
Yes, we CANN: Constrained Approximate Nearest Neighbors for local
feature-based visual localization

Dror Aiger André Araujo Simon Lynen

Google Research
{aigerd,andrearaujo,slynen}@google.com

Abstract

Large-scale visual localization systems continue to rely
on 3D point clouds built from image collections using
structure-from-motion. While the 3D points in these models
are represented using local image features, directly match-
ing a query image’s local features against the point cloud is
challenging due to the scale of the nearest-neighbor search
problem. Many recent approaches to visual localization
have thus proposed a hybrid method, where first a global
(per image) embedding is used to retrieve a small subset
of database images, and local features of the query are
matched only against those. It seems to have become com-
mon belief that global embeddings are critical for said
image-retrieval in visual localization, despite the significant
downside of having to compute two feature types for each
query image. In this paper, we take a step back from this
assumption and propose Constrained Approximate Nearest
Neighbors (CANN), a joint solution of k-nearest-neighbors
across both the geometry and appearance space using only
local features. We first derive the theoretical foundation for
k-nearest-neighbor retrieval across multiple metrics and
then showcase how CANN improves visual localization.
Our experiments on public localization benchmarks demon-
strate that our method significantly outperforms both state-
of-the-art global feature-based retrieval and approaches
using local feature aggregation schemes. Moreover, it
is an order of magnitude faster in both index and query
time than feature aggregation schemes for these datasets.
Code: https://github.com/google-research/
google-research/tree/master/cann

1. Introduction
In this paper we focus on the problem of image retrieval for
visual localization. Modern visual localization approaches
are predominantly based on 3D point clouds that repre-
sent the geometry and appearance of large scale scenes
[30, 19, 43, 31]. These 3D points are estimated from image

Figure 1: The proposed Constrained Approximate Nearest Neigh-
bor algorithm allows to find the best subset of 3D points that are
both close to query features in appearance space and that are con-
sistently seen by the same camera, leading to high overlap with the
initially unknown query camera pose (shaded area). Jointly solving
for these two metrics in a single search algorithm is a long-known
open question in the community and CANN provides to the best of
our knowledge the first practical solution. Red points in the figure
show neighbors retrieved by an unconstrained search using the fea-
tures from the query image (bottom right). Using CANN it’s more
likely to retrieve points that are inliers to geometric verification
(green) and less likely to fetch unrelated outlier points (yellow).

collections using Structure-from-Motion (SfM), where each
3D point has an associated descriptor derived from pixels.

To localize a query image against such 3D models, a
set of local features is extracted from it and 2D-3D cor-
respondences are estimated based on descriptor similarity.
In practice, this data association problem suffers from var-
ious challenges: visual aliasing, scene change, noise, etc.
Because the final localization solution is computed using
geometric inference from these 2D-3D correspondences, not
finding enough correct matches can lead the entire localiza-
tion process to fail.

Simply establishing many more matches per query key-

1

ar
X

iv
:2

30
6.

09
01

2v
3

 [
cs

.C
V

]
 2

9
D

ec
 2

02
3

point (red points in Fig. 1) however causes long runtime
in geometric verification [3]. It is thus important to find
a small 2D-3D set which has high probability to contain
“good” matches (yellow/green points in Fig. 1): In fact we
know that the 3D points of “good” matches should all lie
inside one (unknown) camera frustum which is the one of
the query image (shaded area in Fig. 1).

There exist several approximations to this problem, rang-
ing from clustering nearest-neighbor matches in the 3D
model’s covisibility graph [42] to using image retrieval meth-
ods to obtain a small set of candidate images for which local
features are matched subsequently [41]. The latter approach,
leveraging recent advances in global (per image) embed-
dings, has gained substantial traction recently [18, 42, 41, 8],
to a degree that it appears the community has abandoned the
idea of finding a solution that jointly solves for appearance
and geometry using local features only. For example, the
benchmark we evaluate on [18] didn’t even consider local
feature based retrieval approach at publication time.

We don’t consider the case of using local features closed
and therefore propose an approach to obtain matches that
are close in appearance space while obtaining geometric
consistency at the same time – which is a long-known open
question in the community.

Contributions. In this paper we make three contributions:

(1) Our first and main contribution is a new method, re-
ferred to as Constrained Approximate Nearest Neighbors
(CANN), that efficiently obtains a high quality, small set
of 2D-3D correspondences. CANN performs nearest neigh-
bor search in descriptor space in a constrained manner, so
that matches are compact in 3D space. We provide both a
brute-force solution as well as an efficient implementation
and associated complexity analysis of this colored nearest
neighbor search algorithm.

(2) Our second contribution is to make the connection
of colored nearest neighbor search to the problem space of
image retrieval and localization, proposing a metric to rank
cameras, which can serve as a way to evaluate future work
in this area.

(3) Lastly we provide an extensive evaluation of both
global and local feature based methods on four large
scale datasets from [18]: “Baidu-Mall”,“Gangnam Sta-
tion”,“RobotCar Seasons” and “Aachen Day-Night v1.1”.
We demonstrate that local feature based methods are not
only competitive, but in fact strongly outperform global
embedding based approaches; which goes contrary to the
trend in the community. We hope to provide new impulse to
techniques that aim for jointly searching in appearance and
geometry space, which is more efficient and elegant than
previously proposed two-step approaches.

2. Related Work
Visual Localization using local features without image
retrieval: A large body of work in visual localization
[44, 46, 61, 45, 29, 28, 47, 31, 6, 50] is based on sparse 3D
point clouds built from image collections using Structure-
from-Motion (SfM). These methods directly establish 2D-3D
matches between local features from the query image and
the descriptors associated with 3D points in the model. As
mentioned before, these matches often contain many out-
liers and thus directly feeding them to geometric verification
is typically impractical[3]. Therefore several post-filtering
techniques have been proposed, such as clustering in the SfM
covisibility graph [45, 46] or applying voting in the space
of camera poses [61, 31]. Remaining 2D-3D matches typi-
cally have a sufficiently low fraction of outliers, so that they
can be efficiently processed by geometric verification, using
minimal pose solvers [26, 51] in a RANSAC [14] scheme.
Visual Localization using local features for retrieval and
2D-3D matching: Image retrieval approaches promise to
both reduce the cost of matching against features in the SfM
model and achieving high quality matches by limiting the
search to only a subset of the model[37]. Such approaches ei-
ther remove features that don’t belong to top-ranking images
or perform an additional matching step to top-ranking im-
ages before running geometry verification using the obtained
local feature matches. Our proposed algorithm provides an
alternative to these two-step filtering approaches, by directly
optimizing for compactness of nearest neighbor matches in
the covisibility graph or 3D space during the search.
Visual Localization using global features for retrieval
and local features for 2D-3D matching: Image retrieval
using local features however has most recently lost attention
from the community and instead global features (e.g., DELG-
GLDv2 [9] and AP-GeM [38]) have dominated benchmarks
[18]. While using global features offers significant speedups
due to the much smaller database size, the full-image embed-
dings are not appropriate for high quality localization due
to their global nature [18]. In order to obtain an accurate
localization result, some approaches [41, 42] compute ad-
ditionally local features, which are matched only between
the query image and top-ranking images from the database.
While there are attempts to concurrently compute local and
global features to reduce cost/latency [9], the accuracy of
the local feature keypoints remain inferior to approaches that
compute dedicated local features [43].
Local feature-based image retrieval techniques: Despite
the image retrieval community’s recent focus on global fea-
tures, local feature-based retrieval has a long history, with
well-established methods [49, 36, 24, 55, 34]. Among these,
the most relevant method today is the Aggregated Selective
Match Kernels (ASMK), which continues to be explored
recently in conjunction with deep-learned local features
[52, 56, 58]. ASMK (like VLAD [5]) performs local descrip-

tor aggregation and essentially produces high-dimensional
global image representations, which are however sparse and
can be searched efficiently. In contrast, our method operates
directly on local descriptor space and avoids aggregation,
which makes it more suitable to match against partial views
and unique details that do not get lost in aggregation.
Approximate nearest neighbor methods: Another related
field is the area of proximity problems in high dimensional
spaces with its many applications in computer vision [23, 7,
11, 2] (to name a few). The most common of this kind is
nearest neighbor search, where given a set P of n points in a
high-dimensional space Rd we wish to find the point(s) in P
closest to a query point q. Extensive research on this problem
has led to a variety of interesting solutions, both exact and
approximate [21]. In many use cases, indexed points in
the “database” are equipped with additional attributes, such
vector-valued attributes or simple scalars, such as an ID
(“color”) that indicates a grouping of points.

The term Constrained Approximate Nearest Neighbors
that we propose in this paper refers to a way to apply nearest
neighbors in one space given constraints in the space of
these attributes. The simplest such case is “colored nearest
neighbor search”: each point in P is assigned with an ID and
for a given query point q (with or without colors), we want
to use the IDs of points in P as constraints during the search.
A simple example, which is the use case in this work, is to
return nearest neighbors for all query points, provided that
all of the neighbors have the same ID. The optimal result
are those points in P that all have the same ID and optimize
some metric, such as the sum of distances to the query points.

Colored range searching and nearest neighbors (also
known as “categorical range searching”, or “generalized
range searching”) have been extensively studied in compu-
tational geometry since the 1990s [22, 16, 17]. The colored
versions of nearest neighbor (or range searching) problems
tend to be harder than their uncolored counterparts and sev-
eral different problems and solutions were proposed, see e.g.
[35]. To the best of our knowledge, no previous problem
and solution fits into the requirement that we need in this
work and the Constrained Approximate Nearest Neighbor
problem we address here is new.

3. Method

3.1. Ranking Images for Visual Localization using
Constrained Approximate Nearest Neighbors

We first propose a natural metric to rank cameras and
then show that this ranking can be efficiently computed
during the feature-matching stage instead of requiring post
processing. For simplicity of presentation we consider the
case of a single optimal camera/image from the index. This
is without loss of generality, since in practice, we may use
k-best cameras or simply weight matches by the rank of each

Figure 2: A visual depiction of CANN: the image on the left
shows 3D points colored by the camera from which they were
reconstructed. CANN leverages this information to retrieve fea-
ture matches that are consistently seen in the same camera. This
contrasts with prior art (on the right), where unconstrainted feature
matching returns many unrelated outlier matches (red), which then
need to be filtered out subsequently by geometric verification to
obtain inlier matches (green).

image.
The metric: We are given a large d-dimensional space

containing local feature descriptors extracted from all images
in a large collection. Denote I = {0, 1, 2, . . .} the set of
image IDs in that collection. We assign each local descriptor
the ID of the image, i ∈ I , it was computed from, so we
obtain the set P of “ID-colored” points (see colors in Fig. 2
on the left). Then, at query time, for a query image with
a set of features Q = {qj} extracted from it, let dij =
d(qj , NNi(qj))/R be the (normalized) Euclidean distance
in descriptor space between the feature qj to its nearest
neighbor descriptor in image i. R is some fixed maximum
distance that we use for normalization such that dij ∈ [0, 1].
We then compute a score for each image i in the dataset

si =
∑
j

(1.0− d
p

1−p

ij)
1−p
p (1)

and use it to rank all images with respect to the query image
features qj ∈ Q. To obtain this per-image compact set of
descriptors from the set of all indexed descriptors P (with
their “ID-color”), we have to develop an efficient colored
version of nearest neighbors. Such algorithm obtains the
nearest neighbor of each qj for all colors at once, provided
that its distance is at most R. We observe that depending
on a tuned parameter p, we can crop the distances at R such
that all distances larger than R have score at most some very
small value (say 10−6). This allows to get good bound on the
runtime of the search for NN . Figure 3 shows our metric.

3.2. Preliminaries

To explain the proposed Constrained Approximate Near-
est Neighbors algorithm we refer to standard tools like
Approximate Nearest Neighbors (ANN) and Approximate

Figure 3: Our score for R = 1 and various p different values in
Equation 2. p is a parameter of our metric that we tune upfront and
is used to compute si for all di,j .

Range searching (RS) and make the (common) assumption
that there is a maximum distance, R, known at local de-
scriptor indexing time. We also assume that randomization
is allowed, i.e. all results are correct with (arbitrary) high
probability. Details on the exact definitions of ANN and RS
for the case of bounded distance can be found in [12]. We
can assume (for simplicity of presentation) that ANN and
RS data structures can be created in O(CI(d, c) ∗ n) and a
point query takes O(Cq(d, c) + k) time, Cq(d, c) is a con-
stant depending on the dimension d and the approximation
factor, c and k is the maximum number of items it returns.
For image retrieval, this runtime is multiplied by the number
of features in the image, |Q|.

Colored Nearest Neighbors vs Colored Range Searching
As can be seen from Equation 1, we need a colored NN
data structure to compute the scores for all relevant images
given one query point qj . Such algorithm returns for each
qj the set of 1-NN in all cameras within radius R. We see
from the metric that cameras without such neighbor don’t
contribute to the sum, so we want as many neighbors with as
low Euclidean distance from the query as possible. We are
not aware of any efficient algorithm to perform this with a
better time complexity than a brute force method using |I|
separate NN structures (See Section 3.4). Fortunately, we
can reduce this colored NN problem to a fixed R colored
range searching which can be implemented efficiently. A
reduction from the fixed radius decision problem: “is there a
point within distance R from the query” to the approximate
NN is well known from LSH [20] using a form of binary
search over several R’s. While this approach isn’t directly
applicable for colored searches, we can use similar ideas as
outlined in the following section.

3.3. Colored Range Searching

In this section we explain the colored nearest neighbor
search for computing the scores in Eq. (1). While there
are multiple versions of this problem, we’re specifically
interested in colored range reporting: For a set of colored

points in Rd, report all the distinct colors in the query range.
Even with approximations, this problem is computationally
hard with O(Cq(d, c) + |I|) [35, 53] as lower bound on
the runtime. For a large set of images this bound can be
very high, yet in practice it can be solved quite efficiently
by introducing the threshold distance R. The most recent
work [53] on this exact problem shows that the problem is
already hard for low dimensional spaces, even with integer
coordinates and considering only orthogonal queries (an axis-
aligned box vs. a sphere). For a set of n colored points in
three dimensions, the authors of [53] describe a randomized
data structure with O(n ∗ polylog(n)) space that can report
the distinct colors within an axis-aligned box using O(k ∗
polyloglog(n)) time, with k as number of distinct colors in
the range, assuming that coordinates are in {1, ..., n}. In
this paper we show that with R known at index time and
allowing for approximation, we can develop a more efficient
data structure for the colored range search that allows us
to efficiently compute the 1-NN across all images at once.
Besides being essential for solving the Constrained Nearest
Neighbors problem we believe that this data-structure is
interesting on its own and beyond the problem of image
localization.

3.4. A brute force method using ANN

There exist two straightforward algorithms for colored
range searching: First build |I| separate regular nearest
neighbor structures, one for each color in O(Cq(d, c)∗|PI |∗
|I|) indexing time, with |PI | as the color I in P . Then
call them sequentially for each query point qj with cost
O(Cq(d, c)× |I|). This is independent of R and thus much
worse than the above lower bound. The advantage is that the
runtime of this version is asymptotically independent of the
threshold radius R.

The second simple algorithm, that we call CANN-RS, is
applicable for small thresholds R using Randomized Range
Searching [12]: We index points into a RS data-structure
for radius R and then for each query feature, enumerate all
neighbors within R, keeping a tally of neighbors per image
I . Because we only retrieve a small subset of points within
radius R we only obtain a few colors (cameras or images)
with number of features, much less than |I|. This approach
has runtime O(Cq(d, c)+k), here, k is the expected number
of neighbors in each such range query over all images. The
drawback is that for each query feature we must enumerate
all indexed points in the range R where most of them do not
realize any nearest neighbor for any color. This number (k
above) can still be quite large.

3.5. Efficient algorithm using Random Grids

To implement an efficient variant of the algorithm
(CANN-RG), we leverage Random Grids [2, 1], an efficient
c-approximate nearest neighbor algorithm based on applying

randomized rotations and shifts to high-dimensional vectors
prior to hashing them to a set of keys. We extend the Ran-
dom Grids to support colored range searching. We show
that our algorithm avoids the enumeration of all points in
the range R (as in CANN-RS) and doesn’t require distance
computation in descriptor space which can take most of the
time in practice due to high dimensional feature descriptors.

Our algorithm works as follows: For each query point
qj CANN-RG should report all colors in the range R from
qi approximately by factor c > 1, i.e. any color that has a
feature at distance at most R is reported with high probability
and any reported color (image) has a feature at distance at
most cR. The points are indexed using Algorithm 1, where
we store a set of distinct integers using hash-sets and use
hashing to create a key for each non-empty grid cell in a
high dimensional space following [2, 1]. At query time we
retrieve points from the grid indices using Algorithm 2.

Note that since we’re only interested in the color of points
within range R, the index only holds point colors not point
coordinates and the query results similarly only comprise
colors without exact distances.

Algorithm 1: Efficient colored Range Searching
indexing (CANN-RG-INDEX-R)

Data: P : d-points, {pi} with colors color(pi) for
each pi ∈ P , R > 0: Range, c > 1:
Approximation factor

Result: Index RG for the colors color(p) such that
for a given query point q, all colors at
distance at most R from q are reported
quickly.

Function IndexColors(P , R, c):
Impose a grid of cell size w = R ∗ c/

√
d on P

Create L such grids for L randomly rotated and
translated versions of P

/* L is determined from the analysis below */
for all pi ∈ P do

Add color(pi) to a distinct set of colors
hashed in each of L cells the transformed pi
falls into

end
/* Each cell now contains a set of distinct colors

of all images that have point inside it */
/* NOTE: We do not store the coordinates of the

points, just their color (16 bits per color) */
return The set of hashed cells with their lists of

colors

Analysis In this section we analyze indexing and query
algorithms of CANN-RG. First we make concrete the con-
stants CI(d, c) and Cq(d, c) which appear in all Random
Grids implementations: For the grid cell of size l ∗ c/

√
d, a

random vector of length l in Rd will be captured in a given

Algorithm 2: Query an arbitrary point in the index
built for a given R (CANN-RG-QUERY-R)

Data: RG: A Random Grid index for colors
(Algorithm 1), q: query d-point

Result: A set of colors (images) that have a point at
distance at most R from q

Function QueryPoint(RG,q):
Create an empty set distinct colors, S
for all grids g ∈ RG do

Rotate and translate q according to g to
obtain qt

Retrieve the set of colors, colors(g), from
the grid cell in g that qt falls into

Insert all colors in colors(g) into S

end
/* S now contains a set of distinct colors that

have a point at distance at most cR from q */
return S

cell with probability at least e−
√
d/w = e−d/c [1]. We thus

need L = ed/c random grids in Algorithm 1 to ensure that,
if there is a point in P at distance at most R from q, its color
will be found in at least one of the grid cells with constant
probability. On the other hand, any color of a point found
in a grid cell that also contains qt (the rotated and translated
version of q for that grid) is at distance at most cR from q
due to the size of the grid cells.

Because we do not care about the coordinates of indexed
points, we only store each color at most once per grid cell.
Therefore the data structure build time (CI(d, c) ∗ |P |) =
O(ed/c ∗ |P |) and storage O(ed/c ∗ |P |) are linear in |P |.
For each query point q, we retrieve the points in the grid
cells where all rotated and shifted versions of q fall into. The
runtime is then O(ed/c + kc) = O(Cq(d, c) + kc) ignoring
the constant for matrix rotation that depends on d. Note
that for Random Grids implementation we have CI(d, c) =
Cq(d, c). In contrast to k in CANN-RS, kc here refers to
the number of distinct colors found in the enumerated cells.
As in [2], the probability of success can be amplified to
1− γ by repeating the randomized indexing ln(1/γ) times,
which increases the data structure, space and query time
accordingly. The number of grids that we need in practice
is much smaller than the above worst case depending on the
intrinsic dimension of the data [2].

Constructing and querying CANN-RG The above algo-
rithms allow indexing colors of P for a given R such that for
any query point q, the colors that have points at distance at
most R from q are reported quickly. Given that we omitted
the computation of point distances to enable efficient queries,
we’re still missing a way to compute the scores in Equation
1. We now show how we move from fixed radius Range
Search to 1-NN.

To fill this gap, let r be a constant denoting the minimum
distance between points in P that we aim to distinguish.
For each l ∈ {rc0, rc1, ..., R}, we generate a sequence of
random grid indexes Bl = {Bl

i, ..., B
l
n} of radius l. Then,

given query point q, we query q in all Bi in order and keep
only the closest (first observed) color. This maps the list of
colors to the Bl

i they came from and thus to a c-approximate
distance from the query. Given these minimum distances,
Equation 1 provides a score per point and thus a ranking of
all index images by summing over all qj ∈ Q. This scoring
operation increases the runtime of the query by logarithmic
factor of R/r. Note that CANN-RG is output sensitive on
kc, the number of actual neighbor colors we find for each
query.

4. Experiments
4.1. Experimental setup

Datasets: We evaluated our method on four public datasets
from [18], “Baidu-Mall”,“Gangnam Station”,“RobotCar
Seasons” and “Aachen Day-Night v1.1”. These datasets
demonstrate performance in “regular” outdoor scenarios as
well as repetitive indoor environments. “RobotCar Seasons”
and “Aachen Day-Night v1.1” have day and night subsets.

Metrics: We evaluated two metrics: (1) The image re-
trieval performance using the same equal weighted barycen-
ter (EWB) interpolation as in [18] which is based solely on
the retrieved images and their known poses. (2) The effect
on final localization quality using the existing localization
pipeline from [18] where camera localization is computed
using only features from the top-k ranking images.

Local and global feature baselines: Following [18, 33],
we compared our method against state-of-the-art global
features AP-GeM [38], DELG [9], DenseVLAD [57],
NetVLAD [4]. For local-features we compare performance
and cost for both indexing and query to ASMK [54] with
HOW and FIRE local features. Results for the latter were
not previously published and only recently made available
on the codebase for image retrieval methods. R2D2 features
were computed using code from the same codebase. Storage
cost for the baselines is discussed analytically.

Local feature types: We experiment with three state-of-
the-art local image features: HOW [56], FIRE [59] and
R2D2 [40]. These three approaches have different operation
characteristics and thus show the power of CANN in being
adaptable to different local features. HOW and FIRE are
designed for image retrieval, and are not suitable to the lo-
cal feature matching part of the visual localization pipeline.
R2D2, on the other hand, is designed for image matching
tasks and a common choice in structure-from-motion and

visual localization evaluations [25, 18]. We use a recent
and lighter R2D2 version (referred to as “Feather2d2 20k”)
described in [18]’s codebase, where we can download the
local features (the model is not publicly available). When us-
ing HOW and FIRE, our visual localization system requires
indexing two different feature types: HOW for retrieval and
R2D2 for matching. When using R2D2, we only need to in-
dex one feature type – which is appealing since it simplifies
the overall system. For our experiments we used 1000 per
image for all indexed and query images and all methods.

Implementation details: We implemented CANN-RS and
CANN-RG (Section 3) in C++, given that it performs well
for low intrinsic dimensions of the features: 32D for R2D2
and 128D for HOW. Even though CANN-RS can be imple-
mented with any of-the-shelf range search data structures,
we used Random Grids also here as it has the ability to
exploit the fact that we know the range in advance. The Ran-
dom Grids were adjusted to different intrinsic dimensions
by tuning its parameters, which is also required to trade off
performance vs runtime using the c-approximation. Both
our algorithms are very simple, trivially parallelized and are
very fast (down to 20ms per query image).

Tuning: The parameters of our metric are p and R and
we tune them for each feature type separately. Note that in
contrast to ASMK which creates a codebook that depends on
the distribution of the data, CANN-RG and CANN-RS only
tune for the metric itself. One can therefore provide theoretic
bounds of the (approximate) algorithmic result quality for a
given metric. This may make CANN more resilient to dif-
ferent datasets which is not the case for codebook methods,
even though the latter can perform better if the distribution
of features between query and training set matches. For
CANN-RS, we set the grid cell size to slightly above 1/

√
d

and the number of grids accordingly to balance result quality
and runtime (see Section 3.4). For CANN-RG we set c = 1.1
in all datasets and the metric parameters (p,R) were tuned
using a subset of 500 queries from “Baidu-Mall” separately
per local feature type. To the best of our knowledge, the
datasets of [18] provide no tune/eval/test split and only the
“Baidu-Mall” has ground-truth available to enable tuning.
For ASMK we only evaluated R2D2 features, taking results
for other features from [18] or used previously unpublished
results provided by the authors. We train the ASMK code-
book on “GangnamStyle” as it is the largest set among the
four. To validate generalization, we used the same set of
parameters for evaluation on all other datasets.

4.2. Results

As mentioned above, we evaluate the CANN-RG and
CANN-RS algorithms on four large-scale datasets, in an out-
door, urban setting and covering an indoor scenario. Follow-

ing [18, 33] we evaluate across two regimes/metrics (“EWB”
and “SFM”) discussed above. Figure 3 shows our results of
all methods and datasets with one figure per each metric.

In general, we can observe local features outperforming
global features almost everywhere and by a large margin.
Datasets that are more appropriate for global features are
those that have many approximately similar viewpoints in
the index so there is almost always one close neighbor for a
given query image. Local features are naturally better where
the query contains only partial overlap with the indexed
images. Qualitative results are available in the appendix.

Runtime One of the main advantages of CANN-RG (and
CANN-RS as well) comparing to ASMK for image retrieval
using local features is its simplicity and its runtime in both
indexing and query. Table 1 shows numbers across datasets
using HOW features. Since our implementation of CANN-
RG and CANN-RS does not use GPU, we compared runtime
on CPU using 48 cores. The table does not contain the
codebook creation for ASMK and tuning for CANN-RG.
CANN-RG has a nice run-time/quality trade-off: In its upper
bound quality, we have the results of CANN-RS and with
CANN-RG can pay in quality for much better runtime. The
significance of this is that CANN-RG can achieve runtimes
of a few milliseconds for query image, which is otherwise
only possible with global features. Table 1 provides results
demonstrating the trade-off of runtime and quality. To obtain
a cheaper, yet representative quality measure, we compute
the EWB using the top-1 retrieved image. The indexing time
for CANN-RG is larger due to the fact that we have factor
O(logR) more data structures.

Index
Dataset CANN-RS CANN-RG ASMK
Baidu 0.88 9.08 253.34
Gangnam 6.41 168.49 1467.17
Aachen 11.19 244.09 2782.43
Robotcar 33.02 852.12 8104.98

Query
Baidu 0.37(12.47) 0.02(12.12) 0.47(12.52)
Gangnam 1.6(12.66) 0.05(11.35) 0.41(11.03)
Aachen 1.38(29.1) 0.06(28.8) 0.48(28.0)
Robotcar 5.29(94.2) 0.04(93.6) 0.53(91.0)

Table 1: Indexing and average runtime per query image (seconds)
for CANN-RS, CANN-RG and ASMK using HOW features. An
indication of quality/runtime trade-off can be taken from the sim-
plified EWB metric, computed using the top-1 retrieved image and
provided in parentheses.

Preliminary results on general image retrieval To re-
emphasize the generalization of the algorithm and it’s scal-
ability (20-50ms per query image), we also evaluated it
for general image retrieval on the ROxford dataset. Global

retrieval benchmarks evaluate the full rank of all indexed
images, which requires also scoring the tail of the retrieved
images. Since ranking the tail of the index is not typically
meaningful for local features, we evaluated a combination of
CANN with global features by computing a weighted aver-
age of DELG and CANN-RG+HOW or CANN-RG+FIRE,
for all image scores. We compare CANN and this combined
approach to the SOTA for global/local features. Very re-
cently, a new method called Correlation Verification [27]
was published which is, to our knowledge the best perform-
ing method on the ROxford dataset. Correlation Verification
however includes (significantly expensive) spatial verifica-
tion of local features and is thus not comparable to CANN-
RG which doesn’t use geometry or spatial reasoning of fea-
tures (out of the cameras). Like for localization, spatial
reasoning is an additional step that can be applied on top
of CANN-RG. Table 2 shows comparisons of SOTA ap-
proaches including [27] with our proposed approach (bold).

(A) Local feature aggregation Medium Hard
DELF-D2R-R-ASMK* (GLDv1) [52] 73.3 47.6
R50-HOW-ASMK,n=2000 [15] 79.4 56.9
(B) Global feature
R101-GeM [13, 48] 65.3 39.6
R101-GeM-AP (GLDv1) [39] 66.3 42.5
R101-GeM+SOLAR (GLDv1) [32] 69.9 47.9
R50-DELG (Global-only, GLDv2-clean) [10] 73.6 51.0
R101-DELG (Global-only, GLDv2-clean) [10] 76.3 55.6
R50-DOLG (GLDv2-clean) [60] 80.5 58.8
R101-DOLG (GLDv2-clean) [60] 81.5 61.1
R101-CVNet-Global (GLDv2-clean) [27] 80.2 63.1
DELG+CANN-FIRE (weighted) 82.4 62.3
DELG+CANN-HOW (weighted) 83.3 64.2.

Table 2: Results of DELG+CANN compared to state-of-the-art
reranking (local aggregation and global features) on ROxford (num-
bers of related work from [27])

Limitations. Using local features throughout the stack
requires that the entire map fit in memory. Approaches that
use global features can be more easily scaled, in that the
local features per spatial region are kept out-of-memory and
are only loaded after image retrieval.

5. Conclusions

In this paper, we proposed CANN, a novel nearest neigh-
bor searching approach that finds the best matches in both
appearance and geometry space to improve visual localiza-
tion using only local features. Unlike the state-of-the-art in
the field, which uses global features for image retrieval and
local features for 2D-3D matching, our approach uses only
local features, while providing significantly better perfor-
mance than the state-of-the-art at very competitive runtime

10 20 30 40 50
Top k

0

5

10

15

20

25

Lo
ca

liz
ed

 (%
)

EWB Gangnam Station (5.0m, 10deg)
CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

30

35

40

45

50

55

60

65

70

75

Lo
ca

liz
ed

 (%
)

SFM Gangnam Station (0.25m, 2.0deg)

CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

0

20

40

60

80

100

Lo
ca

liz
ed

 (%
)

EWB Robotcar (5.0m, 10deg)
CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

46

48

50

52

54

56

58

60

Lo
ca

liz
ed

 (%
)

SFM Robotcar (0.25m, 2.0deg)

CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

0

5

10

15

20

25

30

35

40

45

Lo
ca

liz
ed

 (%
)

EWB Robotcar night (5.0m, 10deg)
CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

0

5

10

15

20

25

30

35

Lo
ca

liz
ed

 (%
)

SFM Robotcar night (0.25m, 2.0deg)

CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

0

5

10

15

20

25

30

35

40

Lo
ca

liz
ed

 (%
)

EWB Aachen (5.0m, 10deg)
CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

74

76

78

80

82

84

86

88

90

Lo
ca

liz
ed

 (%
)

SFM Aachen Station (0.25m, 2.0deg)

CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

0

5

10

15

20

25

30
Lo

ca
liz

ed
 (%

)

EWB Aachen Night (5.0m, 10deg)
CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

30

35

40

45

50

55

60

65

70

75

Lo
ca

liz
ed

 (%
)

SFM Aachen night (0.25m, 2.0deg)

CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

0

2

4

6

8

10

12

14

Lo
ca

liz
ed

 (%
)

EWB Baidu-mall (5.0m, 10deg)
CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

10 20 30 40 50
Top k

30

35

40

45

50

55

60

65

70

Lo
ca

liz
ed

 (%
)

SFM Baidu-mall (0.25m, 2.0deg)

CANN+FIRE
CANN+HOW
CANN+R2D2
ASMK+FIRE
ASMK+HOW
ASMK+R2D2
AP-GeM
DELG
DenseVLAD-Multi
NetVLAD
DELG-R101

Table 3: Results from four public benchmarks. Following [18, 33] we evaluate across image retrieval using equal weighted barycenter
(EWB) interpolation and final localization quality using the existing localization pipeline from [18] [SFM].

cost. By providing the relevant metric and theoretical foun-
dation of the algorithm, as well as two efficient algorithmic
solutions, we hope to inspire a revived interest in solving
visual localization with local features only.

A. Additional Qualitative Results
We include additional qualitative results in Figures

4,5,6,7,8,9 taken from all datasets, showing that CANN re-
trieves good results also in images with heavy occlusions.
Cases like these, where there is only partial overlap between
the query image and database images are very difficult for
global features. We use HOW [56] for local features with
both CANN-RG (ours) and ASMK [55]. The query image
is on the left and the top 5 retrieved images are on the right.
Our method retrieves all correct images, while other methods
retrieve occasionally incorrect images ranked high among
the top 5. We see that some global methods retrieve incorrect
images due to scene clutter or high-frequency textures, while
CANN provides diverse set of correct results. In several
cases, we see that CANN+HOW outperforms ASMK+HOW.
Retrieved images are marked red (bad) or green (good).

Figure 4: Robotcar

Figure 5: Gangnam

Figure 6: Baidu

Figure 7: Baidu

Figure 8: Aachen

Figure 9: Aachen

References
[1] Dror Aiger, Haim Kaplan, and Micha Sharir. Reporting neigh-

bors in high-dimensional euclidean space. SIAM Journal on
Computing, 2014.

[2] Dror Aiger, Efi Kokiopoulou, and Ehud Rivlin. Random grids:
Fast approximate nearest neighbors and range searching for
image search. In ICCV, 2013.

[3] Dror Aiger, Simon Lynen, Jan Hosang, and Bernhard Zeisl.
Efficient large scale inlier voting for geometric vision prob-
lems. In ICCV, 2021.

[4] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic.
NetVLAD: CNN Architecture for Weakly Supervised Place
Recognition. In CVPR, 2016.

[5] Relja Arandjelovic and Andrew Zisserman. All about vlad.
In CVPR, 2013.

[6] Clemens Arth, Daniel Wagner, Manfred Klopschitz, Arnold
Irschara, and Dieter Schmalstieg. Wide area localization on
mobile phones. In ISMAR, 2009.

[7] Artem Babenko and Victor Lempitsky. The inverted multi-
index. PAMI, 2014.

[8] Gabriele Berton, Riccardo Mereu, Gabriele Trivigno, Carlo
Masone, Gabriela Csurka, Torsten Sattler, and Barbara Ca-
puto. Deep visual geo-localization benchmark. In CVPR,
2022.

[9] Bingyi Cao, Andre Araujo, and Jack Sim. Unifying deep
local and global features for image search. In ECCV, 2020.

[10] Bingyi Cao, André Araujo, and Jack Sim. Unifying deep
local and global features for image search. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors,
ECCV, Lecture Notes in Computer Science, 2020.

[11] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S
Mirrokni. Locality-sensitive hashing scheme based on p-
stable distributions. In Proceedings of the twentieth annual
symposium on Computational geometry, 2004.

[12] Ehud Rivlin Dror Aiger, Efi Kokiopoulou. Random grids:
Fast approximate nearest neighbors and range searching for
image search. In ICCV, 2013.

[13] Giorgos Tolias Filip Radenovic and Ondrej Chum. Finetuning
cnn image retrieval with no human annotation. PAMI, 2018.

[14] M. Fischler and R. Bolles. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Anal-
ysis and Automated Cartography. Communications of the
ACM, 1981.

[15] Tomas Jenicek Giorgos Tolias and Ondrej Chum. Learn-
ing and aggregating deep local descriptors for instance-level
recognition. ECCV, 2019.

[16] Prosenjit Gupta, Ravi Janardan, and Michiel Smid. Algo-
rithms for generalized halfspace range searching and other
intersection searching problems. Computational Geometry,
1996.

[17] Prosenjit Gupta, Ravi Janardan, and Michiel Smid. A tech-
nique for adding range restrictions to generalized searching
problems. Information Processing Letters, 1997.

[18] Martin Humenberger, Yohann Cabon, Noé Pion, Philippe
Weinzaepfel, Donghwan Lee, Nicolas Guérin, Torsten Sattler,
and Gabriela Csurka. Investigating the role of image retrieval
for visual localization. IJCV, 2022.

[19] Apple Inc. Apple, arkit geotracking, 2022.
[20] Piotr Indyk and Rajeev Motwani. Approximate nearest neigh-

bors: Towards removing the curse of dimensionality. In
Jeffrey Scott Vitter, editor, ACM, 1998.

[21] Joseph O’Rourke Jacob E. Goodman. Handbook of discrete
and computational geometry, second edition. In Chapman
and Hall/CRC, 2004.

[22] Ravi Janardan and Mario Lopez. Generalized intersection
searching problems. International Journal of Computational
Geometry & Applications, 1993.

[23] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product
quantization for nearest neighbor search. PAMI, 2010.

[24] H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C.
Schmid. Aggregating Local Image Descriptors into Compact
Codes. PAMI, 2012.

[25] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,
Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image match-
ing across wide baselines: From paper to practice. IJCV,
2021.

[26] Laurent Kneip, Davide Scaramuzza, and Roland Siegwart. A
novel parametrization of the perspective-three-point problem
for a direct computation of absolute camera position and
orientation. In CVPR 2011, 2011.

[27] Seongwon Lee, Hongje Seong, Suhyeon Lee, and Euntai Kim.
Correlation verification for image retrieval. In CVPR, 2022.

[28] Yunpeng Li, Noah Snavely, Dan Huttenlocher, and Pascal
Fua. Worldwide pose estimation using 3d point clouds. In
ECCV, 2012.

[29] Yunpeng Li, Noah Snavely, and Daniel P Huttenlocher. Loca-
tion recognition using prioritized feature matching. In ECCV,
2010.

[30] Google LLC. Google, arcore geospatial api, 2022.
[31] Simon Lynen, Bernhard Zeisl, Dror Aiger, Michael Bosse,

Joel Hesch, Marc Pollefeys, Roland Siegwart, and Torsten
Sattler. Large-scale, real-time visual–inertial localization
revisited. IJRR, 2020.

[32] Tony Ng, Vassileios Balntas, Yurun Tian, and Krystian Miko-
lajczyk. SOLAR: second-order loss and attention for image
retrieval. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm, editors, ECCV, Lecture Notes in
Computer Science, 2020.

[33] Gabriela Csurka Yohann Cabon Torsten Sattler Noé Pion,
Martin Humenberger. Benchmarking image retrieval for vi-
sual localization. In 3DV, 2020.

[34] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han. Large-
Scale Image Retrieval with Attentive Deep Local Features. In
ICCV, 2017.

[35] S. Rahul P. Gupta, R. Janardan and M. H. M. Smid. Com-
putational geometry: Generalized (or colored) intersection
searching. In Handbook of Data Structures and Applications,
CRC Press, chapter 67, 2018.

[36] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Object Retrieval with Large Vocabularies and Fast Spatial
Matching. In CVPR, 2007.

[37] Noé Pion, Martin Humenberger, Gabriela Csurka, Yohann
Cabon, and Torsten Sattler. Benchmarking image retrieval for
visual localization. In 3DV, 2020.

[38] J. Revaud, J. Almazan, R. Sampaio de Rezende, and
C. Roberto de Souza. Learning with Average Precision: Train-
ing Image Retrieval with a Listwise Loss. In ICCV, 2019.

[39] Jérôme Revaud, Jon Almazán, Rafael S. Rezende, and
César Roberto de Souza. Learning with average precision:
Training image retrieval with a listwise loss. In ICCV, 2019.

[40] Jerome Revaud, Cesar De Souze, Philippe Weinzaepfel, and
Martin Humenberger. R2D2: Repeatable and Reliable Detec-
tor and Descriptor. In NeurIPS, 2019.

[41] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. From
Coarse to Fine: Robust Hierarchical Localization at Large
Scale. In CVPR, 2019.

[42] Paul-Edouard Sarlin, Frédéric Debraine, Marcin Dymczyk,
Roland Siegwart, and Cesar Cadena. Leveraging deep visual
descriptors for hierarchical efficient localization. In CRL,
2018.

[43] Paul-Edouard Sarlin, Ajaykumar Unagar, Mans Larsson,
Hugo Germain, Carl Toft, Viktor Larsson, Marc Pollefeys,
Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, et al. Back
to the feature: Learning robust camera localization from pix-
els to pose. In CVPR, 2021.

[44] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-
based localization using direct 2d-to-3d matching. In 2011
International Conference on Computer Vision, 2011.

[45] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving
image-based localization by active correspondence search. In
ECCV, 2012.

[46] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient
& effective prioritized matching for large-scale image-based
localization. PAMI, 2016.

[47] Torsten Sattler, Akihiko Torii, Josef Sivic, Marc Pollefeys,
Hajime Taira, Masatoshi Okutomi, and Tomas Pajdla. Are
large-scale 3d models really necessary for accurate visual
localization? In CVPR, 2017.

[48] Oriane Siméoni, Yannis Avrithis, and Ondrej Chum. Local
features and visual words emerge in activations. In CVPR,
2019.

[49] J. Sivic and A. Zisserman. Video Google: A Text Retrieval
Approach to Object Matching in Videos. In ICCV, 2003.

[50] Linus Svärm, Olof Enqvist, Fredrik Kahl, and Magnus Os-
karsson. City-scale localization for cameras with known
vertical direction. PAMI, 2016.

[51] Chris Sweeney, John Flynn, Benjamin Nuernberger, Matthew
Turk, and Tobias Höllerer. Efficient computation of absolute
pose for gravity-aware augmented reality. In ISMAR, 2015.

[52] M. Teichmann, A. Araujo, M. Zhu, and J. Sim. Detect-to-
Retrieve: Efficient Regional Aggregation for Image Search.
In CVPR, 2019.

[53] Timothy M. Chan, Qizheng He, Yakov Nekrich. Further
Results on Colored Range Searching. In SoCG, 2020.

[54] Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. To aggre-
gate or not to aggregate: Selective match kernels for image
search. In ICCV, 2013.

[55] G. Tolias, Y. Avrithis, and H. Jegou. Image Search with
Selective Match Kernels: Aggregation Across Single and
Multiple Images. IJCV, 2015.

[56] G. Tolias, T. Jenicek, and O. Chum. Learning and Aggregat-
ing Deep Local Descriptors for Instance-Level Recognition.
In ECCV, 2020.

[57] Akihiko Torii, Relja Arandjelovic, Josef Sivic, Masatoshi
Okutomi, and Tomas Pajdla. 24/7 place recognition by view
synthesis. In CVPR, 2015.

[58] P. Weinzaepfel, T. Lucas, D. Larlus, and Y. Kalantidis. Learn-
ing Super-Features for Image Retrieval. In ICLR, 2022.

[59] Weinzaepfel, Philippe and Lucas, Thomas and Larlus, Diane
and Kalantidis, Yannis. Learning Super-Features for Image
Retrieval. In ICLR, 2022.

[60] Min Yang, Dongliang He, Miao Fan, Baorong Shi, Xuetong
Xue, Fu Li, Errui Ding, and Jizhou Huang. DOLG: single-
stage image retrieval with deep orthogonal fusion of local and
global features. In ICCV, 2021.

[61] Bernhard Zeisl, Torsten Sattler, and Marc Pollefeys. Camera
pose voting for large-scale image-based localization. In ICCV,
2015.

