
Augmenting and Aligning Snippets for Few-Shot Video Domain Adaptation

Yuecong Xu, Jianfei Yang, Yunjiao Zhou
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

50 Nanyang Avenue, Singapore 639798
{xuyu0014, yang0478, yunjiao001}@e.ntu.edu.sg

Zhenghua Chen, Min Wu, Xiaoli Li
Institute for Infocomm Research (I2R), A*STAR, Singapore

1 Fusionopolis Way, #21-01, Connexis South, Singapore 138632
{chen zhenghua, wumin}@i2r.a-star.edu.sg

Abstract

For video models to be transferred and applied seam-
lessly across video tasks in varied environments, Video Un-
supervised Domain Adaptation (VUDA) has been intro-
duced to improve the robustness and transferability of video
models. However, current VUDA methods rely on a vast
amount of high-quality unlabeled target data, which may
not be available in real-world cases. We thus consider
a more realistic Few-Shot Video-based Domain Adapta-
tion (FSVDA) scenario where we adapt video models with
only a few target video samples. While a few methods
have touched upon Few-Shot Domain Adaptation (FSDA)
in images and in FSVDA, they rely primarily on spatial
augmentation for target domain expansion with alignment
performed statistically at the instance level. However,
videos contain more knowledge in terms of rich tempo-
ral and semantic information, which should be fully con-
sidered while augmenting target domains and performing
alignment in FSVDA. We propose a novel SSA2lign to ad-
dress FSVDA at the snippet level, where the target domain
is expanded through a simple snippet-level augmentation
followed by the attentive alignment of snippets both se-
mantically and statistically, where semantic alignment of
snippets is conducted through multiple perspectives. Em-
pirical results demonstrate state-of-the-art performance of
SSA2lign across multiple cross-domain action recognition
benchmarks.

1. Introduction
Video Unsupervised Domain Adaptation (VUDA) [5, 8,

56, 49, 58] aims to improve the generalizability and robust-
ness of video models by transferring knowledge to new do-
mains, and is widely applied in scenarios where massive

labeled videos are unavailable. Current VUDA methods
assume that sufficient target data are accessible which en-
ables domain alignment by minimizing cross-domain distri-
bution discrepancies and obtaining domain invariant repre-
sentations [5, 8, 59]. However, this assumption may not be
feasible in real-world applications such as in smart hospitals
and security surveillance where video models are leveraged
for anomaly behavior recognition [35, 31], and are expected
to be functional at all times even across different environ-
ments. It is more practical to obtain a few labeled videos
during the early stage of model deployment to improve the
transferred models’ performances in the new (target) envi-
ronment. A Few-Shot Video Domain Adaptation (FSVDA)
task is hence formulated to enable knowledge learned from
labeled source video to be transferred to the target video
domain given only very limited labeled target videos.

With only several target domain samples, FSVDA is
much more challenging than VUDA, since aligning distri-
butions with limited samples is harder. A few research has
touched on the image-based Few-Shot Domain Adaptation
(FSDA) [26, 47, 54, 11] by domain alignment, e.g., mo-
ment matching or adversarial training, between a spatial-
augmented target domain and a filtered target-similar source
domain. More recently, there have been a few early research
on FSVDA [12, 13] which extends the above strategies to
videos by viewing each video sample as a whole and ob-
taining frame-based video features.

However, there are two major shortcomings when the
image-based FSDA is applied to video domains. Firstly, ap-
plying frame-level spatial augmentation towards individual
video frames ignores and undermines temporal correlation
across sequential frames, and we find that such augmenta-
tion would result in only minor or even negative effects on
FSVDA performance. Secondly, the effectiveness of do-
main alignment methods is built upon sufficient source do-
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main and target domain data that depicts the distribution
discrepancy, which is not available in FSVDA. Even worse,
statistical estimation of video data distribution is less accu-
rate due to the complicated temporal structure of video data.
In this paper, we aim to overcome these two challenges by
designing more effective target domain augmentation and
semantic alignment in the spatial-temporal domain.

To this end, we propose to address the FSVDA task
by a Snippet-attentive Semantic-statistical Alignment with
Stochastic Sampling Augmentation (SSA2lign). Instead of
aligning features of whole video samples at the video level
or frame level [12, 13], we align source and target video fea-
tures at the snippet level. Snippets are formed from a lim-
ited series of adjacent sequential frames, thus they contain
both spatial and short-term temporal information. Lever-
aging snippet features for FSVDA brings two unique ad-
vantages: i) a larger amount of target domain samples could
be obtained via spatial-temporal augmentations on snippets,
obtaining more diverse features across the temporal dimen-
sion; ii) additional alignment of the diverse but highly cor-
related snippet features of each video could further improve
the discriminability of the corresponding videos, which
has been proven to benefit the effectiveness of video do-
main adaptation [7, 64, 20, 58]. SSA2lign is therefore pro-
posed. It firstly augments the source and target domain data
by a simple yet effective stochastic sampling process that
makes full use of the abundance of snippet information and
then performs semantic alignment from three perspectives:
alignment based on semantic information within each snip-
pet, cross-snippets of each video, and across snippet-level
data distribution. Our method is demonstrated to be very ef-
fective for the FSVDA problem, outperforming the state-of-
the-art methods by a large margin on two large-scale VUDA
benchmarks.

In summary, our contributions are threefold. (i) We pro-
pose a novel SSA2lign to address FSVDA at the snippet
level by both statistical and semantic alignments that are
achieved from three perspectives. (ii) We propose to aug-
ment target domain data and the snippet-level alignments
by a simple yet effective stochastic sampling of snippets for
more robust video domain alignment. (iii) Extensive exper-
iments show the efficacy of SSA2lign, achieving a remark-
able average improvement of 13.1% and 4.2% over current
state-of-the-art FSDA/FSVDA methods on two large-scale
cross-domain action recognition benchmarks.

2. Related Work
(Video) Unsupervised Domain Adaptation ((V)UDA).
Current UDA and VUDA methods aim to transfer knowl-
edge from the source to the target domain given that both
domains contain sufficient data, improving the transferabil-
ity and robustness of models [55, 62]. They could be gen-
erally divided into four categories: a) reconstruction-based

methods [14, 61], where domain-invariant features are ob-
tained by encoders trained with data-reconstruction objec-
tives; b) adversarial-based methods [5, 56, 8], where feature
generators obtain domain-invariant features leveraging do-
main discriminators, trained jointly in an adversarial man-
ner [16, 10]; c) semantic-based methods [63, 58], which ex-
ploit the shared semantics across domains such that domain-
invariant features are obtained; and d) discrepancy-based
methods [32, 67], which mitigate domain shifts by apply-
ing metric learning, minimizing metrics such as MMD [24]
and CORAL [37]. With the introduction of cross-domain
video datasets such as Daily-DA [59] and Sports-DA [59],
there has been a significant increase in research interest for
VUDA [8, 27, 6]. Despite the gain in video model robust-
ness thanks to VUDA methods, they all assume that suffi-
cient target data are accessible, which may not be feasible
in real-world cases where a large amount of superior unla-
beled target data are not available.
Few-Shot (Video) Domain Adaptation (FS(V)DA). It is
more practical to obtain a few labeled target data to aid
video models to adapt. There have been a few research that
explores image-based FSDA. Among them, FADA [26] is
adversarial-based and augments the domain discriminator
to classify 4 types of source-target pairs. d-SNE [54] learns
a latent space through SNE [15] with large-margin nearest
neighborhood [9], and utilizes spatial augmentations to cre-
ate sibling target samples. AcroFOD [11] explores FSDA
for object detection by applying multi-level spatial aug-
mentation and filtering target-irrelevant source data. There
are also works as in [68, 40, 38, 65] that combine domain
adaptation (DA) with few-shot learning (FSL), yet we differ
them in the assumption of similar target and source classes
and only limited target data accessible, which is more real-
istic. More recently, there have been a few early research
on FSVDA, including PASTN [12] that constructs pairwise
adversarial networks performed across source-target video
pairs, while PTC [13] further leverages optical flow fea-
tures. Both PASTN and PTC obtain video features from
a frame-based video model. Despite some advances made
in FS(V)DA, the above methods have not tackled FSVDA
effectively by leveraging the rich temporal information as
well as semantic information embedded within videos. We
propose to engage in FSVDA by augmenting and attentively
aligning snippet-level features which contain temporal in-
formation via both semantic and statistical alignments.

3. Proposed Method
For Few-Shot Video Domain Adaptation, we are given a

labeled source domain DS = {(VS,i, yS,i)}NS
i=1 with suffi-

cient NS i.i.d. source videos across C classes, characterized
by a probability distribution of pS . We are also given a la-
beled target domainDT = {(VT,j , yT,j)}NT

j=1 with a limited
number of NT � NS i.i.d. target videos across the same C



classes, where each video class only contains k target video
samples (corresponding to the k-shot Video Domain Adap-
tation task), thus NT = k × C. DT is characterized by a
probability distribution of pT .

Owing to the absence of sufficient target data and the
lack of target information, FSVDA is much more challeng-
ing than VUDA. Current VUDA methods [5, 56] that are
primarily moment matching-based are ineffective without
target information for domain alignment. FSVDA should
be tackled by leveraging the temporal information of videos
fully for more temporally diverse features while aligning
with the embedded semantic information to improve video
discriminability for effective video domain adaptation. We
propose SSA2lign, a novel method to transfer knowledge
from the source domain to the target domain with only lim-
ited labeled target data by obtaining, augmenting, and align-
ing snippet features attentively. We start by introducing how
snippet features are obtained and augmented through the
Stochastic Sampling Augmentation (SSA), followed by a
detailed illustration of the proposed SSA2lign.

3.1. Snippet Features with the Stochastic Sampling
Augmentation

The key to effective target domain expansion and do-
main alignment in FSVDA is to obtain and augment fea-
tures with temporal information such that the augmented
features are diverse temporally. While various spatial aug-
mentation methods (e.g., color jittering, flipping, cropping)
have been adopted in supervised action recognition thanks
to their capability in improving the robustness of video
models, and in prior FSDA for expanding the target domain
DT , they are performed at the frame-level across randomly
selected individual frames. Meanwhile, the temporal infor-
mation corresponds to the correlation of sequential frames
and would be undermined by spatial augmentation since se-
quential frames may not be equally augmented. Augmenta-
tions for FSVDA must be performed above the frame level.

Snippets are formed from a limited series of adjacent
sequential frames and have been utilized in multiple su-
pervised action recognition methods (e.g., TSN [46] and
STPN [51]) thanks to their ability in including both spatial
and short-term temporal information. Therefore, we align
source and target video features at the snippet level. Math-
ematically, given a target video V = [f1, f2, ..., fn] that
contains n frames, we denote the i-th frame as f i. We de-
note the length of a snippet s to be m, then video V would
contain n − m + 1 snippets in total. We define a snippet
sj = [f j , f j+1, ..., f j+m−1] as the snippet starting from
the j-th frame. While given onlyNT = k×C target videos,
there areNT×(n−m+1) target snippets, which can greatly
expands the target domain for domain alignment while pre-
serving essential temporal information.

While the target domain is largely expanded, utilizing

all snippets for alignment is computationally inefficient (a
10-second 30-fps video contains more than 290 8-frame
snippets). Moreover, snippets that are obtained adjacently
would differ over only ONE frame, resulting in high redun-
dancy in temporal information. To ensure that diverse tem-
poral information is utilized, we adopt a simple Stochastic
Sampling Augmentation (SSA) over the snippets. Formally,
during training we sample r > 1 snippets sab stochastically
per target video per mini-batch, where a ∈ [1, n −m + 1]
denotes the starting frame of the snippet and b ∈ [1, r] de-
notes the b-th snippet sampled. SSA further ensures that the
sampled snippets are diverse from two perspectives. Firstly,
SSA samples snippets with a minimum of m̂ difference be-
tween the starting frame of any two snippets from the same
target video, that is ∀bx ∈ [1, r], by ∈ [1, r] with bx 6= by ,
we set |ax−ay| > m̂. Secondly, since there are much more
source videos than target videos during training, it is likely
that the same target video would be encountered across dif-
ferent mini-batches. SSA ensures that different snippets are
sampled each time the same target video is included in a
mini-batch across the same training epoch.

The SSA is also applied to the source videos to obtain
source snippets. However, since there are sufficient source
videos, it is more reasonable and efficient to exploit source
knowledge with different source videos rather than the dif-
ferent snippets of a source video that would contain redun-
dant source knowledge. Therefore, we only sample r = 1
snippet stochastically per source video via SSA.

Another crucial step towards transferring source knowl-
edge to the target domain is to obtain rigorous snippet fea-
tures that include both spatial and temporal information. We
resort to the Transformer-based TimeSFormer [2] which ex-
tracts spatial and temporal features with separate space-time
attention blocks based on self-attention [43]. While various
Transformer-based video models achieve competitive per-
formances on action recognition, TimeSFormer possesses
the least amount of parameters, requiring only 60% param-
eters of Swin [23] and only 40% parameters of ViViT [1].
The feature of snippet sab is fb = Time(sab ) where Time
denotes the TimeSFormer.

3.2. Snippet-attentive Semantic-statistical Align-
ment with SSA

With the absence of sufficient target data, conventional
VUDA methods that are primarily moment matching-based
would not be fully effective since target data distribution is
unknown. Alternatively, we tackle FSVDA at the snippet
level by aligning the embedded semantic information from
three perspectives: aligning based on the semantic informa-
tion within each snippet, cross-snippets of each video, and
across snippet-level data distribution. Statistical alignment
is also adopted for more stable domain alignment, while
both alignments attend to the more impactful snippets.
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Figure 1. Pipeline of SSA2lign. Source and target snippets are first obtained through the Stochastic Sampling Augmentation, whose
features are obtained through the shared feature extractor. SSA2lign then aligns the source and target domains at the snippet level with
the Semantic-statistical Alignment, while weighing the impact of different target snippets through snippet attention, whose weight is built
based on the output prediction of target snippets, obtained from a shared classifier with source snippets. The blue and orange lines imply
the data flow for source and target videos respectively.

Following the above strategy, we propose the Snippet-
attentive Semantic-statistical Alignment (SSAlign), with
the input obtained through SSA introduced in Sec. 3.1,
forming the SSA2lign. The overall pipeline of SSA2lign
is presented in Fig. 1. We obtain the augmented source and
target snippets through SSA whose features are extracted by
applying TimeSFormer. We denote a source snippet from
the i-th source video as sS,i and its feature as fS,i, while the
l-th target snippet (l ∈ [1, r]) from the j-th target video as
sT,jl and its feature as fT,jl. The superscript of the snip-
pet expression is omitted for clarity. Domain alignment is
achieved by performing both the Semantic Snippet Align-
ment and the Statistical Snippet Alignment. The snippet at-
tention is applied to the augmented target snippets to weigh
the snippets dynamically. The TimeSFormer feature extrac-
tor Time is shared across source and target domains while
a shared classifier H outputs a prediction o for the source
and target snippets, optimized through a cross-entropy loss:

Lpred =
1

NS

∑NS

i=1
lce(oS,i, yS,i)

+
1

NT × r
∑NT

j=1

∑r

l=1
lce(oT,jl, yT,j),

(1)

where oS,i = σ(H(fS,i)) and oT,jl = σ(H(fT,jl)) are the
output predictions of snippet features fS,i and fT,jl, while σ
denotes the SoftMax function.
Semantic Snippet Alignment. The purpose of applying
semantic alignment at the snippet level is to match the em-
bedded semantic information (e.g., each individual feature
or characteristic over a set of features) across source and
target domains. Since both domains share the same TimeS-
Former feature extractor, this implies that for each indi-
vidual snippet feature, those of the same class should be
close together across both domains. However, it is compu-
tationally expensive to compute the distances between each
source and target snippet features given their large quantity.
Inspired by the Prototypical Network [33, 22] designed for
few-shot learning [70, 45], we resort to a more efficient so-
lution where semantic alignment across each snippet is per-

formed by minimizing the distance between source snippet
features and target prototypes. The target prototypes are ob-
tained for each individual class Cx as the mean feature of
all target snippet features classified as Cx, formulated as:

Prx =
1

nT,x

∑
∀sT,jl∈Cx

fT,jl, (2)

where nT,x is the number of target snippets classified as
class Cx. For stable and effective alignment, the snippet
features for computing the target prototypes are obtained
after e training epochs. Target prototypes are subsequently
updated per epoch by their exponential moving average as:

Prx ← λPPrx + (1− λP )Pr′x, (3)
where Prx and Pr′x denote the target prototype of class
Cx computed at the current and previous epochs. Align-
ing source snippet features towards target prototypes is thus
achieved by minimizing the Euclidean distances between
them and denoted as the prototype alignment loss as:

Lproto =
1

NS

∑C

x=1

∑nS,x

i=1

√
(fS,i − Prx)2. (4)

nS,x is the number of source snippets classified as class Cx.
Besides the capability of obtaining temporally diverse

features via SSA, leveraging snippet features for FSVDA
is also more advantageous due to the inclusion of addi-
tional semantic information that exists across the diverse
but highly correlated snippet features obtained from the
same video, which should also be aligned. However, since
we aim to exploit more source information with different
source videos, the source cross-snippet semantic informa-
tion cannot be directly obtained. Alternatively, the cross-
temporal hypothesis introduced in [58] provides a thorough
description of the cross-snippet semantic information for
the source videos. Therefore, the equivalence of aligning
the cross-snippet semantic information across source and
target domains is to align the cross-snippet semantic infor-
mation of the target domain to the cross-temporal hypoth-
esis, that is the snippet features over the snippets obtained
from the same target video through SSA must be consistent.
Meanwhile, aligning the cross-temporal hypothesis would



also drive target videos to be discriminative, while previous
studies [7, 64, 20, 58] have proven that improving discrim-
inability can benefit the effectiveness of domain adaptation.

Formally, the cross-snippet consistency is achieved by
minimizing the Kullback–Leibler (KL) divergence of the
predictions of target snippets corresponding to the same tar-
get video. It is computed between each snippet against the
key snippet of each target video, which is identified such
that it is classified correctly and is certain in its prediction
(i.e., low prediction entropy). In cases where no snippets are
classified correctly, the snippet with the lowest prediction
entropy is identified as the key snippet. The cross-snippet
consistency loss is computed as:

Lcross = 1
NT (r−1)

NT∑
j=1

r∑
l=1,l 6=k

KL(log(oT,jy)‖ log(oT,jl)), (5)

whereKL(p‖q) denotes the KL-divergence while y denotes
y-th snippet corresponding to the target video VT,j identi-
fied as the key snippet.

Aligning semantically via matching the characteristics
over differed snippet features could be further performed
across the snippet-level data distribution. Since source
snippets for training are obtained stochastically at each
training epoch, semantic information embedded across the
source snippet-level data distribution changes continuously,
and would therefore be ineffective for the target snippet-
level data distribution to be directly aligned. Alternatively,
snippet features that are highly discriminative would im-
ply effective domain adaptation since it has been proven
that improving discriminability benefits domain adapta-
tion [7, 64, 20, 58]. We thus aim to drive the feature extrac-
tor towards obtaining snippet features that are distributed
more discriminatively. Specifically, results in model ro-
bustness [66] suggest that the discriminability of features
can be improved if the feature extractor behaves linearly
in-between training samples. The linear in-between behav-
ior can be complied by employing the interpolation consis-
tency training (ICT) technique [44] across both source and
target snippets, which encourages the linearly interpolated
features to produce a linearly interpolated prediction. For-
mally, given a pair of snippet features f∗, f∗′ , and their cor-
responding output predictions o∗, o∗′ , the ICT is conducted
with the following process and optimization loss:

f̃ = λvf∗ + (1− λv)f∗′ .

õ = λvo∗ + (1− λv)o∗′ .

LICT (∗, ∗′) = lce(σ(H(f̃)), õ),

(6)

where λv ∈ Beta(αv, αv) is the weight assigned to fT,j1l1

sampled from a Beta distribution with αv as the parame-
ter. We refer to previous works [21, 60] and set αv = 0.3.
f̃ and õ are the linearly interpolated features and the inter-
polated output predictions. In practice, we drive snippets
to comply with the linear in-between behaviour by forming
a single stochastic snippet pair for every snippet, forming

Algorithm 1 Training with SSA2lign for FSVDA
Input: DS = {(VS,i, yS,i)}

NS
i=1,DT = {(VT,j , yT,j)}

NT
i=1, NT � NS .

while Training do
Obtain r target snippets sT,jl from VT,j and one source snippet sS,i from
VS,i via SSA.
Obtain features fS,i, fT,jl, predictions oS,i, oT,jl.
Compute prediction loss as Eq. 1.
Obtain snippet attention as Eq. 9 and normalize. Update fT,jl to f ′T,jl.
if epoch > e then

Obtain target prototypes Prx as Eq. 2.-3.
Compute prototype alignment loss as Eq. 4.

end if
Compute cross-snippet consistency loss as Eq. 5.
Compute snippet distribution loss as Eq. 6-7.
Compute and optimize overall loss as Eq. 8.

end while
Output: Trained feature extractor Time and classifier H .

(NT×r+NS) snippet pairs. Aligning the snippet-level data
distribution with the linear in-between behavior is achieved
by optimizing the snippet distribution loss as:
Lsn−dist = 1

NT×r+NS

∑
∗,∗′∈{i∪jl} LICT (∗, ∗′). (7)

It is possible that a snippet pair will include two snippets
from the same target video. In such case, the correspond-
ing LICT across the snippet pair can be viewed as a low-
ordered cross-snippet consistency loss. This implies that
optimizing Lcross and Lsn−dist share the common goal of
improving feature discriminability for more effective video
domain adaptation.
Statistical Snippet Alignment. To improve the stability
of snippet-level alignment, we adopt a statistical alignment
strategy apart from the aforementioned semantic alignment
strategies. The statistical alignment is performed by mini-
mizing the snippet-level distribution discrepanciesLsn−stat
formulated as metrics such as MMD [24], CORAL [37],
and MDD [67]. Compared to the adversarial-based adapta-
tion strategy more commonly used in prior VUDA tasks [5,
56, 8], minimizing discrepancies does not require additional
network structures (e.g., domain classifiers), thus is more
stable. The MDD [67] metric is empirically selected. The
overall optimization loss function for FSVDA is therefore:
L = Lpred + λsem(Lproto + Lcross + Lsn−dist) + λstatLsn−stat, (8)

where λsem and λstat are the tradeoff hyper-parameters for
the semantic and statistical snippet alignment losses.
Snippet Attention. With multiple snippets leveraged per
target video for both semantic and statistical snippet align-
ments, it is unreasonable to leverage each snippet equally
since it is intuitive that the importance of each target snippet
is uneven. We thus propose a snippet attention to weigh the
impact of different target snippets on the domain alignment
dynamically. Intuitively, a snippet whose output prediction
is the most accurate, i.e., whose classification is closest to
its given ground truth, should be focused during alignment.
A simple yet effective expression of how accurate the snip-
pet’s output prediction is would be the inverse of the cross-
entropy loss. The snippet attention weights are therefore
built upon the inverse of the cross-entropy loss of the snip-
pet, along with a residual connection for more stable opti-



Methods Publication Daily-DA Sports-DA
H→A M→A KD→A A→H M→H KD→H H→M A→M KD→M M→KD H→KD A→KD Avg. KS→U S→U U→S KS→S U→KS S→KS Avg.

TSF - 37.859 32.584 31.110 44.583 57.083 45.833 36.500 30.000 34.500 61.656 58.897 75.724 45.527 91.657 91.069 76.368 77.737 87.768 85.118 84.953
TSF w/ T - 39.565 39.488 39.410 61.667 62.917 62.500 41.500 38.750 36.500 77.793 80.276 83.586 55.329 92.480 93.420 78.947 79.052 88.021 87.003 86.487
TRX CVPR-21 31.420 31.420 31.032 42.083 49.166 44.000 31.250 30.000 26.750 69.104 73.103 65.517 43.737 87.074 86.487 76.947 73.474 83.129 83.762 81.812
STRM CVPR-22 33.825 32.351 32.894 43.333 50.833 44.417 30.750 29.500 28.250 72.138 74.620 68.965 45.156 91.539 90.012 78.579 75.158 86.901 84.628 84.470
HyRSM CVPR-22 38.092 35.377 33.747 45.833 54.583 48.167 33.750 31.500 29.500 75.172 76.137 70.344 47.684 92.714 90.717 79.526 76.684 87.054 84.883 85.263
DANN ICML-15 37.471 39.721 38.557 65.417 61.667 55.833 43.750 41.250 42.000 73.655 79.173 83.173 55.139 93.067 92.127 79.211 81.316 85.525 88.634 86.647
MK-MMD ICML-15 35.299 42.746 35.609 64.167 63.333 56.667 44.000 41.750 36.500 76.690 81.931 79.862 54.879 92.597 93.420 80.737 77.842 84.760 88.124 86.247
MDD ICML-19 42.514 42.281 42.901 64.583 64.167 57.917 45.000 39.500 37.750 75.173 81.517 84.276 56.465 93.184 93.067 78.474 79.105 86.697 87.716 86.374
SAVA ECCV-20 39.178 41.660 41.738 63.333 63.333 60.000 42.750 41.500 39.250 77.517 81.242 80.690 56.016 93.302 91.540 79.263 80.474 87.614 87.512 86.617
ACAN TNNLS-22 43.832 43.755 43.677 65.417 66.667 66.250 45.750 43.000 40.750 82.483 84.966 84.414 59.247 95.770 96.710 80.158 80.263 88.327 88.583 88.302
FADA NeurIPS-17 39.100 42.126 32.351 46.250 58.750 47.500 37.250 30.750 35.250 77.241 81.103 77.517 50.432 93.655 93.655 76.947 78.316 88.736 86.086 86.233
d-SNE CVPR-19 41.583 44.065 38.014 67.083 65.417 61.667 44.500 43.250 41.000 78.759 82.759 83.448 57.629 95.417 94.830 81.105 82.316 89.755 83.509 87.822
SSA2lign - 52.133 52.211 51.746 78.333 75.417 74.583 47.750 46.750 48.250 84.690 86.483 89.655 65.667 98.589 98.237 87.263 88.105 92.966 93.017 93.029

Table 1. Results for 10-shot (k = 10) FSVDA on Daily-DA and Sports-DA.

Methods Publication Daily-DA Sports-DA
H→A M→A KD→A A→H M→H KD→H H→M A→M KD→M M→KD H→KD A→KD Avg. KS→U S→U U→S KS→S U→KS S→KS Avg.

TSF - 37.859 32.584 31.110 44.583 57.083 45.833 36.500 30.000 34.500 61.656 58.897 75.724 45.527 91.657 91.069 76.368 77.737 87.768 85.118 84.953
TSF w/ T - 40.186 40.031 37.083 60.043 60.043 52.960 34.750 36.000 33.250 79.448 66.207 69.103 50.759 91.892 93.302 78.736 78.315 87.971 86.799 86.169
TRX CVPR-21 32.794 30.260 28.987 39.425 47.446 40.349 29.000 27.750 24.750 69.545 63.032 55.882 40.768 86.531 86.955 76.342 70.946 81.827 80.411 80.502
STRM CVPR-22 35.318 32.512 30.979 40.150 47.494 39.300 27.250 26.250 26.500 72.489 62.580 57.777 41.550 91.003 90.017 77.844 73.494 86.378 82.140 83.479
HyRSM CVPR-22 39.065 35.088 31.061 42.736 52.098 43.740 31.000 29.250 28.000 75.646 63.889 58.598 44.181 92.166 90.769 79.122 75.272 86.251 81.713 84.215
DANN ICML-15 40.496 38.789 36.385 60.833 58.750 52.917 41.750 38.500 39.750 74.345 66.759 69.655 51.577 92.245 93.067 78.421 75.631 85.117 82.161 84.440
MK-MMD ICML-15 38.867 43.910 34.600 58.333 57.083 54.583 42.250 35.000 35.500 75.311 68.138 69.380 51.080 92.010 93.184 78.737 75.000 84.505 83.486 84.487
MDD ICML-19 41.893 42.669 38.402 61.250 62.500 55.417 43.250 40.000 38.500 75.724 68.552 70.896 53.254 92.715 92.597 79.105 79.790 86.544 83.588 85.723
SAVA ECCV-20 40.962 37.238 38.247 60.000 62.917 55.833 40.750 38.750 35.250 77.793 67.448 68.965 52.013 92.480 92.832 78.053 76.211 83.129 81.702 84.068
ACAN TNNLS-22 44.453 44.298 41.350 63.333 63.333 56.250 39.000 40.250 37.500 80.552 70.897 73.793 54.584 95.182 96.592 79.947 79.526 88.175 88.379 87.967
FADA NeurIPS-17 40.747 41.584 30.065 43.034 55.534 41.058 33.000 27.000 32.500 77.792 67.185 64.736 46.186 93.009 93.860 76.040 76.173 87.502 83.375 84.993
d-SNE CVPR-19 41.994 44.162 35.738 64.927 63.365 56.936 41.250 41.750 39.750 79.448 72.530 73.296 54.596 94.992 94.734 80.983 81.768 89.371 81.749 87.266
SSA2lign - 52.366 51.978 47.401 76.667 72.917 70.417 47.000 46.250 47.500 86.759 79.310 81.793 63.363 97.062 97.885 84.053 86.211 91.182 90.214 91.101

Table 2. Results for 5-shot (k = 5) FSVDA on Daily-DA and Sports-DA.

Methods Publication Daily-DA Sports-DA
H→A M→A KD→A A→H M→H KD→H H→M A→M KD→M M→KD H→KD A→KD Avg. KS→U S→U U→S KS→S U→KS S→KS Avg.

TSF - 37.859 32.584 31.110 44.583 57.083 45.833 36.500 30.000 34.500 61.656 58.897 75.724 45.527 91.657 91.069 76.368 77.737 87.768 85.118 84.953
TSF w/ T - 37.937 34.135 33.049 51.250 58.750 46.667 37.750 34.500 35.250 74.069 60.414 63.724 47.291 91.165 92.832 75.368 76.578 86.595 85.372 84.652
TRX CVPR-21 24.679 23.331 25.059 32.052 43.341 30.229 28.000 27.500 23.250 66.187 52.086 49.378 35.424 84.898 86.300 71.852 69.974 80.815 79.784 78.937
STRM CVPR-22 28.037 24.181 26.924 33.853 45.022 30.038 25.750 26.000 25.000 69.137 52.130 50.492 36.380 89.640 89.176 73.719 72.496 85.682 81.630 82.057
HyRSM CVPR-22 30.939 27.142 26.970 35.670 48.420 34.360 30.000 28.750 26.500 71.710 52.927 50.582 38.664 90.679 90.241 74.732 73.273 84.706 81.047 82.446
DANN ICML-15 30.566 28.627 34.057 53.750 51.667 42.083 39.750 37.250 33.000 73.655 52.966 64.276 45.137 91.637 91.422 72.895 76.895 84.709 82.545 83.350
MK-MMD ICML-15 29.403 32.506 31.963 54.583 55.417 44.167 38.500 37.000 33.750 72.000 56.000 63.035 45.694 90.717 91.070 74.684 74.211 85.830 84.047 83.426
MDD ICML-19 31.652 33.592 34.523 54.167 56.667 47.083 42.250 38.500 34.750 70.621 56.138 59.448 46.616 91.422 92.715 74.369 74.895 82.823 82.925 83.191
SAVA ECCV-20 31.031 33.436 32.971 50.833 58.333 42.917 40.500 39.750 37.750 72.138 55.724 62.069 46.454 89.307 92.832 73.211 73.842 81.753 80.377 81.887
ACAN TNNLS-22 38.635 35.609 35.299 55.000 61.667 46.667 38.250 38.750 35.750 76.276 59.311 62.621 48.653 93.750 96.240 75.368 77.052 85.658 87.105 85.862
FADA NeurIPS-17 33.881 34.136 25.565 35.523 53.232 31.256 32.500 27.000 32.750 73.861 57.150 57.908 41.230 91.353 93.126 71.829 75.042 86.750 82.508 83.435
d-SNE CVPR-19 36.263 37.859 32.131 59.195 60.914 50.006 40.500 41.000 38.500 76.293 64.298 62.934 49.991 93.896 94.492 76.440 77.111 87.857 81.049 85.141
SSA2lign - 44.831 46.780 45.306 68.750 70.833 62.083 46.750 46.500 45.000 79.724 65.793 71.586 57.828 96.592 97.415 80.053 80.947 88.940 89.755 88.950

Table 3. Results for 3-shot (k = 3) FSVDA on Daily-DA and Sports-DA.

mization, expressed as:

wjl = 1 +
1

lce(oT,jl, yj,T )
. (9)

The snippet attention weights are subsequently normalized
across the r snippets corresponding to the same target video,
expressed as wjl = wjl/

1
r

∑r
l′=1 wjl′ . The normalized

snippet attention weight wjl is then applied to the target
snippet features, forming the weighted target snippet fea-
tures by f ′T,jl = wjlfT,jl, which are then aligned with the
source domain through the semantic and statistical snippet
alignments by replacing the features fT,jl with f ′T,jl.
SSA2lign. Finally, we sum up our proposed SSA2lign in
Algorithm 1. The snippet features, SSA, and snippet at-
tention are leveraged only during training. During testing,
target video representations are obtained by uniform sam-
pling across the target testing videos, while the video fea-
tures and their output predictions are obtained by directly
applying the trained feature extractor and classifier to the
uniformly sampled target video representations.

4. Experiments
In this section, we evaluate our proposed SSA2lign

across two challenging cross-domain action recognition
benchmarks: Daily-DA and Sports-DA [59], which cover
a wide range of cross-domain scenarios. We present supe-
rior results on both benchmarks. Further, ablation studies
and analysis of SSA2lign are also presented to justify the
design of SSA2lign.

4.1. Experimental Settings

Daily-DA is a challenging dataset that has been lever-
aged in prior VUDA works [59, 58, 60]. It covers both
normal and low-illumination videos and is constructed
from four datasets: ARID (A) [57], HMDB51 (H) [19],
Moments-in-Time (M) [25], and Kinetics-600 (KD) [4].
HMDB51, Moments-in-Time, and Kinetics-600 are widely
used for action recognition benchmarking, while ARID is a
recent dark dataset, with videos shot under adverse illumi-
nation. Daily-DA contains 18,949 videos from 8 classes,
with 12 cross-domain action recognition tasks. Sports-
DA is a large-scale cross-domain video dataset, built from
UCF101 (U), Sports-1M (S) [17], and Kinetics-600 (KS),



with 40,718 videos from 23 action classes, and includes
6 cross-domain action recognition tasks. Refer to prior
FSDA/FSVDA works [12, 13, 11], we evaluate SSA2lign
on both benchmarks with k = (3, 5, 10) target videos per
action class (i.e., 3-shot, 5-shot and 10-shot VDA tasks).

For a fair comparison, all methods examined and ex-
periments conducted in this section adopt the TimeS-
Former [69] as the feature extractor, pre-trained on
Kinetics-400 [18]. All experiments are implemented with
the PyTorch [29] library. We set the length of snippets and
the number of snippets per target video via SSA empirically
as m = 8, r = 3. Hyper-parameters λsem, λstat and λP
are empirically set to 1.0, 1.0, and 0.6 and are fixed. More
specifications on benchmark details and network implemen-
tation are provided in the appendix.

4.2. Overall Results and Comparisons

We compare SSA2lign with state-of-the-art FSDA ap-
proaches, and prevailing UDA/VUDA and few-shot action
recognition (FSAR) approaches. These methods include:
FADA [26], d-SNE [54] designed for image-based FSDA;
DANN [10], MK-MMD [24], MDD [67], SAVA [8] and
ACAN [56], designed for UDA/VUDA; and TRX [30],
STRM [41], and HyRSM [50] proposed for FSAR. To adapt
the FSAR approaches for FSVDA, the source domain is
used for meta-training and the target domain is used for the
meta-testing, while target labels are available for optimizing
the cross-entropy loss to adapt UDA/VUDA approaches for
FSVDA. We also report the results of the source-only model
(denoted as TSF) by applying the model trained with only
source data directly to the target data; and the source with
few-shot target model (denoted as TSF w/ T) by optimizing
only the prediction loss Lpred for training. We report the
top-1 accuracy on the target domains, averaged on 5 differ-
ent settings of available target data randomly selected and
each with 5 runs (25 runs in total). Tables 1-3 show com-
parison of SSA2lign against the above methods.

Results in Tables 1-3 show that the novel SSA2lign
achieves the state-of-the-art results on all 18 cross-domain
action recognition tasks across both cross-domain bench-
marks, outperforming prior UDA/VUDA, FSDA or FSAR
approaches by noticeable margins. Notably, SSA2lign out-
performs all prior FSDA approaches originally designed for
image-based FSDA (i.e., FADA and d-SNE) consistently on
all tasks, by a relative average of 13% over the second-best
performances on Daily-DA (across 3 k-shot settings and 12
tasks), and a relative average of 4.2% on Sports-DA (across
3 k-shot settings and 6 tasks). The consistent improve-
ments justify empirically the effectiveness of augmenting
and aligning both semantic information and statistical dis-
tribution at the snippet level for FSVDA.

It is also observed that prior FSDA and UDA/VUDA
methods could not perform well on FSVDA tasks. No-
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Figure 2. Sensitivity of hyper-parameters on U→S task.

tably, even when k = 10 target videos are available per
class, all but one of the evaluated FSDA and UDA/VUDA
approaches result in performances inferior to that trained
with only Lpred without any adaptation (i.e., TSF w/ T).
Prior FSDA approaches do not incorporate temporal fea-
tures and their related semantic information, which are cru-
cial for tackling FSVDA, while UDA/VUDA methods are
not effective when target information is not fully available.
Negative improvements are more severe when k decreases.
It is also noted that at small k values (e.g., k = 3), the
performance of TSF w/ T could be inferior to that trained
without target data (i.e., TSF). This suggests that the few
target data could be outliers of the target domain, whose
distribution differs greatly from the other target data, result-
ing in a severe negative impact. Prior FSAR approaches
could not tackle FSVDA as well, producing even poorer re-
sults than all UDA/VUDA approaches examined. This can
be caused by domain shift that exists between data for the
meta-training and meta-testing. Feature extractors trained
via meta-training on the source domain could not be simply
applied to the meta-testing phase on the target domain.

4.3. Ablation Studies and Analysis

To gain a comprehensive understanding of SSA2lign and
justify its design, we perform extensive ablation studies
as in Tables 4-5. The ablation studies explore the effects
brought by its components, namely the semantic and sta-
tistical alignments, the SSA, and the snippet attention. It
further validates the alignment details by assessing against
5 variants: SSA2lign-CORAL and SSA2lign-MMD formu-
lateLsn−stat as CORAL [37] and MDD [67]; SSA2lign-FC
computes Lcross over all r × (r − 1) snippet pairs for the
same target video; SSA2lign-SP minimizes the distance be-
tween target snippet features and source class prototypes for
Lproto; SSAlign (w/ spatial aug.) augments target domain
through random spatial augmentation across the frames of
r snippets. The ablation studies are conducted on 5 tasks
over Daily-DA and Sports-DA. If SSA is not applied, we
sample r snippets sequentially from the 1st frame of each
target video and remain unchanged during training.
Semantic Alignment. As shown in Table 4, with only



Methods Components Daily-DA Sports-DA
k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

SSA Sn-Attn Lproto Lcross Lsn−dist Lsn−stat H→A M→A KD→A H→A M→A KD→A H→A M→A KD→A U→S KS→S U→S KS→S U→S KS→S
Avg.

TSF w/ T 39.565 39.488 39.410 40.186 40.031 37.083 37.937 34.135 33.049 78.947 79.052 78.736 78.315 75.368 76.578 53.859
3 41.660 41.971 42.048 42.824 42.281 38.247 38.790 36.385 35.221 81.053 81.210 80.789 80.421 75.894 77.210 55.734

SSA2lign

3 3 3 3 3 45.616 46.315 45.695 46.470 45.686 41.738 39.168 40.962 39.488 84.316 85.473 81.053 83.579 77.264 77.368 58.679
3 3 3 3 51.047 51.125 50.427 50.970 50.729 46.392 43.590 45.850 44.220 86.579 87.368 83.211 85.632 79.316 80.368 62.455
3 3 3 49.883 49.806 49.729 50.349 49.255 45.074 42.193 44.530 42.901 85.579 86.737 82.737 84.737 78.685 79.473 61.445
3 3 3 50.194 50.504 49.651 50.271 49.875 45.772 42.659 45.151 43.056 85.842 87.052 82.579 85.053 78.948 79.579 61.746
3 3 3 48.176 48.565 46.858 47.556 48.091 43.289 40.642 42.513 41.970 84.684 85.947 81.948 83.737 77.737 78.631 60.023
3 3 3 3 3 51.357 51.435 50.893 51.823 51.427 46.548 43.900 46.004 44.918 86.684 87.631 83.632 85.685 79.685 80.421 62.798
3 3 3 3 3 3 52.133 52.211 51.746 52.366 51.978 47.401 44.831 46.780 45.306 87.263 88.105 84.053 86.211 80.053 80.947 63.425

Table 4. Ablation studies of the components of SSA2lign on 5 cross-domain tasks over Daily-DA and Sports-DA.

Methods
Daily-DA Sports-DA

k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

H→A M→A KD→A H→A M→A KD→A H→A M→A KD→A U→S KS→S U→S KS→S U→S KS→S
Avg. ∆ Avg. GFLOPS ∆ GFLOPS

SSA2lign-CORAL 51.900 51.978 51.513 51.978 51.582 47.091 44.521 46.392 45.073 87.052 87.842 83.895 86.000 79.895 80.684 63.160 -0.265 1302 -8
SSA2lign-MMD 51.668 51.901 51.281 51.978 51.505 47.013 44.521 46.315 44.841 87.052 87.842 83.842 85.895 79.790 80.631 63.072 -0.353 1312 +2
SSA2lign-FC 52.831 52.909 52.367 52.987 52.358 47.556 45.296 47.245 45.306 87.158 88.263 84.527 86.685 79.790 81.263 63.769 +0.344 1472 +162
SSA2lign-SP 50.969 51.202 50.970 51.280 51.272 46.470 43.822 45.616 44.685 86.895 87.421 83.369 85.737 79.264 80.473 62.630 -0.795 1390 +80
SSAlign (w/ spatial aug.) 45.383 46.703 45.230 45.772 45.841 41.117 39.633 40.264 38.635 83.527 85.631 80.579 83.368 76.948 77.736 58.424 -5.001 1325 +15
SSA2lign 52.133 52.211 51.746 52.366 51.978 47.401 44.831 46.780 45.306 87.263 88.105 84.053 86.211 80.053 80.947 63.425 - 1310 -

Table 5. Ablation studies of the alignment details of SSA2lign on 5 cross-domain tasks over Daily-DA and Sports-DA.

(a) TSF w/ T (b) HyRSM (c) MDD (d) ACAN (d) SSA2lign

Figure 3. t-SNE visualizations of target features from (a) TSF w/T, (b) HyRSM, (c) MDD, (d) SSA2lign. Colors denote classes.

snippet-level semantic alignment (whether in full or any one
of the three perspectives), the performance still surpasses all
previous FSDA and UDA/VUDA methods compared. This
conforms to our motivation that applying semantic align-
ment could tackle FSVDA more effectively. Moreover,
statistical alignment and snippet attention further improve
SSA2lign, but only by a marginal degree.
Superiority of SSA. Notably, a significant performance
drop is observed when SSA is not applied, which proves the
importance of expanding target domain data through SSA
for subsequent alignment. The importance of SSA is further
verified when we apply SSA for training with augmented
snippets but without adaptation which shows a noticeable
gain compared to the original TSF w/ T. Further, the sig-
nificantly inferior performance of SSAlign (w/ spatial aug.)
as shown in Table 5 conforms with the motivation of SSA,
which aims for more effective target video domain augmen-
tation while spatial augmentation may undermine temporal
correlation across sequential frames.
Alignment Methods. Table 5 shows that while formulating
Lsn−stat as MDD [67] brings the best performance, select-
ing other metrics brings negligible impact. Further, com-
puting Lcross with all target snippet pairs only brings trivial
performance gain at a cost of significant computation over-
head (12% computation increase for 0.54% gain). Further,
matching target snippet features to source class prototypes
for Lproto results in a performance drop with more compu-
tation. The inferior performance could be due to outliers
in the source domain which could affect source class proto-
types, bringing in source noise that should not be aligned.
Hyper-parameter Sensitivity. We focus on studying the

sensitivity of λsem and λstat which control the strength of
the semantic and statistical snippet alignment losses, λP
which relates to the update of target prototypes and r the
number of snippets per target video. Without loss of gener-
ality, we fix λstat = 1.0 and study the ratio λsem :λstat in
the range of 0.1 to 1.5. λP is in the range of 0 to 1 which
corresponds to using only the initial prototypes or the up-
dated prototypes, and r is in the range of 1 to 9. As shown
in Fig. 2, SSA2lign is robust to ratio λsem : λstat and λP ,
falling within a margin of 0.683%, with the best results ob-
tained at the current default where λsem : λstat = 1.0 and
λP = 0.6. SSA2lign is also robust to r when r > 3, i.e.,
when there are multiple snippets obtained via SSA per tar-
get video. r = 3 is selected as significant computation over-
head would occur for r > 3 with marginal gain. Notably,
SSA2lign cannot perform when r < 3, especially when
r = 1 where the Lcross does not work and the target do-
main is not expanded.
Feature Visualization. We further understand the charac-
teristics of SSA2lign by plotting the t-SNE embeddings [42]
of target features with class information from the model
trained without adaptation (TSF w/T), HyRSM, MDD,
ACAN and SSA2lign for U→S with k = 10 in Fig. 3.
It is observed that target features from SSA2lign are more
clustered and discriminable, corresponding to better perfor-
mance. Such observation intuitively proves that video do-
main adaptation can be improved when feature extractors
possess stronger discriminability. However, SSA2lign is not
designed to deal explicitly with classes that could be similar
spatially or temporally, thus certain features observe lower
discriminability, which denotes future work.



5. Conclusion
In this work, we propose a novel SSA2lign to tackle the

challenging yet realistic Few-Shot Video Domain Adapta-
tion (FSVDA), where only limited labeled target data are
available. Without sufficient target data, SSA2lign tack-
les FSVDA at the snippet level via a simple SSA augmen-
tation and performing the semantic and statistical align-
ments attentively, where the semantic alignment is further
achieved from three perspectives based on semantic in-
formation within and across snippets. Extensive exper-
iments and detailed ablation studies across cross-domain
action recognition benchmarks validate the superiority of
SSA2lign in addressing FSVDA.

Appendix
This appendix presents more details of the pro-

posed Snippet-attentive Semantic-statistical Alignment with
Stochastic Sampling Augmentation (SSA2lign) and is orga-
nized as follows: first, we introduce the detailed implemen-
tation of SSA2lign with specific hyper-parameter settings,
supported by additional results of hyper-parameter sensi-
tivity analysis to show the robustness of SSA2lign. Sub-
sequently, we present details of the cross-domain action
recognition benchmarks for evaluating SSA2lign, including
Daily-DA and Sports-DA; lastly, we compare in detail our
SSA2lign with related but different FSDA and UDA/VUDA
methods to highlight our novelty.

Implementation Details

Brief Review of SSA2lign. In this work, we propose
the Snippet-attentive Semantic-statistical Alignment with
Stochastic Sampling Augmentation (SSA2lign) to address
Few-Shot Video Domain Adaptation (FSVDA) by augment-
ing the source and target domains and performing domain
alignment at the snippet level. SSA2lign firstly augments
the source and target domain data by a simple yet effective
stochastic sampling process that makes full use of the abun-
dance of snippet information and then performs semantic
alignment from three perspectives: alignment based on se-
mantic information within each snippet, cross-snippets of
each video, and across snippet-level data distribution. To
further improve the stability of snippet-level alignment, a
statistical alignment strategy is additionally adopted, while
snippet attention is proposed to weigh the impact of differ-
ent target snippets on the domain alignment dynamically.
In this section, we present the detailed implementation of
SSA2lign, whose pipeline is demonstrated in Fig. 4.
TimeSFormer as Feature Extractor. To obtain features
from snippets during training and videos during testing,
we instantiate the Transformer-based TimeSFormer [2] as
the feature extractor thanks to its capability in obtain-
ing features that include both spatial and temporal infor-

mation. TimeSFormer extracts spatial and temporal fea-
tures with separate space-time attention blocks based on
self-attention [43] and obtains very competitive results on
various action recognition benchmarks [2]. While other
Transformer-based video models, such as Swin [23] and
ViViT [1], also achieve competitive performances on ac-
tion recognition, TimeSFormer possesses the least amount
of parameters, requiring only 60% parameters of Swin and
only 40% parameters of ViViT. The final classifier is im-
plemented as a single fully connected layer. Both the fea-
ture extractor and the subsequent classifier are shared across
source and target data.
Training Details and Hyper-parameters. For train-
ing, we initialize the TimeSFormer feature extractor from
pre-trained weights obtained by pre-training on Kinetics-
400 [18]. For more efficient training, we freeze the first
8 blocks of TimeSFormer, leaving the last 4 blocks to be
fully trainable, with the learning rate set at 0.005. ll new
layers are trained from scratch, with their learning rates set
to be 10 times that of the pretrained-loaded trainable lay-
ers (blocks). For the tasks constructed from the Daily-DA
dataset [59], we train a total of 30 epochs, while we train
a total of 50 epochs for tasks constructed from the Sports-
DA dataset [59]. The stochastic gradient descent (SGD) al-
gorithm [3] is used for optimization, with the weight de-
cay set to 0.0001 and the momentum set to 0.9. During
the training phase of SSA2lign, the batch size is set to 24
input snippets per GPU, with 12 source snippets from 12
source videos and 12 target snippets from 4 target videos
(r = 3 by default). For a fair comparison, the batch size
is set to 24 input videos per GPU when training all com-
paring methods. All experiments are implemented with the
PyTorch [29] library and conducted on 2 NVIDIA A6000
GPUs. We set the length of snippets and the number of snip-
pets per target video via SSA empirically as m = 8, r = 3.
Hyper-parameters λsem = 1.0, λstat = 1.0 and λP = 0.6
are empirically set and are fixed. As shown in Section 4.3
and Fig. 2 of the paper, the performance of SSA2lign is
robust to hyper-parameters λsem, λstat and λP as well as
r when r > 3, with minimal variations and maintains the
best results with high computation efficiency with all the
default hyper-parameter settings. To further illustrate the
robustness of SSA2lign towards the sensitivity of λsem and
λstat which control the strength of the semantic and sta-
tistical snippet alignment losses, λP which relates to the
update of target prototypes and r the number of snippets
per target video, we present the additional results of hyper-
parameter sensitivity analysis under different experimental
settings. Specifically, we present the results of the U→S
task with k = 10, k = 5 (the same as presented in Fig. 2 of
the paper), and the results of the KS→S task with k = 10,
as shown in Fig. 5 of this appendix.

The additional results further justify that SSA2lign is ro-
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(a1) 𝜆𝑠𝑒𝑚: 𝜆𝑠𝑡𝑎𝑡 vs Top-1 on U→S (𝑘 = 10) (b1) 𝜆𝑃 vs Top-1 on U→S (𝑘 = 10) (c1) 𝑟 vs Top-1 on U→S (𝑘 = 10) (d1) 𝑟 vs FLOPS on U→S (𝑘 = 10)

(a2) 𝜆𝑠𝑒𝑚: 𝜆𝑠𝑡𝑎𝑡 vs Top-1 on U→S (𝑘 = 5) (b2) 𝜆𝑃 vs Top-1 on U→S (𝑘 = 5) (c2) 𝑟 vs Top-1 on U→S (𝑘 = 5) (d2) 𝑟 vs FLOPS on U→S (𝑘 = 5)

(a3) 𝜆𝑠𝑒𝑚: 𝜆𝑠𝑡𝑎𝑡 vs Top-1 on KS→S (𝑘 = 10) (b3) 𝜆𝑃 vs Top-1 on KS→S (𝑘 = 10) (c3) 𝑟 vs Top-1 on KS→S (𝑘 = 10) (d3) 𝑟 vs FLOPS on KS→S (𝑘 = 10)
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Figure 5. Hyper-parameter sensitivity on the U→S task with k = 10 (top), k = 5 (mid), and the KS→S task with k = 10 (bot).

bust to hyper-parameters λsem, λstat and λP as well as r
when r > 3 under all examined experimental settings, while
achieving the best results with high computation efficiency
with the default hyper-parameter settings.

Cross-domain Action Recognition Benchmarks

In this paper, to evaluate our proposed SSA2lign, we uti-
lized two cross-domain action recognition benchmarks: the
Daily-DA and Sports-DA [59]. In this section, we provide
more details on each benchmark.

Daily-DA

The Daily-DA dataset is a recently proposed cross-domain
action recognition dataset for VUDA [59]. It is more com-
prehensive and challenging compared to prior benchmarks
such as UCF-Olympic [36] and UCF-HMDBfull [5] which
have resulted in saturated performance due to limited do-
mains (only 2 domains in each dataset) and number of
videos per domain. Daily-DA includes videos of daily
actions from four domains and incorporates both normal
videos and low-illumination videos. Specifically, Daily-DA
is built from four datasets: the dark dataset ARID (A) [57],



Statistics Daily-DA Sports-DA
Video Classes # 8 23
Training Video # A:2,776 / H:560 / M:4,000 / KD:8,959 U:2,145 / S:14,754 / KS:19,104
Testing Video # A:1,289 / H:240 / M:400 / KD:725 U:851 / S:1,900 / KS:1,961

Table 6. Summary of cross-domain action recognition benchmarks statistics.

Class ID ARID Class HMDB51 Class Moments-in-Time Class Kinetics-600 Class

0 Drink drink drinking drinking shots
1 Jump jump jumping jumping bicycle, jumping into pool, jumping jacks
2 Pick pick picking picking fruit
3 Pour pour pouring pouring beer
4 Push push pushing pushing car, pushing cart, pushing wheelbarrow, pushing wheelchair
5 Run run running running on treadmill
6 Walk walk walking walking the dog, walking through snow
7 Wave wave waving waving hand

Table 7. List of action classes for Daily-DA.

Class ID UCF101 Class Sports-1M Class Kinetics-600 Class
0 Archery archery archery
1 Baseball Pitch baseball catching or throwing baseball, hitting baseball
2 Basketball Shooting basketball playing basketball, shooting basketball
3 Biking bicycle riding a bike
4 Bowling bowling bowling
5 Breaststroke breaststroke swimming breast stroke
6 Diving diving springboard diving
7 Fencing fencing fencing (sport)
8 Field Hockey Penalty field hockey playing field hockey
9 Floor Gymnastics floor (gymnastics) gymnastics tumbling

10 Golf Swing golf golf chipping, golf driving, golf putting
11 Horse Race horse racing riding or walking with horse
12 Kayaking kayaking canoeing or kayaking
13 Rock Climbing Indoor rock climbing rock climbing
14 Rope Climbing rope climbing climbing a rope
15 Skate Boarding skateboarding skateboarding
16 Skiing skiing skiing crosscountry, skiing mono
17 Sumo Wrestling sumo wrestling
18 Surfing surfing surfing water
19 Tai Chi t’ai chi ch’uan tai chi
20 Tennis Swing tennis playing tennis
21 Trampoline Jumping trampolining bouncing on trampoline
22 Volleyball Spiking volleyball playing volleyball

Table 8. List of action classes for Sports-DA.

as well as HMDB51 (H), Moments-in-Time (M) [25], and
Kinetics-600 (KD) [4], which are video datasets widely
used for action recognition benchmarking [28]. Compared
with other action recognition datasets such as Moments-in-
Time and Kinetics, ARID is comprised of videos shot un-
der adverse illumination conditions, characterized by low
brightness and low contrast. Statistically, the RGB mean
and standard deviation values (std) of videos in ARID are
much lower among datasets leveraged in Daily-DA [56],
which strongly suggests a larger domain shift between
ARID and the other action recognition datasets. The Daily-
DA includes a total of 16,295 training videos and 2,654
testing videos from 8 categories as listed in Table 6, with
each category corresponding to one or more categories in

the original datasets as demonstrated in Table 7.

Sports-DA

To further demonstrate the efficacy of our proposed
SSA2lign on large-scale cross-domain datasets, we further
adopt the Sports-DA dataset as another cross-domain ac-
tion recognition benchmark. Comparatively, Sports-DA
contains almost double the amount of training and test-
ing videos of Daily-DA. Specifically, it includes a total
of 36,003 training videos and 4,721 testing videos from
23 categories of sports actions, collected from three large-
scale datasets: UCF101 (U) [34], Sports-1M (S) [17], and
Kinetics-600 (KS) [4], as shown in Table 6. Similar to



Method Publication Task Techniques

d-SNE [54] CVPR-19

Few-Shot Domain Adaptation (FSDA):
source image data available with labels, a
few (very limited) target image data avail-
able with labels, image-based.

(a) d-SNE learns a latent domain-agnostic space through
SNE [15] with large-margin nearest neighborhood [9];
(b) d-SNE conducts FSDA in a min-max formulation
with a modified-Hausdorff distance; (c) d-SNE creates
sibling target samples with spatial augmentations, and
trains feature extractor with the Mean-Teacher tech-
nique [39].

PASTN [12] TIP-20

Few-Shot Video Domain Adaptation
(FSVDA): source video data available with
labels, a few (very limited) target video
data available with labels, video-based.

(a) PASTN obtains video features from a frame-based
video model; (b) PASTN forms source-target video pairs
to address insufficient target video data; (c) PASTN con-
structs pairwise adversarial networks performed across
source-target video pairs optimized by a pairwise mar-
gin discrimination loss [52].

DM-ADA [53] AAAI-20

Unsupervised Domain Adaptation (UDA):
source image data available with labels, suf-
ficient target images available without la-
bels, image-based.

(a) DM-ADA augments the target domain with the
source domain by domain mixup [66]; (b) DM-ADA im-
proves the feature extractor by leveraging soft domain
labels; (c) DM-ADA jointly trains a domain discrimina-
tor which judges the samples’ differences relative to the
two domains with refined scores.

ACAN [56] TNNLS-22

Video Unsupervised Domain Adaptation
(VUDA): source video data available with
labels, sufficient target videos available
without labels, video-based.

(a) ACAN applies adversarial-based domain adaptation
across spatio-temporal video features; (b) ACAN ad-
ditionally aligns video correlation features in the form
of long-range spatiotemporal dependencies [48]; (c)
ACAN further aligns the joint distribution of correlation
information of different domains by minimizing pixel
correlation discrepancy (PCD).

SSA2lign (Ours) -

Few-Shot Video Domain Adaptation
(FSVDA): source video data available with
labels, a few (very limited) target video
data available with labels, video-based.

(a) SSA2lign addresses FSVDA at the snippet level in-
stead of the frame or video-levels; (b) SSA2lign aug-
ments target domain data and the snippet-level align-
ments by a simple yet effective stochastic sampling of
snippets; (c) SSA2lign performs both semantic and sta-
tistical alignments attentively, with the semantic align-
ments achieved by alignment based on the semantic in-
formation within each snippet, cross-snippets of each
video, and across snippet-level data distribution.

Table 9. Detailed comparison of SSA2lign with related but different FS(V)DA and (V)UDA methods.

Daily-DA, each action class corresponds to one or more cat-
egories in the original datasets as presented in Table 8. With
more than 40,000 training and testing videos, the Sports-DA
benchmark is one of the largest cross-domain action recog-
nition benchmarks introduced.

Detailed Comparison with Related FS(V)DA and
(V)UDA Methods

In this paper, we proposed SSA2lign to address the
more realistic and challenging FSVDA task, which achieves
state-of-the-art performances with outstanding improve-
ments on both cross-domain action recognition benchmarks
(average 13.1% on Daily-DA tasks and average 4.2% on
Sports-DA tasks). To further highlight the novelty of
SSA2lign, we compare our proposed SSA2lign with prior
FSDA/FSVDA and UDA/VUDA methods. Specifically, we
compare with d-SNE [54] proposed for FSDA, PASTN [12]
designed for FSVDA, ACAN [56] introduced for ACAN,
and DM-ADA [53] which is an image-based UDA method
that leverages MixUp [66]. These methods are all compared

from two perspectives: the tasks they tackle and the tech-
niques leveraged, as displayed in Table 9.
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