alignment methods including flow-based alignment [1, 2]
and deformable-based alignment [27, 24]. As shown in
Tab. 4, compared with optical flow alignment [1] and de-
formable convolutional alignment [27, 20], our approach out-
performs them with performance improvements by 0.155dB
and 0.230dB in PSNR, respectively. This demonstrates that
our method is effective to align the pixel shifts in real-world
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Figure 7: Three examples on pixel shift among a sequence of
14 burst images before and after our homography alignment.
Each color indicates one frame in a sequence.
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Figure 8: Visualization of affinity maps and affinity differ-
ence maps.

burst frames, even though it is simple.
To verify our solution, we analyze motion patterns among

a sequence of burst images. Taking the base frame as ref-
erence, pixel shifts of each image in a sequence are image-
dependent and global-structural, Fig. 7. Namely, they present
a relatively consistent displacement of pixels. This evidences
that it is reasonable and effective to align images via homog-
raphy matrix in the real-world burst super-resolution task.
This is different from many existing burst algorithms that
usually adopt pixel-wise alignment methods (e.g., optical
flow and deformable convolutions), which rarely consider
the image-wise structural motion pattern prior of the frame.
Federated Affinity Fusion: In Tab. 4, we have evaluated
the proposed federated affinity fusion module. In compari-

Burst Inputs Number PSNR ↑ SSIM ↑ LPIPS ↓
1 30.139 0.879 0.132
2 30.616 0.891 0.113
4 30.818 0.894 0.108
8 30.945 0.898 0.101
10 30.980 0.899 0.098
14 31.012 0.898 0.102

Table 5: Evaluation on the number of burst inputs.

Method Burst Inputs Data PSNR ↑ SSIM ↑ LPIPS ↓

DBSR [1]
(base frame)×14 29.389 0.867 0.150
14 burst images 30.715 0.899 0.101

MFIR [2]
(base frame)×14 29.325 0.865 0.151
14 burst images 30.895 0.901 0.098

BIPNet [8]
(base frame)×14 30.001 0.878 0.136
14 burst images 30.665 0.892 0.111

BSRT [20]
(base frame)×14 29.501 0.869 0.151
14 burst images 30.695 0.897 0.105

FBAnet (base frame)×14 30.086 0.868 0.152
(Ours) 14 burst images 31.012 0.898 0.102

Table 6: Evaluating the burst inputs’ complementary content.

son with VAF using only affinity maps, our FAF introduces
affinity difference maps and achieves the performance gains
by 0.288dB in PSNR. And our FAF* further improves the
performance by 0.185dB gains in PSNR. This indicates that
our federated affinity fusion provides complementary infor-
mation to the subsequent module.

To further analyze FAF, Fig. 8 provides the visualization
of affinity maps and affinity difference maps. As discussed
in Sec. 4.3, the affinity values in the flat region with few
details would be rather large. Since VAF takes the affinity of
one frame to base frame as fusion weight, this encourages
the model to pay more attention to those easy reconstruction
regions. Instead, FAF uses the affinity difference maps to
lower their weights to alleviate this negative effect.

Besides, for the difference map of Frame2 in Fig. 8, it
could be seen that the highlighted attention is different from
that of Frame1 and Frame3, indicating that Frame2 also
provides additional details to the fusion process. This can
be further validated through the presented residual between
HR predictions of FAF and VAF, which demonstrates that
our FAF achieves better detail reconstruction than VAF, as
highlighted in the prediction difference image.
Burst Representation Decoding. In Tab. 4, we compare our
decoding module to that of BSRT with a Transformer design,
under a similar architecture with the same alignment and
FAF modules. Our decoding has achieved gains by 0.122dB.
The Number of Burst Image Inputs. We investigate the
impact of different numbers of burst images in a sequence
and compare it with a single-frame baseline. And all the
training processes are based on our proposed architecture.
Tab. 5 reveals that there has been a giant gap in the perfor-
mance between the single-image baseline and multi-frame



restoration results. Specifically, with the burst size increas-
ing from 2 to 14, the performance also experiences a marked
rise from 30.616dB to 31.197dB, which tends to be relatively
saturated with the input number being close to 1.
The Complementary Content of Burst Image Inputs. To
verify the influence of contents in burst frames, we compare
models trained on 14 shifted frames with models trained on
14 identical images (i.e. the base frame and its 13 copies), the
results of which are reported in Tab. 6. For the five models
(i.e. DBSR, MFIR, BIPNet, BSRT, and Ours) adopted, the
performance gains among (base frame)×14 and 14 burst
images range from 0.664dB to 1.194dB, which proves the
necessity and effectiveness of complementary information
provided by sub-pixel information among shifted frames.

6. Conclusions, Limitations, and Future Work
We release a real-world burst image super-resolution

dataset, named RealBSR, which is expected to facilitate
exploring the reconstruction of more image details from mul-
tiple frames for realistic applications, and a Federated Burst
Affinity network (FBAnet), targeting addressing the fusing
issue of burst images. Specifically, our FBAnet employs
simple homography alignment from a structural geometry
aspect, evidenced by the relatively consistent pixel shift for a
sequence of burst images. Then, a Federated Affinity Fusion
(FAF) strategy is proposed to aggregate the complemen-
tary information among frames. Extensive experiments on
RealBSR-RAW and RealBSR-RGB datasets with improved
performance have justified the superiority of our FBAnet.

Limitations and future work: Our FBAnet employs
a simple homography alignment. But it is not easy to ex-
tend to the video SR task with large motions, which will
be addressed in our future work. Since noise is inevitable,
addressing real-world burst super-resolution and denoising
at the same time is more practical. We will be devoted to
this real-world benchmark and the solutions in future work.
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