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Abstract

Gait recognition is a biometric technology that recog-
nizes the identity of humans through their walking patterns.
Compared with other biometric technologies, gait recogni-
tion is more difficult to disguise and can be applied to the
condition of long-distance without the cooperation of sub-
jects. Thus, it has unique potential and wide application
for crime prevention and social security. At present, most
gait recognition methods directly extract features from the
video frames to establish representations. However, these
architectures learn representations from different features
equally but do not pay enough attention to dynamic fea-
tures, which refers to a representation of dynamic parts of
silhouettes over time (e.g. legs). Since dynamic parts of the
human body are more informative than other parts (e.g.
bags) during walking, in this paper, we propose a novel
and high-performance framework named DyGait. This is
the first framework on gait recognition that is designed
to focus on the extraction of dynamic features. Specifi-
cally, to take full advantage of the dynamic information, we
propose a Dynamic Augmentation Module (DAM), which
can automatically establish spatial-temporal feature repre-
sentations of the dynamic parts of the human body. The
experimental results show that our DyGait network out-
performs other state-of-the-art gait recognition methods.
It achieves an average Rank-1 accuracy of 71.4% on the
GREW dataset, 66.3% on the Gait3D dataset, 98.4% on the
CASIA-B dataset and 98.3% on the OU-MVLP dataset.

*Shunli Zhang is the corresponding author.
† Joint first authors.

Figure 1: The first row represents the original sequence of
gait. The bounding boxes for human silhouette parts: main
body (yellow boxes), bag (red boxes), left and right legs
(green boxes). The second row shows heatmaps of our Dy-
Gait.

1. Introduction
Gait recognition is a biometric technology that can iden-

tify humans based on their postures at a long distance with-
out the cooperation of subjects. Meanwhile, gait is hard to
disguise, and these advantages give gait recognition unique
potential for many applications such as crime prevention,
person identification, and social security. Even though gait
recognition has achieved impressive advances in past years
[33, 31, 20, 19, 13, 5, 21], this challenging technique has
not yet been widely used in real-world applications due to
some complex factors, such as clothing and people carrying
objects [8, 27, 61, 1, 49, 36, 60, 40].

As an identification task in computer vision, the essential
goal of gait recognition is to learn unique and invariant rep-
resentations from temporal changing characteristics about
the motion of bodies. Currently, there are two main types of
feature representation methods to portray human gait. One
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is the spatial-based method which usually extracts spatial
gait features of the whole gait sequences [5, 17]. Despite
having a low computational cost in this way, it may lose
temporal information. The other one is the temporal-based
method which models temporal features for representations
[13, 33]. These CNN-based works can automatically extract
spatial and temporal gait features, but they do not focus on
the dynamic differences between frames, which may be the
most useful gait features for gait recognition.

As the first row in Figure 1 shows, the human’s torso and
the bag occupy a large region in each frame and remain al-
most static and unchanged during the walking process. In
contrast, the legs take up small spaces and are continuously
changing in motion. It can be observed that main differ-
ences of the gait among different frames lie in the dynamic
features such as the moving legs. This suggests that some of
the static regions, e.g. bag or coat, are not critical to distin-
guish one person from the others. From this perspective, we
stress that the dynamic parts of the human body are more
informative than others. Therefore, the applied approach
should pay more attention to the dynamic feature.

Motivated by the above observation, we propose a novel
gait recognition method called DyGait, which can automat-
ically extract dynamic information of the gait. As shown in
Figure 1, DyGait pays more attention to the motion parts,
such as legs and arms.

First, a novel Dynamic Augmentation Module (DAM) is
developed to extract more comprehensive representations.
DAM is built based on Dynamic Feature Extractor (DFE),
which can ensemble the global temporal information of fea-
ture maps to generate a gait template. Then, the dynamic
feature maps can be obtained by computing the difference
between the feature maps of each frame and the gait tem-
plate.

In addition, both Temporal Aggregation (TA) and Hor-
izontal Mapping (HM) operations are applied to generate
feature representations [33]. The proposed DyGait achieves
strong performance and outperforms other state-of-the-art
models by a large margin on GREW, Gait3D, CASIA-B and
OU-MVLP. The main contributions are as follows:

1) We propose a novel framework for gait recognition,
called DyGait. To the best of our knowledge, this is the first
network that is designed to explicitly focus on the extraction
of dynamic features of gait.

2) DyGait is built based on the Dynamic Augmentation
Module (DAM), which allows a network to focus on the
key information and learn more discriminative representa-
tions for gait recognition. Meanwhile, this module can ef-
fectively filter invalid noise by paying attention to dynamic
information.

3) We achieve the state-of-the-art performance on the
most popular datasets inclduing GREW, Gait3D, CASIA-
B and OU-MVLP. It obtains an average Rank-1 accuracy

of 71.4% on GREW, 66.3% on Gait3D, 98.4% on CASIA-
B and 98.3% on OU-MVLP, respectively. The experiments
demonstrate that our method significantly outperforms the
previous methods by a large margin.

2. Related Work
Gait Recognition. Most prior works [17, 50, 56] are
based on the extraction of handcrafted features from gait
sequences using traditional machine learning approaches.
Gait energy image (GEI) [17] used in such investigations
is the most popular approach to describe gait. Although
the noise can be effectively suppressed by averaging over
the gait cycle within a long temporal range in a GEI,
this template loses most details such as temporal infor-
mation. Inspired by the successful application of Con-
volutional Neural Networks (CNNs) in face recognition
[44, 37, 52, 9, 23, 59, 16, 24] and person Re-IDentification
(Re-ID) [65, 34, 57, 18, 15, 73, 71, 72, 74, 26, 54], recent re-
searchers propose many gait recognition frameworks based
on CNN. Current works in gait recognition are divided into
two types of feature representations: spatial feature repre-
sentation and temporal modeling.
Spatial Feature Representation. The first type regards
the gait sequence as a template, which relies on binary
human silhouette images. The goal of template genera-
tion is to encode a gait cycle into a single image, i.e. Gait
Energy Image (GEI) [17] or a Chrono-Gait Image (CGI)
[50]. In the template matching procedure, the gait rep-
resentation is firstly extracted from a template image us-
ing machine learning approaches [2, 58] or deep learning
[56, 41, 64, 5, 67, 66, 31, 6, 3, 4, 38]. Then, similarities
between pairs of representations are measured using Eu-
clidean distance or other metric learning approaches. For
example, Shiraga et al. [41] propose the GEINet frame-
work to extract gait features from Gait Energy Image (GEI),
which is generated by using the mean function. Zhang et
al. [64] also take the GEI as input to extract gait features.
However, the generation process of GEI causes severe in-
formation loss. Hence, Chao et al. [5] propose a GaitSet
framework, in which the first step is to extract the static
gait features and then use a max function to generate gait
templates. Zhang et al. [67] propose an attention module to
learn weights of different frames, and then adopt a weighted
average operation to create a gait template. Although these
methods can achieve excellent performance and be easy to
compute, they do not consider temporal information at the
feature extraction stage.
Temporal Modeling. In the second category, 3D-CNNs
[27, 28, 31, 32, 30, 39, 53, 29, 11, 62, 63] or LSTMs
[55, 43, 48] are used for modeling the temporal informa-
tion. These approaches can comprehend more spatial infor-
mation and gather more temporal information but require
higher computational costs. Wolf et al. [55] partition a
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Figure 2: Overview of the whole gait recognition framework. HM means Horizontal Mapping. TA denotes Temporal
Aggregation. DAM means Dynamic Augmentation Module.

gait sequence into multiple non-overlapping gait clips and
use 3D CNNs to extract each clip’s gait features. Thapar
et al. [48] also adopt a similar strategy to extract gait fea-
tures and further introduce an LSTM module to aggregate
multiple clips’ features. However, it is inflexible because it
only extracts and aggregates a fixed-length clip’s informa-
tion. Recently, Lin et al. [31] propose a novel framework to
combine advantages of both template-based and sequence-
based methods. They firstly use 3D CNN to extract spatial-
temporal gait features and then generate a gait representa-
tion by using the statistical function. However, despite the
success of spatial feature representation and temporal mod-
eling, their extraction become more complicated for dy-
namic and changing information. In other words, they do
not focus on the most valid information from the gait.

Thus, we turn the attention to dynamic parts of gait and
propose the Dynamic Augmentation Module (DAM) which
can be used to augment the representation ability. GaitNet
proposed by Zhang et al. [68] is the most related work. Un-
usually, GaitNet learns a representation of gait directly from
RGB frames in videos. Compared with [68], our approach
can automatically disentangle dynamic features from the bi-
nary silhouettes, which is beneficial to privacy protection
and gives its strong robustness to different clothes/carrying
conditions. In addition, some recent work extract gait fea-
tures through optical flow [43], 2D pose [46] and 3D pose
[28]. These approaches are robust to clothing variations but
depend on the optical flow and pose estimation accuracy.

3. Proposed Method
In this section, we first overview the framework of the

proposed method. Then, we introduce the Dynamic Aug-
mentation Module (DAM), Temporal Aggregation (TA),
Horizontal Mapping (HM) and loss function we used. Fi-

nally, we explain the training and test details.

3.1. Overview

The framework of the proposed method is illustrated in
Figure 2, which includes Dynamic Augmentation Module
(DAM), Temporal Aggregation (TA) and Horizontal Map-
ping (HM). We firstly use a convolution layer to extract
shallow features and then aggregate local temporal informa-
tion by using the Local Temporal Aggregation (LTA) [33].
Assume that Xin ∈ RCin×Tin×Hin×Win is the input gait
sequences, where Cin is the number of input channels, Tin

is the length of the gait sequence and (Hin,Win) is the im-
age size of each frame. These operations can be represented
as

YL = σ(C3×1×1(σ(C3×3×3(Xin)))), (1)

where YL ∈ RCL×TL×Hin×Win is the output of the Lo-
cal Temporal Aggregation (LTA), CL is the number of
output channels, and TL is the length of the feature map
YL. C3×3×3 denotes the 3D convolution with kernel size
3 × 3 × 3. C3×1×1 means the 3D convolution with kernel
size 3× 1× 1 and stride 3. σ means activation function.

Then, we propose the feature extraction module based on
DAM to extract augmented dynamic features. After that, we
introduce TA and HM operations to generate feature repre-
sentations. Finally, the triplet loss and cross-entropy loss
are taken as loss functions to train the proposed network
[19, 33].

3.2. Feature Extraction based on DAM

Recently, many researchers use spatial-based [56, 41, 64,
5, 67, 66, 31, 6, 3, 4] or temporal-based models [27, 28, 31,
7, 55, 43, 48] to extract features for gait representations.
However, these methods do not pay enough attention to the
dynamic information of the human body. As we mentioned
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above, the human torso and some disturbances, such as bags
and coats, can be considered as static information, while
moving limbs can be regarded as dynamic information. The
bags and coats which do not belong to the human identifi-
cation information may harm the recognition. On the other
hand, the dynamic limbs often have larger changes than the
relatively stable torso when walking, which indicates that
the dynamic parts of the human body may provide more
discriminative information. The traditional gait template
based on mean function, such as Gait Energy Image (GEI)
[17], preserves the information of the torso completely and
weakens the role of dynamic limbs. To take advantage of
dynamic information, we utilize the difference between the
gait feature of each frame and the gait template based on
the mean function to generate the dynamic feature map, the
DAM block is shown in Figure 3.

Assume that Xo = {fi|i = 1, 2, ..., To}, where Xo ∈
RCo×To×Ho×Wo , Co is the number of input channels, To is
the length of the feature map and (Ho,Wo) is the image size
of each frame. fi ∈ RCo×1×Ho×Wo is the i-th frame of the
feature map Xo. The dynamic feature map can be obtained
by

Xd = {fi −Xm|i = 1, 2, ..., To} , (2)

where

Xm =
1

To

To∑
i=1

fi, (3)

Xd ∈ RCo×To×Ho×Wo is the dynamic feature map, and
Xm ∈ RCo×1×Ho×Wo is the gait template based on mean
function. Based on the dynamic feature map, we propose a
Dynamic Feature Extractor (DFE) to establish the spatial-
temporal feature representations of the dynamic parts of
gait. The Dynamic Feature Extractor (DFE) can be de-
signed as

YDFE = C3×3×3(Xd), (4)

where YDFE ∈ RCod×To×Ho×Wo is the output of the DFE,
Cod is the number of output channels and C3×3×3 denotes
the 3D convolution operation with kernel size (3, 3, 3).

Considering that DFE focuses on extracting the dynamic
information of the human body, we add a Global Feature

Extractor (GFE) to extract the global features of a gait se-
quence. The Global Feature Extractor (GFE) can be repre-
sented as

YGFE = C1×3×3(Xo), (5)

where YGFE ∈ RCod×To×Ho×Wo is the output of the GFE
and C1×3×3 denotes the 3D convolution operation with ker-
nel size (1, 3, 3).

Based on the DFE, in this paper, we propose a novel
module, DAM, to produce the dynamic augmentation fea-
tures, greatly improving the representation ability. The
DAM can be denoted as

YDAM = σ(YGFE + YDFE), (6)

where σ means LeakyRelu function. The Augmented Fea-
ture Maps (AFM) after DAM can be represented as

YAFM = σ(C3×3×3(Xo)) + YDAM (7)

where YAFM ∈ RCod×To×Ho×Wo .
As shown in Figure 2, the feature extraction stage is

implemented by multiple convolutions with DAM and the
max-pooling operation.

3.3. Loss Function

To achieve the best performance, triplet loss and cross-
entropy loss are used to train our network [6, 14]. Assume
that Fi, Fj and Fk are feature representations corresponding
to samples i, j and k, respectively. Note that samples i and
j are from class A, and the sample k belongs to class B.
The combined loss function can be represented as

Lossall = Losstri + Losscse, (8)

where Losstri and Losscse mean triplet loss and cross-
entropy loss respectively.

On the one hand, the triplet loss Losstri is proposed to
optimize the inter-class and intra-class distances, which can
be defined as

Losstri = [D(Fi, Fk)−D(Fi, Fj) +m]+, (9)

where D(Fi, Fk) is the Euclidean distance between features
of samples i and k, m means the margin of the triplet loss,
and [α]+ is equal to max(α, 0).

On the other hand, the cross entropy loss Losscse is in-
troduced to optimize the classification space, which can be
formulated as

Losscse = − 1

N

N∑
i=1

log
eW

T
yi

xi+byi∑n
j=1 e

WT
j xi+bj

(10)

where xi is the feature of the i-th sample, and its label is yi.
In our method, we obtain multiple column vectors at

the Horizontal Mapping stage and then calculate the loss
of each column vector following Equation 8 [31, 19].



Table 1: Rank-1 accuracy (%), Rank-5 accuracy (%), Rank-
10 accuracy (%), and Rank-20 accuracy (%) on the GREW
dataset.

Methods Rank-1 Rank-5 Rank-10 Rank-20

PoseGait [28] 0.2 1.0 2.2 4.3
GaitGraph [46] 1.3 3.5 5.1 7.5

GEINet [41] 6.8 13.4 17.0 21.0
TS-CNN [56] 13.6 24.6 30.2 37.0

GaitSet [5] 46.3 63.6 70.3 76.8
GaitPart [13] 44.0 60.7 67.3 73.5
GaitGL [33] 47.3 63.6 69.3 74.2
MGN [51] 44.5 61.3 67.7 72.7
CSTL [22] 50.6 65.9 71.9 76.9

MTSGait [69] 55.3 71.3 76.9 81.6
OpenGait [12] 60.1 - - -

Ours 71.4 83.2 86.8 89.5

3.4. Training Details and Test

Training. During the training phase, we first extract fea-
ture maps based on the dynamic augmentation model from
the input sequence. Then, Temporal Aggregation (TA) and
Horizontal Mapping (HM) are used to generate the fixed-
size feature representation. After that, triplet loss and cross-
entropy loss are used for evaluation. The sampling strategy
is Batch ALL (BA) [18, 5] and P×K instances are sampled
in each step, where P corresponds to the number of subject
IDs, and K denotes the number of samples for each subject
ID.

Test. During the test phase, the whole input sequences can
be fed into the proposed network to generate a feature rep-
resentation YHM that represents human gait. To evaluate
the proposed method, we adopt the pattern ”Gallery-Probe”
to calculate Rank-1 accuracy. Therefore, the test set is split
into two sets, i.e. the gallery set and the probe set. Firstly,
we input the gait sequence from all of the gallery set into
the proposed network to generate feature representations,
as the standard view sets. Secondly, each gait sequence of
the probe set is put into the proposed network for feature
representation. Then, this feature representation is used to
calculate the Euclidean distance with all representations of
the standard view sets. The label of the sample which has
the smallest distance with the input sample is assigned to the
input sample. Finally, we calculate the average accuracy to
evaluate the performance of the proposed method.

4. Experiments

4.1. Datasets

To evaluate the performance of the proposed method, we
conduct experiments on four popular gait datasets, includ-
ing two real-word datasets i.e. GREW [75] and Gait3D [70],
and two datasets captured from experimental environment,
i.e. CASIA-B [61] and OU-MVLP [45].
GREW. The GREW dataset [75] is a large-scale outdoor
gait dataset. The GREW includes 26,345 subjects and
128,671 sequences captured by 882 cameras in open envi-
ronments, providing data in the form of Silhouettes, Optical
Flow, GEI, and 2D/3D human poses. GREW has performed
age grouping and gender annotation for all subjects. These
subjects are divided into five age groups, with the adult
groups (i.e., 16-30, 31-45, 46-60 years), the Children group
(under 16 years) and the elder group (over 60 years). Each
group has the males and females with similar amount. The
GREW also provides five carrying conditions and six dress-
ing styles. The GREW is divided into three parts, i.e. the
training set with 20,000 identities and 102,887 sequences,
the validation set with 345 identities and 1,784 sequences,
and the test set with 6,000 identities and 24,000 sequences.
These three sets of identities are captured by different cam-
eras. Each test subject has four sequences, two of which are
taken as probes and the other two as gallery. In addition,
there is a distractor set with 233,857 sequences.
Gait3D. The Gait3D [70] is a large-scale dataset, which
contains 4,000 subjects and over 25,000 sequences captured
from an unconstrained indoor scene by 39 cameras. It pro-
vides 3D SMPL models recovered from video. To facilitate
comparison with other algorithms, the Gait3D dataset is di-
vided into the training set with 3000 subjects and the test set
with 1000 subjects. For the test set, the probe set of 1000 se-
quences is constructed by randomly selecting one sequence
from each subject, and the rest sequences are put into the
gallery set.
CASIA-B. The CASIA-B dataset [61] is one of the most
popular gait databases, which consists of 124 subjects. For
each subject, the CASIA-B dataset collected 10 groups of
gait sequences (NM#01-06, BG#01-02 and CL#01-02) un-
der three conditions of normal walking (NM), walking with
a bag (BG), and walking in coats (CL). Each group contains
11 videos from different view angles (0◦, 18◦, ..., 162◦,
180◦). In experiments, methods usually adopt three pro-
tocols (Small-scale Training (ST), Medium-scale Training
(MT), and Large-scale Training (LT)) to evaluate the perfor-
mance of the proposed method [5]. For these three settings,
24, 62, and 74 subjects are taken as the training set and the
rest 100, 62, and 50 subjects are used for test, respectively.
During the training stage, all gait sequences of the train-
ing set are used to train the network. In the test phase, gait
sequences NM#01-04 are taken as the gallery set, and gait



sequences NM#05-06, BG#01-02 and CL#01-02 are used
as the probe set to calculate Rank-1 accuracy.
OU-MVLP. The OU-MVLP [45] is one of the largest gait
recognition datasets. It includes 10,307 subjects, each
of which has two groups of gait sequences (Seq#00 and
Seq#01). Each group collects 14 angles of gait sequences
(0◦, 15◦,..., 75◦, 90◦, 180◦, 195◦,..., 255◦, 270◦). In our ex-
periments, we use gait sequences of 5,153 subjects to train
the proposed network and take rest sequences as the test
set to evaluate the performance [5]. During the test phase,
sequences in Seq#01 are defined as the gallery set, and se-
quences in Seq#00 are considered as the probe set to calcu-
late Rank-1 accuracy.

Table 2: Rank-1 accuracy (%), Rank-5 accuracy (%), mAP
(%) and mINP on the Gait3D dataset.

Methods Rank-1 Rank-5 mAP mINP

PoseGait [28] 0.24 1.08 0.47 0.34
GaitGraph [47] 6.25 16.23 5.18 2.42

GEINet [41] 5.40 14.20 5.06 3.14
GaitSet [5] 36.70 58.30 30.01 17.30

GaitPart [13] 28.20 47.60 21.58 12.36
GLN [19] 31.40 52.90 24.74 13.58

GaitGL [33] 29.70 48.50 22.29 13.26
CSTL [22] 11.70 19.20 5.59 2.59

SMPLGait [70] 46.30 64.50 37.16 22.23
MTSGait [69] 48.70 67.10 37.63 21.92
OpenGait [12] 65.60 - - -

Ours 66.30 80.80 56.40 37.30

4.2. Implementation Details

We pre-process the original gait sequences. For GREW,
CASIA-B and OU-MVLP, we normalize the size of each
frame to 64 × 44. For Gait3D, the size of each frame is
128 × 88. In GREW and Gait3D, DyGait has five blocks
built with the proposed DAM. For the CASIA-B and OU-
MVLP, there are three DAM blocks to build the network.
In all experiments, m in Equation 9 is set to 0.2. In Sec-
tion 3.4, we introduce our sampling strategy Batch ALL
(BA) in the training phase, which contains parameters P
and K. Parameters (P , K) are set to (32, 4) for GREW
and Gait3D datasets. Parameters (P , K) are set to (8, 16)
for the CASIA-B dataset. For the OU-MVLP dataset, P
and K are set to 32 and 8, respectively. SGD optimizer was
adopted with the learning rate of 0.1 for GREW and Gait3D.
For CASIA-B and OU-MVLP, Adam optimizer [25] was
adopted with the learning rate of 1e-4. In the training stage,

the frame length of each batch is set to 30. The code of all
experiments was written in PyTorch 1.1.0 [35]. In the test
phase, all frames of sequence can be taken as input to gen-
erate the feature representation. Iterations of the GREW,
Gait3D, CASIA-B and OU-MVLP dataset are set to 200K,
150K, 80K and 210k, respectively.

4.3. Comparison with State-of-the-art Methods

Evaluation on GREW. We compare the performance of the
proposed method with several gait recognition methods on
the GREW dataset and show complete experimental results
in Table 1. The comparison methods include PoseGait [28],
GaitGraph [46], GEINeT [42], TS-CNN [58], GaitSet [5],
GaitPart [13], GaitGL [33], MGN [51], CSTL [22] , MTS-
Gait [69] and OpenGait [12]. From Table 1, we find that gait
recognition methods that perform well in laboratory sce-
narios degrade significantly on real scenario datasets. Al-
though the real scenario dataset is subject to many external
factors, our method performs 11.3% higher than the state-
of-art method OpenGait [12] on Rank-1 accuracy. Besides,
our method gets 16.1%, 11.9%, 9.9% and 7.9% higher ac-
curacy than the MTSGait on Rank-1, Rank-5, Rank-10 and
Rank-20, respectively. The experimental results indicate
that the proposed method obtains the highest average ac-
curacy. This may be because the proposed method can
learn more discriminative dynamic information. Besides,
the methods [28, 46] using the skeleton are less effective
on real-world datasets, which may be that the skeleton-
based approaches have less representation capability, the
silhouette-based methods can obtain more discriminative
feature representations.
Evaluation on Gait3D. Some competing gait recognition
methods on the GREW dataset are used on Gait3D as well.
Compared with the methods in Table 2, since our method
pays more attention to the dynamic feature of the human
body which obtains more specific information about legs
and arms, our method achieves more appealing performance
than the other gait recognition methods. Its accuracy is
0.7% higher than the OpenGait [12] on Rank-1. And the ac-
curacy is 17.6% and 13.7% greater than MTSGait on Rank-
1 and Rank-5, respectively. It shows that the captured dy-
namic features in our method may be more discriminative,
which contributes to better performance.
Evaluation on CASIA-B. Our approach not only shows
better performance on real scenario datasets, but also in
lab scenarios. We compare the performance of the pro-
posed method with several gait recognition methods on the
CASIA-B dataset and show complete experimental results
in Table 3. Comparison methods include GaitSet [5], Gait-
Part [13], MT3D [31], GaitGL [33], OpenGait [12] and
MetaGait [10]. Experimental results indicate that the pro-
posed method has the highest average accuracy in all of the
conditions (NM, BG and CL). We further explore the per-



Table 3: Rank-1 accuracy (%) on CASIA-B under all view angles and different conditions in LT setting, excluding identical-
view case.

Gallery NM#1-4 0◦-180◦

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM#5-6

GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
MT3D 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
GaitGL 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4

OpenGait - - - - - - - - - - - 97.6
MetaGait 97.3 99.2 99.5 99.1 97.2 95.5 97.6 99.1 99.3 99.1 96.7 98.1

DyGait (ours) 97.4 98.9 99.2 98.3 97.7 96.8 98.2 99.3 99.3 99.2 97.6 98.4

BG#1-2

GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
MT3D 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0

OpenGait - - - - - - - - - - - 94.0
GaitGL 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5

MetaGait 92.9 96.7 97.1 96.4 94.7 90.4 92.9 97.2 98.5 98.1 92.3 95.2
DyGait (ours) 94.5 96.9 97.4 96.1 95.4 94.0 94.8 97.6 98.5 97.7 94.9 96.2

CL#1-2

GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

OpenGait - - - - - - - - - - - 77.4
MT3D 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
GaitGL 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6

MetaGait 80.0 91.8 93.0 87.8 86.5 82.9 85.2 90.0 90.8 89.3 78.4 86.9
DyGait (ours) 82.2 93.0 95.2 91.6 87.1 83.4 87.2 90.1 92.4 88.2 75.8 87.8

Table 4: Rank-1 accuracy (%) on OU-MVLP dataset under different view angles, excluding invalid probe sequences.

Method
Probe View

Mean0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GEINet 24.9 40.7 51.6 55.1 49.8 51.1 46.4 29.2 40.7 50.5 53.3 48.4 48.6 43.5 45.3
GaitSet 84.5 93.3 96.7 96.6 93.5 95.3 94.2 87.0 92.5 96.0 96.0 93.0 94.3 92.7 93.3
GaitPart 88.0 94.7 97.7 97.6 95.5 96.6 96.2 90.6 94.2 97.2 97.1 95.1 96.0 95.0 95.1

GLN 89.3 95.8 97.9 97.8 96.0 96.7 96.1 90.7 95.3 97.7 97.5 95.7 96.2 95.3 95.6
SRN+CB 91.2 96.5 98.3 98.4 96.3 97.3 96.8 92.3 96.3 98.1 98.1 96.0 97.0 96.2 96.4
GaitGL 90.5 96.1 98.0 98.1 97.0 97.6 97.1 94.2 94.9 97.4 97.4 95.7 96.5 95.7 96.2

DyGait (ours) 96.2 98.2 99.1 99.0 98.6 99.0 98.8 97.9 97.6 98.8 98.6 98.1 98.3 98.2 98.3

formance of the methods with different conditions. It can be
observed that the recognition accuracy has a significant de-
crease when the external environment changes. For exam-
ple, recognition accuracies of GaitGL in NM, BG and CL
are 97.4%, 94.5% and 83.6% respectively. For the MetaGait
framework, the corresponding accuracy is 98.1%, 95.2%
and 86.9%, respectively. Since both methods mentioned
above equivalently extract the information of different re-
gions of the human gait, which contains only static features,
they are more vulnerable to suffer from the complex exter-
nal environment. For the proposed method, the accuracy

in NM, BG and CL is 98.4%, 96.2% and 87.8%, respec-
tively, we pay more attention to the dynamic information so
that more discriminative features may be captured. Specif-
ically, the recognition accuracy of our method outperforms
that of the other methods in BG and CL. Furthermore, our
method performs well on some specific angles(0◦ and 90◦ )
in complex environment. For example, the accuracy of the
MataGait is 92.9% and 90.4% in BG condition while that
of our method is 94.5% and 94.0%.

Evaluation on OU-MVLP. We compare the experimental
result of our method with several state-of-the-art methods
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Figure 4: (a) Original sequence. (b) Heatmaps for Open-
Gait [12]. (c) Heatmaps for GaitGL [33]. (d) Heatmaps for
our methods.

on the OU-MVLP dataset. The comparison methods in-
clude GEINet [41], GaitSet [5], GaitPart [13], GLN [19],
SRN+CB [20] and GaitGL [33]. Experimental results are
shown in Table 4, which indicates that the proposed method
achieves better recognition accuracy than the state-of-the-
art methods. The accuracy of the proposed method is 98.3%
which outperforms the GaitGL by 2.1%. Furthermore, it
can be observed that the accuracy of some specific view
angles (0◦ and 180◦) is far below the average accuracy.
The main reason may be that the gait in these view angles
have less information than the others. Table 4 shows that
the accuracy of our method at 0◦ and 180◦ is 96.2% and
97.9%, which outperforms GaitGL by 5.7%, and 3.7% re-
spectively. This indicates that the dynamic feature extracted
by our method can obtain more effective motion informa-
tion, which is unique to each individual.
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(a) Ours on CASIA-B
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(b) Ours w/o DFE on CASIA-B

Figure 5: The visualization of feature distribution by t-
SNE. (a) Our method on CASIA-B. (b) Our method without
DAM.

4.4. Ablation Study

In Section 3, we propose the Dynamic Augmentation
Module (DAM) to improve the feature representation abil-
ity. Therefore, we design more experiments to explore the
role of these modules and some critical parameters.

Table 5: The accuracy (%) on GREW under different com-
binations of the proposed modules. GFE and DFE mean
Global Feature Extractor and Dynamic Feature Extractor,
respectively.

DAM
Rank-1 Rank-5 Rank-10 Rank-20GFE DFE

✓ ✓ 71.4 83.2 86.8 89.5
✓ × 67.4 80.3 84.6 87.5
× ✓ 70.0 82.2 85.9 88.7

Analysis of DAM. To explore the contribution of the two
branches used for feature extraction, we design another two
models with only a single branch and conduct the experi-
ments on the real scenario dataset GREW. The results are
shown in Table 5. It can be observed that the models with
DFE achieve better performance than those without DFE.
This is because DFE can enable the model to focus on the
dynamic information of gait, which is helpful for recogni-
tion. It can be also observed that combining global fea-
tures and dynamic features can bring extra performance
gain. From the results, we can see that the accuracy of the
model combining both the DFE and GFE performs 4.0%
better than the model without DFE. This indicates using the
both branches to extract features can lead to more powerful
and discriminative representation ability.
Analysis of the number of DAMs. In this paper, we pro-
pose a novel dynamic feature extractor to generate discrim-
inative feature representations. The proposed dynamic fea-
ture extractor can be used to replace any layer of the net-
work. To explore the optimal number of DAMs, we design
the ablation studies by using different numbers of DAMs.
The ablation studies are built on GREW. Experimental re-
sults are shown in Table 6. It can be observed that higher
recognition accuracy can be obtained by using a larger num-
ber of DAMs. Thereby, the number of DAMs on the GREW
dataset is finally set to five.

5. Visualization
In this section, we visualize the feature distribution of the

models with DFE and withou DFE on CASIA-B dataset. As
shown in Figure 5, we can observe that the intra-class dis-
tance of the features is closer and the inter-class distance
is farther the DFE modules is added. The visualization
demonstrates that by introducing the DFE which extracts



Table 6: Rank-1 accuracy (%) of different DAM number.

DAM Rank-1 Rank-5 Rank-10 Rank-20

1 13.9 24.5 30.1 35.7
2 41.4 56.8 62.8 68.0
3 57.2 70.9 75.6 79.6
4 69.2 80.8 84.7 87.9
5 71.4 83.2 86.8 89.5

the dynamic information, more discriminative representa-
tion can be obtained and contribute to better inter-class and
intra-class distribution.

Furthermore, we visualize the heatmaps of the existing
methods and our DyGait. As shown in Figure 4, the meth-
ods [5, 12] fail to distinguish the differences between the
dynamic parts (e.g. legs and arms) and the static parts (e.g.
torso) during walking. Figure 4 (d) shows our DyGait pays
more attention to dynamic parts. This is because our DyGait
explicitly models the motion information by DAM, which
enhances the discriminativeness of moving parts.

6. Conclusion

In this paper, we propose a novel network to gener-
ate more discriminative representations for gait recognition.
The proposed DyGait includes both the Global Feature Ex-
tractor (GFE) and the Dynamic Feature Extractor (DFE)
modules. The model can extract not only spatial-temporal
features but also dynamic features from gait sequences. We
develop the feature extraction module based on dynamic
augmentation to generate augmented features. Taking the
dynamic feature extractor as an extra branch can effectively
enhance the discriminability of the global feature represen-
tation. The experiments on four popular datasets indicate
that the proposed method can achieve optimal performance.
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fan Hörmann, and Gerhard Rigoll. GaitGraph: Graph convo-
lutional network for skeleton-based gait recognition. arXiv
preprint arXiv:2101.11228, 2021.

[47] Torben Teepe, Ali Khan, Johannes Gilg, Fabian Herzog, Ste-
fan Hörmann, and Gerhard Rigoll. Gaitgraph: Graph con-
volutional network for skeleton-based gait recognition. In
ICIP. IEEE, 2021.

[48] Daksh Thapar, Gaurav Jaswal, Aditya Nigam, and Chetan
Arora. Gait metric learning siamese network exploiting dual
of spatio-temporal 3d-cnn intra and lstm based inter gait-
cycle-segment features. PRL, 2019.

[49] Senmao Tian, Shunli Zhang, and Beibei Lin. Blind image
deblurring based on dual attention network and 2d blur ker-
nel estimation. In ICIP, 2021.

[50] Chen Wang, Junping Zhang, Liang Wang, Jian Pu, and Xi-
aoru Yuan. Human identification using temporal information
preserving gait template. TPAMI, 2011.

[51] Guanshuo Wang, Yufeng Yuan, Xiong Chen, Jiwei Li, and Xi
Zhou. Learning discriminative features with multiple granu-
larities for person re-identification. In ACM MM, 2018.

[52] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Zhifeng Li,
Dihong Gong, Jingchao Zhou, and Wei Liu. CosFace: Large
margin cosine loss for deep face recognition. In CVPR, 2018.

[53] Ming Wang, Beibei Lin, Xianda Guo, Lincheng Li, Zheng
Zhu, Jiande Sun, Shunli Zhang, Yu Liu, and Xin Yu. Gait-
strip: Gait recognition via effective strip-based feature rep-
resentations and multi-level framework. In ACCV, 2022.

[54] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Per-
son transfer GAN to bridge domain gap for person re-
identification. In CVPR, 2018.

[55] Thomas Wolf, Mohammadreza Babaee, and Gerhard Rigoll.
Multi-view gait recognition using 3d convolutional neural
networks. In ICIP, 2016.

[56] Zifeng Wu, Yongzhen Huang, Liang Wang, Xiaogang Wang,
and Tieniu Tan. A comprehensive study on cross-view gait
based human identification with deep cnns. TPAMI, 2016.

[57] Qiqi Xiao, Hao Luo, and Chi Zhang. Margin sample min-
ing loss: A deep learning based method for person re-
identification. arXiv:1710.00478, 2017.

[58] Xianglei Xing, Kejun Wang, Tao Yan, and Zhuowen Lv.
Complete canonical correlation analysis with application to
multi-view gait recognition. PR, 2016.

[59] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning
face representation from scratch. arXiv:1411.7923, 2014.

[60] Shiqi Yu, Yongzhen Huang, Liang Wang, Yasushi Maki-
hara, Edel B Garcı́a Reyes, Feng Zheng, Md Atiqur Rah-
man Ahad, Beibei Lin, Yuchao Yang, Haijun Xiong, et al.



Hid 2021: Competition on human identification at a distance
2021. In IJCB, 2021.

[61] Shiqi Yu, Daoliang Tan, and Tieniu Tan. A framework for
evaluating the effect of view angle, clothing and carrying
condition on gait recognition. In ICPR, 2006.

[62] Weichen Yu, Hongyuan Yu, Yan Huang, Chunshui Cao, and
Liang Wang. Cntn: Cyclic noise-tolerant network for gait
recognition. ArXiv, 2022.

[63] Weichen Yu, Hongyuan Yu, Yan Huang, and Liang Wang.
Generalized inter-class loss for gait recognition. In ACM
MM, 2022.

[64] Cheng Zhang, Wu Liu, Huadong Ma, and Huiyuan Fu.
Siamese neural network based gait recognition for human
identification. In ICASSP, 2016.

[65] Xuan Zhang, Hao Luo, Xing Fan, Weilai Xiang, Yixiao Sun,
Qiqi Xiao, Wei Jiang, Chi Zhang, and Jian Sun. Aligne-
dReID: Surpassing human-level performance in person re-
identification. arXiv:1711.08184, 2017.

[66] Yuqi Zhang, Yongzhen Huang, Liang Wang, and Shiqi Yu.
A comprehensive study on gait biometrics using a joint cnn-
based method. PR, 2019.

[67] Yuqi Zhang, Yongzhen Huang, Shiqi Yu, and Liang Wang.
Cross-view gait recognition by discriminative feature learn-
ing. TIP, 2019.

[68] Ziyuan Zhang, Luan Tran, Feng Liu, and Xiaoming Liu. On
learning disentangled representations for gait recognition.
TPAMI, 2020.

[69] Jinkai Zheng, Xinchen Liu, Xiaoyan Gu, Yaoqi Sun, Chuang
Gan, Jiyong Zhang, Wu Liu, and Chenggang Yan. Gait
recognition in the wild with multi-hop temporal switch. In
ACM MM, 2022.

[70] Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Cheng-
gang Yan, and Tao Mei. Gait recognition in the wild with
dense 3d representations and a benchmark. In CVPR, 2022.

[71] Liang Zheng, Zhi Bie, Yifan Sun, Jingdong Wang, Chi Su,
Shengjin Wang, and Qi Tian. MARS: A video benchmark
for large-scale person re-identification. In ECCV, 2016.

[72] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In ICCV, 2015.

[73] Liang Zheng, Yi Yang, and Alexander G Haupt-
mann. Person re-identification: Past, present and future.
arXiv:1610.02984, 2016.

[74] Zhedong Zheng, Liang Zheng, and Yi Yang. Unlabeled sam-
ples generated by gan improve the person re-identification
baseline in vitro. In ICCV, 2017.

[75] Zheng Zhu, Xianda Guo, Tian Yang, Junjie Huang, Jiankang
Deng, Guan Huang, Dalong Du, Jiwen Lu, and Jie Zhou.
Gait recognition in the wild: A benchmark. In ICCV, 2021.


