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Abstract

With the explosive growth of web videos and emerg-
ing large-scale vision-language pre-training models, e.g.,
CLIP, retrieving videos of interest with text instructions has
attracted increasing attention. A common practice is to
transfer text-video pairs to the same embedding space and
craft cross-modal interactions with certain entities in spe-
cific granularities for semantic correspondence. Unfortu-
nately, the intrinsic uncertainties of optimal entity combina-
tions in appropriate granularities for cross-modal queries
are understudied, which is especially critical for modalities
with hierarchical semantics, e.g., video, text, etc. In this
paper, we propose an Uncertainty-Adaptive Text-Video Re-
trieval approach, termed UATVR, which models each look-
up as a distribution matching procedure. Concretely, we
add additional learnable tokens in the encoders to adap-
tively aggregate multi-grained semantics for flexible high-
level reasoning. In the refined embedding space, we rep-
resent text-video pairs as probabilistic distributions where
prototypes are sampled for matching evaluation. Com-
prehensive experiments on four benchmarks justify the su-
periority of our UATVR, which achieves new state-of-the-
art results on MSR-VTT (50.8%), VATEX (64.5%), MSVD
(49.7%), and DiDeMo (45.8%). The code is available at
https://github.com/bofang98/UATVR.

1. Introduction

With surging portable filming devices and emerging
video media platforms, searching videos of interest with
human instructions, typically as texts, has been a part of
daily lives, which urgently requires effective and robust
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Figure 1. Motivation. A video has numerous descriptions con-
taining different level information, (a) which shows inconsistent
text-video correspondences in the common embedding space. The
former three frames depict a ‘celebrate’ action, while the last three
frames are about a ‘touchdown’. This video diversity thus makes
the optimal text-video matching in uncertain granularities, which
we call an uncertain matching problem. Moreover, previous deter-
ministic works can only handle one-to-one text-video mappings,
yet a realistic relationship between two modalities is one-to-many.
(b) The above problems motivate our uncertainty-adaptive model
through distribution matching procedures.

text-video retrieval (TVR) techniques. Given a query text
(video), TVR aims to find the most relevant video (text) in
the database, which is typically overwhelmed with sophisti-
cated vague semantic combinations varying with hierarchi-
cal text structures or spatiotemporal video spans.

Recent breakthroughs in the large-scale image and/or
text pre-training [48, 22, 61] benefit TVR significantly. A
serial of seminal works employ a separated encoder archi-
tecture to respectively project texts and videos into a pre-
trained joint embedding space for compact cross-modal in-
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teraction [30, 4, 39, 31].
Since a video inherently contains information beyond

texts, simply pooling all frames as a whole video expres-
sion brings distraction during matching specific text enti-
ties [39, 17]. Therefore, inspired by fine-grained image-
text pre-training, e.g., FILIP [59] and ALBEF [32], multi-
grained TVR paradigms are introduced to build multi-level
cross-modal interactions with sentence-frame level [20, 34],
word-frame level [52], or hierarchical correspondences in-
cluding phrase-clip level [43, 25]. However, these methods
are still far from satisfying in handling the intrinsic uncer-
tainties of determining the optimal entity combinations with
appropriate granularities during text-video matching.

In Fig. 1, we illustrate the uncertain matching problem
in TVR. Since different frame/word combinations can plau-
sibly correspond to semantics in various perspectives, given
the same video, successful retrieval can achieve in varying
granularities involving discrepant text-video entities, i.e.,
video-sentence matching, frame-sentence matching, frame-
word matching, etc. Previous works determine particular
cross-modal mapping strategies in certain granularities, yet
none have studied the intrinsic uncertainties of optimal text-
video entity combinations. Besides, existing deterministic
cross-modal retrieval can only handle one-to-one mapping
scenarios [12]. However, a video can be described by mul-
tiple sentences typically (and vice versa), which formulates
realistic one-to-many relationships.

In this paper, we propose a novel TVR framework
to tackle the uncertainty problem in cross-modal match-
ing, termed Uncertainty-Adaptive Text-Video Retrieval
(UATVR). Generally, UATVR models each text-video
lookup as a distribution matching procedure in comple-
mentary deterministic and probabilistic views. It is mate-
rialized upon word-frame token-wise interactions and con-
sists of a dynamic semantic adaptation (DSA) module and
a distribution-based uncertainty adaptation (DUA) module.

Concretely, DSA module enhances token-wise matching
by introducing additional learnable multi-class tokens. We
find these simple-yet-effective tokens can adaptively aggre-
gate multi-grained video (or text) semantics during match-
ing, thus allowing for flexible high-level reasoning. For
DUA, we represent samples from each modality as distribu-
tions rather than feature points and convert the deterministic
matching process to probabilistic distribution alignment. To
simulate one-to-many text-video mappings, we pull proba-
bilistic embeddings sampled from each distribution closer
via multi-instance contrastive loss [41].

Our contributions can be summarized as (i) We innova-
tively model video and text representations as probabilis-
tic distributions and align them through multiple-instance
contrast in their common embedding space for uncertainty-
adaptive cross-modal matching. (ii) We propose a simple-
yet-effective technique for flexible high-level reasoning by

adding additional learnable tokens, allowing deterministic
semantic uncertainty adaptation in videos/texts. (iii) Com-
prehensive experimental explorations demonstrate the supe-
riority of our UATVR, which obtains state-of-the-art results
across public TVR benchmarks including MSR-VTT [57],
MSVD [56], VATEX [54], and DiDeMo [1].

2. Related Work
Vision-Language Pre-training. Cross-modal vision lan-
guage understanding [51, 8] is a challenging task for both
computer vision and natural language processing communi-
ties. Recent breakthroughs are large-scale image-text con-
trastive pre-training, which employs a contrastive loss to
jointly align image-text semantics into a unified embed-
ding space, on more than 100M samples [48, 22]. Vision-
language pre-training with this paradigm [61, 60, 32, 33,
6] has significantly boosted numerous cross-modal tasks
such as VQA [2], image captioning [58], text-image re-
trieval [27], etc. For the video counterparts, large-scale
video caption datasets, e.g., HowTo100M [42] and Web-
Vid2M [4], also boost promising cross-modal video un-
derstanding. However, due to the high cost of collecting
wild videos and huge computing resources requirement, we
bootstrap from CLIP like [39, 47] for text-video retrieval.
Text-Video Retrieval is to find the most semantic-relevant
video given a text query (text → video). Early research de-
votes to distilling knowledge from “expert” models based
on offline-extracted single-modality features [17, 35, 53, 9,
15, 38]. Recent dominant TVR benefits from end-to-end
pre-training on large-scale text-video datasets [42, 4, 41].
Strategies that can improve training efficiency are essen-
tial for end-to-end paradigms like ClipBERT [30] and
Frozen [4]. In TMVM [34], masked-based prototypes for
aggregating video features are proposed, which play a sim-
ilar role to our DSA tokens. However, only visual RGB
frames are modeled in TMVM, ignoring the hierarchical at-
tributes in the textual counterpart.

Another idea of TVR transfers knowledge from pub-
licly available CLIP models pre-trained on large-scale text-
image pairs and then align text-video modalities with chore-
ographed mapping strategies [39, 62, 20, 40, 18, 16, 10, 24,
26]. Considering the discrepancy problem that videos al-
ways express more information than texts can capture [20],
subsequent works devote to crafting cross-modal interac-
tions with certain entities in specific granularities, e.g.,
sentence-frame level [20, 34], word-frame level [52], and
hierarchical level interactions [43, 25, 55]. TS2-Net [37]
selects top-k informative tokens per frame, representing
salient semantics, for frame-wise cross-modal matching. It
is been designed upon a more fine-grained level. Yet none
above have studied the intrinsic uncertainties of optimal en-
tity combinations in appropriate granularities, which moti-
vates our uncertainty-adaptive matching model.



Probabilistic Representations. The probabilistic theory
has a long history in machine learning [44]. For the vi-
sion domain, HIB [45] first introduces probabilistic embed-
dings to capture the uncertainty of image representations
whilst handling the one-to-many correspondences for deep
metric learning. Moreover, they have also been success-
fully applied to other tasks like face recognition [49, 7],
pose estimation [50], etc. PCME [12] employs probabilis-
tic embeddings for text-image retrieval to perform one-to-
many matching between the multiplicity of visual concepts,
which inspires us to expand them to videos, as videos typ-
ically contain more complex semantic concepts for their
temporal dynamics. Moreover, we find that soft contrastive
loss [45] used in PCME is sub-optimal for text-video mod-
elling. Instead, we introduce multi-instance contrast for a
more appropriate one-to-many relation simulating. From
this, our uncertainty-adaptive matching model tackles the
uncertain matching problem and remarkably surpasses pre-
vious methods.

3. Method
In this section, we first introduce our token-wise word-

frame matching baseline. Then we propose two essential
modules of UATVR, e.g., dynamic semantic adaptation and
adaptive distribution matching, for tackling the uncertainty
problem in text-video retrieval.

3.1. Preliminary

Problem Definition. TVR aims to learn a similarity cal-
culation function s(·), which ought to maximize the similar-
ity score of positive cross-modal samples and assign lower
similarity for irrelevant pairs. Formally, given a pair of text
ti ∈ RN+1 and video vi ∈ RM×3×H×W , we formulate
them as collections of N words and M frames with ti =
[w0

i , w
1
i , w

2
i , · · · , wN

i ]T , vi = [f1
i , f

2
i , · · · , fM

i ]T , where
w0

i represents the [CLS] token and H × W denotes the
resolution. We feed ti and vi into a text encoder and a video
encoder respectively to get their corresponding embeddings
ti = [w0

i ,w
1
i , · · · ,wN

i ]T and vi = [f1i , f
2
i , · · · , fMi ]T . The

frame embedding fmi comes from the distinct [CLS] to-
ken from the transformer-based vision encoder for the mth
frame. Normally, we represent the whole video by average
pooling all frame embeddings in Eq. 1 and represent the
sentence with the first [CLS] token feature w0

i in Eq. 2.
The similarity of the text-video is calculated as the inner
production of ti,vi, c.f. Eq. 3.

vi = meanPool([f1i , f
2
i , · · · , fMi ]T ), (1)

ti = w0
i , (2)

s(ti,vi) = ⟨ti,vi⟩. (3)

In training, a common optimizing method is to use
a symmetric cross-entropy loss in both text-to-video and
video-to-text directions. Given a batch of B text-video
pairs, the model updates its parameters by maximizing the
sum of the main diagonal of a B ×B similarity matrix:

Lt2v = − 1

B

B∑
i

log
exp(s(ti,vi))∑B
j=1 exp(s(ti,vj))

, (4)

Lv2t = − 1

B

B∑
i

log
exp(s(vi, ti))∑B
j=1 exp(s(vi, tj))

, (5)

L = Lt2v + Lv2t. (6)

Fine-grained Interactions. Before the late cross-modal
fusion, the key point lies in how to extract accurate video in-
formation best described by corresponding textual queries.
The naive method pools all frame embeddings equally [39]
yet ignores the discrepancy problem that a video contains
more information than a single caption can depict [20]. Re-
cent work attempts to ameliorate the above problem by de-
voting to constructing multi-grained cross-modal interac-
tions, including sentence-frame [20, 34], word-frame [52],
or multiple hierarchical interactions [43, 40]. In this paper,
we take the token-wise word-frame matching paradigm as a
solid baseline due to its successful application in image-text
pre-training [59] and strong TVR performance [52]. The
text-video similarity thus comes from the mean of the max-
imum similarities between each frame with all word-level
embeddings in bi-directions, formulated as:

s(ti,vi) =
1

2

(
N∑

n=1

M
max
m=1

⟨wn
i , f

m
i ⟩+

M∑
m=1

N
max
n=1

⟨wn
i , f

m
i ⟩

)
,

(7)
where M,N denote frame and word number in the ith sam-
ple pair. wn

i , f
m
i , which are channel-wise normalized be-

fore calculating, refer to the nth word embedding and mth
frame embedding, respectively. Eq.7 would produce larger
similarity sums for longer video and text input. Therefore,
an average operation is attached before addition.

3.2. Dynamic Semantic Adaptation

To a certain extent, vanila token-wise matching brings
more accurate text-video correspondences. However, fine-
grained TVR interaction in a deterministic matching granu-
larity does not consider the uncertain matching problem. To
tackle the problem, we introduce multiple additional learn-
able tokens to dynamically aggregate multi-level video and
text information while retaining the advance of local context
matching in the token-wise baseline, c.f. Fig. 2.

Given sequential frame embeddings {fmi }Mm=1 and word
embeddings {wn

i }Nn=1 extracted from backbone encoders,
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Figure 2. UATVR pipeline. We concatenate numerous extra learnable tokens with sequential frame/word embeddings and feed them into a
lightweight SeqTransf [39] for adaptive token-wise matching. Besides, we model all visual and textual tokens as probabilistic distributions
and sample k probabilistic embeddings from each distribution with gradient propagating to construct multi-instance contrasts in a batch.

we append additional Cv and Ct learnable multi-class to-
kens respectively at the sequences’ beginning (or end). The
extra class tokens are randomly initialized and the position
embeddings are omitted for brevity in Fig. 2. Then we feed
the enlarged (M + Cv) frame embeddings set into another
lightweight sequential Transformer (following the same se-
qTransf structure in [39]) to further model relations between
learnable tokens and frames depending on the correspond-
ing text queries. We adopt the same operation symmetri-
cally for the (N + Ct) word embeddings. All enlarged
frame and word embeddings are channel-wise normalized
before similarity calculation. Similar to token-wise interac-
tions, we finally calculate our modified text-video similar-
ity function upon the union of frame/word tokens and extra
learnable class tokens, formulated as:

s =
1

2

(
N+Ct∑
n=1

M+Cv
max
m=1

⟨wn
i , f

m
i ⟩+

M+Cv∑
m=1

N+Ct
max
n=1

⟨wn
i , f

m
i ⟩

)
.

(8)

We define our dynamic semantic adaption loss LDSA

in the same formulation as Eq. 4,5,6, in which the modi-
fied similarity function in Eq. 8 is employed for text-video
cross-modal matching. The additional semantic-aggregated
tokens introduce negligible parameters and training over-
head, Tab. 2, which is entirely simple yet effective. We give
a deep analysis of DSA tokens in Sec. 4.2 and appendix,
emphatically interpreting their working mechanisms.

3.3. Adaptive Distribution Matching

Since deterministic methods can only handle one-to-
one mapping scenarios [12], videos typically have mul-
tiple descriptions, formulating realistic one-to-many text-
video relationships instead. We propose adaptive distribu-
tion matching for probabilistic TVR to tackle the inherent
inconsistency in text-video distributions, c.f . Fig. 2.

Let ti, vi denote the output of each backbone. We rep-
resent the text caption ti and the video vi as normal distri-
butions p(z|ti) and p(z|vi) with mean vectors and diagonal
covariance matrices in RD, respectively:

p(z|ti) ∼ N (hµ
T (ti),diag(h

σ
T (ti))),

p(z|vi) ∼ N (hµ
V(vi),diag(h

σ
V(vi))),

(9)

where head module hµ is a fully-connected layer followed
by LayerNorm [3] and l2 normalization, and head hσ is a
separate fully-connected layer without any normalization
following [12]. The textual head hT and visual head hV
share the same parametric structure but optimize indepen-
dently upon transformer-based feature output. Next, two
groups of K probabilistic embeddings {t(1)i , · · · , t(K)

i } iid∼
p(z|ti) and {v(1)

i , · · · ,v(K)
i } iid∼ p(z|vi) are generated by

sampling from the distributions of ti and vi with gradi-
ent propagating. To enable stable training, we use the
reparametrization trick [29] during the generation, formu-



lated as follows:

t
(k)
i = σ(ti) · ϵk + µ(ti),

v
(k)
i = σ(vi) · ϵk + µ(vi),

(10)

where ϵ(k)
iid∼ N (0, I) and µ, σ denote the mean and the

standard deviation of p(z|ti), p(z|vi).
Unlike previous methods [45, 12] using soft contrastive

loss (a binary classification loss based on the softmax cross-
entropy) via Monte-Carlo estimation for distribution align-
ment, we treat all probabilistic embeddings from a matched
text-video pair as positive samples to simulate one-to-many
cross-modal matching. We update the model with a Multi-
Instance InfoNCE [41] loss, and the training target is to
minimize the distance between video (text) probabilistic
embeddings and all corresponding text (video) embeddings.
Further comparisons are made in the appendix. Given a spe-
cific textual probabilistic embedding ti ∈ {t(k)i }Kk=1, we
define the positive set Pi for ti as all video probabilistic em-
beddings from vi, formulated as Pi = {v(k)

i }Kk=1. The neg-
ative set thus is formed as probabilistic embeddings from
other videos in the batch, P̃i = {v(k)

j }j,k, j ̸= i. We define
the distribution-based uncertainty adaptation loss as:

LDUA = − 1

B

B∑
i

log

∑
vi∈Pi

exp(s(ti,vi))∑
vj∈{Pi∪P̃i} exp(s(ti,vj))

. (11)

3.4. Total Objectives

Following [45], we introduce additional KL divergence
loss between the distributions and the unit Gaussian prior
N (0, I) to constraint the learned variances from collapsing
to zero, which can be formulated as:

LKL = KL(p(z|ti),N (0, I)) + KL(p(z|vi),N (0, I)).
(12)

Therefore, the total objectives can be defined as:

L = LDSA + α · LDUA + β · LKL, (13)

where α and β control the trade-off among three terms.

4. Experiments
We first describe the experimental settings. Then thor-

ough ablation studies are conducted to demonstrate the ef-
fectiveness of our proposed UATVR. Finally, we make com-
parisons of our model to existing state-of-the-art methods
on various TVR benchmarks.

4.1. Experimental Settings

Datasets. Experiments are conducted on 4 common video-
text retrieval benchmarks: (a) MSR-VTT [57] contains

Methods R@1 R@5 R@10 MdR↓ MnR↓
CLIP4Clip [39] 47.1 74.1 81.8 2.0 14.9
TI (Token-Wise) 48.4 74.2 83.3 2.0 14.1
+ DSA 49.6 75.5 84.9 2.0 12.5
+ DUA† 50.1 75.8 84.6 1.5 12.8
+ KL† (UATVR) 50.8 76.3 85.5 1.0 12.4
+ DUA* 50.0 75.8 83.9 1.5 12.9
+ KL* 50.6 75.9 84.9 1.0 12.8

Table 1. Ablation study of different components. † denotes the im-
plementation with MIL-NCE contrast and * is implemented with
soft contrastive loss via Monte-Carlo estimation [45].

Methods Time Complexity Params Time
CLIP4Clip [39] O(B2) 162.3M 75.04h
TI (Token-Wise) O(B2MN) 162.8M 82.00h
w/ DSA O(B2M ′N ′) 162.8M 82.24h
w/ DUA O(B2(M ′N ′ +K2)) 164.9M 84.08h

Table 2. Comparisons of different components. B denotes sample
size. M,N denote the length of frame tokens and text tokens resp.
M ′, N ′ are slightly enlarged with additional learnable tokens. K
is the number of probabilistic embeddings. Training time denotes
GPU hours calculated by a single P40 card.

10K video clips in total with 20 captions for each. Follow-
ing the data splits from [17, 42, 39], we train models on the
Training-9K set with corresponding captions and report
results on the test 1K-A set. (b) MSVD [56] includes
1,970 videos and 80K captions, with ∼40 captions on av-
erage per video. Train, validation, and test set have 1,200,
100, and 670 videos respectively. (c) DiDeMo [1] contains
10K videos paired with 40K descriptions. Following previ-
ous [39, 4, 30], we concatenate all descriptions of one video
to a single query. (d) VATEX [54] collects ∼35K videos
with multiple annotations for each. There are ∼26K videos
for training, 1,500 for validating, and 1,500 for testing.
Evaluation Metrics. For brevity, we abbreviate Recall at K
to R@K (K = 1, 5, 10) upon all datasets, which calculates
the percentage of correct videos among the top K retrieved
videos given textual queries (Text→Video, and vice versa).
MdR, Median Rank, calculates the median of the ground
truth in the retrieval ranking list. MnR, Mean Rank, cal-
culates the mean rank of the correct results in the retrieval
ranking list. Note that for MdR and MnR, the lower score
means the better (indicated as ↓).
Implementation Details. We initialize our visual and lan-
guage backbone with CLIP [48] pre-trained weight. Fol-
lowing [39], we further use a four-layer lightweight sequen-
tial transformer to encode extra learnable class tokens with
frame and word embeddings. In ablations, we take ViT/B-
16 by default. The textual token length is 32 and the frame
length is 12 for all datasets except DiDeMo (64 max query
words and 64 frames). A uniform frame sampling strat-



Figure 3. Uncertainty level versus R@1 on MSR-VTT dataset.
(Left) Results on ViT-B/32. (Right) Results on ViT-B/16.

Extra-Tokens # R@1 R@5 R@10 MdR↓ MnR↓
baseline 0 48.4 74.2 83.3 2.0 14.1

1 48.9 75.3 84.6 2.0 12.3
2 49.6 75.5 84.6 2.0 12.5

Cv 3 49.6 75.7 84.6 2.0 11.9
(Ct = 0) 4 49.3 75.2 84.2 2.0 12.4

8 48.8 75.2 84.7 2.0 12.5
12 49.2 75.4 84.2 2.0 12.4

Ct 2 49.6 75.5 84.9 2.0 12.5
(Cv = 3) 4 49.1 75.4 84.4 2.0 13.3

Table 3. Ablation study for the number of extra learnable tokens.

egy with one frame per second sampling rate is employed.
The dimension of video (text) distributions is 512 by de-
fault. Following [39, 20, 37], we train UATVR model for 5
epochs with Adam [28] optimizer and adopt a warmup [21]
strategy. We set the batch size as 64 and the initial learning
rate as 5e-5. The coefficient is 1e-2 for α and 1e-4 for β.

4.2. Ablation Study

We evaluate the effectiveness of different components in
UATVR by comprehensive experiments. The default visual
encoder is ViT-B/16 [14] and the t2v retrieval results are
reported on the widely-used MSR-VTT [57] dataset.
Uncertainty-Adaptive Matching. The baseline of UATVR
is fine-grained token-wise interaction (TI), which provides
minimal granularity tokens for retrieval. As shown in
Tab. 1, with extra multi-class learnable tokens appended,
we observe a 1.2% R@1 improvement (48.4% vs. 49.6%)
and a lower MnR (14.1 vs. 12.5) compared to the base-
line. We explain that additional tokens can aggregate multi-
grained information extracted from video frames and tex-
tual words, which adapts to flexible cross-modal matching
in different granularities. Moreover, distribution-based un-
certainty adaptation with KL divergence constraint further
obtains the highest 50.8% R@1 and the lowest 1.0 MdR
and 12.4 MnR, which demonstrates the effectiveness of the
proposed distribution alignment mechanism. Also, we for-
mulate a soft contrastive loss following [45], which is a bi-
nary classification loss based on the softmax cross-entropy
via Monte-Carlo estimation (marked as *). We observe very
close but slightly lower performance than MIL-NCE (multi-

Prob-Embeds # R@1 R@5 R@10 MdR↓ MnR↓
(Cv = 3, Ct = 2) 49.6 75.5 84.9 2.0 12.5

K

1 49.6 76.5 84.3 2.0 12.5
3 49.8 76.1 84.9 2.0 12.9
5 50.5 77.1 84.4 1.0 12.6
7 50.8 76.3 85.5 1.0 12.4
9 - - - - -

Table 4. Ablation for the number of probabilistic embeddings.

Frames # R@1 R@5 R@10 MdR↓ MnR↓
4 44.9 74.0 82.2 2.0 15.1
8 50.6 76.0 83.9 1.0 12.9
12 50.8 76.3 85.5 1.0 12.4
16 51.0 76.4 85.5 1.0 13.5
20 50.8 76.0 84.9 1.0 13.4

Table 5. Impact of visual frame numbers.

instance contrast, marked as †). Further analysis is shown
in the appendix. All the above results prove the significance
of distribution-based cross-modal matching in tackling the
proposed uncertainty problem.

Tab. 2 compares time complexity and params for each
component, in which feature dimension D is omitted for
brevity. Despite the relatively larger time complexity taken
by DSA and DUA, it is still limited in quadratic time for one
text-video pair. Note that our extra learnable tokens do not
bring more model parameters, meanwhile having negligible
additional training cost. A similar conclusion can be drawn
for the distribution-based matching module. Therefore, our
proposed UATVR is simple-yet-effective.
Dynamic Semantic Adaptation Tokens. In Tab. 3, we
study the impact of additional appended Cv and Ct multi-
class learnable tokens. It shows distinct t2v retrieval im-
provements once extra visual tokens are added (i.e., Cv >
0), which reflects that this simple-yet-effective technology
can aggregate multi-grained video semantics depending on
the uncertain captions. Cv = 3 is the best among all.
When Cv is larger than 3, the performance starts to de-
grade. We observe a similar phenomenon in TMVM [34]
that more video prototypes would significantly degrade the
performance. Too many extra tokens would become noise
rather than representative, negatively influencing the normal
matching process. In subsequent experiments, we set final
Cv = 3 and Ct = 2. Additional Ct text tokens further pro-
mote v2t R@1 to 47.8%. We analyze the corresponding v2t
retrieval results in the appendix.
Distribution-Based Uncertainty Adaptation. A larger
number of probabilistic embeddings can better simulate
video and caption distributions but can also lead to more
computing requirements. In Tab. 4, we report the perfor-
mance according to the number of sampled probabilistic
embeddings K based on our optimal DSA branch. We



Method Date Text → Video Video → Text
R@1 R@5 R@10 MdR↓ MnR↓ R@1 R@5 R@10 MdR↓ MnR↓

MMT [17] ECCV’20 26.6 57.1 69.6 4.0 - 27.0 57.5 69.7 3.7 21.3
SupportSet [46] ICLR’21 30.1 58.5 69.3 3.0 - 28.5 58.6 71.6 3.0 -
Frozen [4] ICCV’21 32.5 61.5 71.2 3.0 - - - - - -
BridgeFormer [19] CVPR’22 37.6 64.8 75.1 - - - - - - -
TMVM [34] NeurIPS’22 36.2 64.2 75.7 3.0 - 34.8 63.8 73.7 3.0 -
CLIP-ViT-B/32
CLIP4Clip [39] ArXiv’21 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6
CenterCLIP [62] SIGIR’22 44.2 71.6 82.1 2.0 15.1 42.8 71.7 82.2 2.0 10.9
CAMoE [11]‡ ArXiv’21 44.6 72.6 81.8 2.0 13.3 45.1 72.4 83.1 2.0 10.0
CLIP2Video [16] ArXiv’21 45.6 72.6 81.7 2.0 14.6 43.5 72.3 82.1 2.0 10.2
X-Pool [20] CVPR’22 46.9 72.8 82.2 2.0 14.3 - - - - -
QB-Norm [5]‡ CVPR’22 47.2 73.0 83.0 2.0 - - - - - -
EMCL [23] NeurIPS’22 46.8 73.1 83.1 2.0 - 46.5 73.5 83.5 2.0 -
TS2-Net [37] ECCV’22 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2
UATVR 47.5 73.9 83.5 2.0 12.3 46.9 73.8 83.8 2.0 8.6
UATVR‡ 49.8 76.1 85.5 2.0 12.9 51.1 74.8 85.1 1.0 8.3
CLIP-ViT-B/16
CLIP2TV [18] ArXiv’21 48.3 74.6 82.8 2.0 14.9 46.5 75.4 84.9 2.0 10.2
CenterCLIP [62] SIGIR’22 48.4 73.8 82.0 2.0 13.8 47.7 75.0 83.3 2.0 10.2
TS2-Net [37] ECCV’22 49.4 75.6 85.3 2.0 13.5 46.6 75.9 84.9 2.0 8.9
UATVR 50.8 76.3 85.5 1.0 12.4 48.1 76.3 85.4 2.0 8.0
UATVR‡ 53.5 79.5 88.1 1.0 10.2 54.5 79.1 87.9 1.0 7.6

Table 6. t2v and v2t comparisons on MSR-VTT [57]. ‡ denotes using inverted dual softmax [11] or QB-Norm [5] for post-processing.

Method R@1 R@5 R@10 MdR↓ MnR↓
HGR [9] 35.1 73.5 83.5 2.0 -
CLIP [48] 39.7 72.3 82.2 2.0 12.8
SUPPORT [46] 44.9 82.1 89.7 1.0 -
CLIP4Clip [39] 55.9 89.2 95.0 1.0 3.9
Clip2Video [16] 57.3 90.0 95.5 1.0 3.6
QB-Norm [5] 58.8 88.3 93.8 1.0 -
TS2-Net [37] 59.1 90.0 95.2 1.0 3.5
UATVR(ViT-B32) 61.3 91.0 95.6 1.0 3.3
UATVR(ViT-B16) 64.5 92.6 96.8 1.0 2.8

Table 7. t2v comparisons on the VATEX [54] dataset.

Method R@1 R@5 R@10 MdR↓ MnR↓
ClipBERT [30] 20.4 48.0 60.8 6.0 -
TT-CE [13] 21.6 48.6 62.9 6.0 -
Frozen [4] 31.0 59.8 72.4 3.0 -
TMVM [34] 36.5 64.9 75.4 3.0 -
CLIP4Clip [39] 42.8 68.5 79.2 2.0 18.9
TS2-Net [37] 41.8 71.6 82.0 2.0 14.8
UATVR(ViT-B32) 43.1 71.8 82.3 2.0 15.1
UATVR(ViT-B16) 45.8 73.7 83.3 2.0 13.5

Table 8. t2v comparisons on the DiDeMo [1] dataset.

find that t2v retrieval performance increases as K increases.
When K is larger than 7, the performance starts to saturate.
Considering the computational costs, we choose K = 7 fi-

nally. Moreover, we have attempted sampling different K
for text and video distributions in the appendix and obtain
a similar conclusion to Tab. 4. Overall, our DUA surpasses
the baseline by a large margin, which demonstrates the ef-
fectiveness of the distribution alignment mechanism.

In Fig. 3, we measure the inherent uncertainty (geomet-
ric mean over the σ ∈ RD) of test set texts and videos and
report the R@1 performance in each epoch. We show com-
parisons on two visual encoders to analyze the correlation
between the uncertainty and the discriminability of learned
representations. Generally, we observe performance im-
provements with decreasing uncertainty, which verifies the
positive effects of distribution-based uncertain adaptation.
The Number of Visual Frames. The impact of frame num-
bers is studied in Tab. 5. UATVR achieves a decent 50.6%
R@1 with only 8 frames. The performance starts to saturate
with more than 12 frames. Here, we only use 12 frames by
default for fair comparisons with others.

4.3. Comparison with State-of-the-arts

To evaluate the generalization of our uncertainty-
adaptive models, we compare UATVR with SOTA methods
on various text-video retrieval benchmarks, including MSR-
VTT [57], MSVD [56], VATEX [54], and DiDeMo [1].

Tab. 6 shows detailed comparisons on MSR-VTT test
1k-A set. We divide current approaches into Training-



(1) a young boy hugging his teddy bear while watching the news

(2) an animated little boy watches the news and appears scared

(3) someone is playing a game

two additional learnable video tokens: (0.6350,  0.6180)
0.4693 0.5007 0.2374 0.2533

0.3992 0.4001 0.2982 0.3086

0.2513 0.2450 0.3166 0.3081

two additional learnable video tokens: (0.6131,  0.5949)

two additional learnable video tokens: (0.5941,  0.5776)

(1) a man is talking later a couple is dancing

(2) some people are dancing

(3) a man discusses his choreography of a play 

two additional learnable video tokens: (0.6481,  0.6316)
0.4046 0.4470 0.4418 0.4118

0.3596 0.2285 0.3192 0.3284

0.2513 0.4026 0.2541 0.2469

two additional learnable video tokens: (0.6288,  0.6095)

two additional learnable video tokens: (0.6157,  0.5920)

Figure 4. Impact of additional learnable tokens. Darker back-
ground color denotes higher frame attention.

from-scratch (upper rows) and CLIP-Driven [48]. Transfer-
ring knowledge from CLIP has distinctly surpassed models
w/o initialization, which demonstrates that spatial seman-
tics learned from image-text pairs are essential for the TVR
task. Our proposed UATVR falls into the CLIP-Driven
paradigm. For the ViT-B/32 encoder, UATVR obtains
higher R@1 performance than the previous best method
(47.5% vs. 47.2% in t2v retrieval, and 46.9% vs. 46.5%
in v2t retrieval). The improvement is more significant on
the ViT-B/16 backbone. Specifically, UATVR outperforms
previous best TS2-Net [37] by 1.4% in t2v and 1.5% in v2t
retrieval, yielding a remarkable t2v R@1 50.8%. Notice
that our method firstly reduces the MdR metric from 2.0 to
1.0 and has the lowest 12.4 MnR, which means UATVR is
more robust to wrong retrieval samples. In the appendix,
we further report results with dual softmax learning (DSL)
operation. Our results again surpass methods with post-
processing operations like QB-Norm [5] and CAMoE [11].

Moreover, we conduct evaluations on multiple other
TVR benchmarks, including VATEX [54] in Tab. 7,
DiDeMo [1] in Tab. 8, and MSVD [56] in Tab. 9. Despite
possible sub-optimal hyper-parameters (e.g., Cv, Ct,K) for
the specific dataset, UATVR achieves consistent improve-
ments across various datasets, e.g., 61.3% vs. 59.1% for
VATEX, and 43.1% vs. 42.8% for DiDeMo. UATVR out-
performs SOTAs by a large margin with better-performed

Query: a man runs into the crowd when trying to catch a basketball

0.31 0.31 0.26 0.23

0.28 0.36 0.39 0.40
(basketball: 0.20,  into: 0.17 ) 

(basketball: 0.30,  crowd: 0.28, catch: 0.21) 

Query: fried potatoes are being eaten

(potatoes: 0.19,  being: 0.18 ) 

(potatoes: 0.32,  eaten: 0.27,  fried: 0.27) 

0.25 0.26 0.29 0.23

0.38 0.37 0.25 0.35

❌

❌

✓

✓

Figure 5. Visualization of TVR results and attention weights for
each frame and significant words. Red: incorrect results of the
token-wise baseline model. Green: correct results of our UATVR.

Method R@1 R@5 R@10 MdR↓ MnR↓
CE [36] 19.8 49.0 63.8 6.0 -
SUPPORT [46] 28.4 60.0 72.9 4.0 -
CLIP [48] 37.0 64.1 73.8 3.0 -
Frozen [4] 33.7 64.7 76.3 3.0 -
TMVM [34] 36.7 67.4 81.3 2.5 -
CLIP4Clip [39] 45.2 75.5 84.3 2.0 10.3
X-Pool [20] 47.2 77.4 86.0 2.0 9.3
UATVR(ViT-B32) 46.0 76.3 85.1 2.0 10.4
UATVR(ViT-B16) 49.7 79.0 87.3 2.0 8.9

Table 9. t2v comparisons on the MSVD [56] dataset.

ViT-B/16. Prominent results demonstrate good generaliza-
tion and robustness of our dynamic semantic-aggregation
and distribution-based uncertainty adaption paradigms.

4.4. Qualitative Results

To better understand the impact of additional learnable
tokens, we show specific attention weights computed by
Eq.8 for each frame and the extra tokens under different
text descriptions in v2t retrieval. As shown in Fig. 4, our
model shows higher weights on text-related frames, such as
“some people are dancing” and “a man discusses his chore-
ography of a play”, resulting in quite a contrary frame at-
tention in the second video. Moreover, our additional to-
kens assign higher attention scores to more accurate texts,
benefiting text-depended video semantic aggregation during
cross-modal matching. In Fig. 5, we show correct UATVR
t2v retrieval results compared to the token-wise baseline.
Attention weights for each frame and the most significant
words are highlighted. Due to the matching uncertainty,



token-wise baseline easily falls into local context match-
ing with specific queries like ‘basketball’ and ‘potatoes’.
Nevertheless, UATVR retrieves correct videos with multi-
grained high-level reasoning, showing advance in recogniz-
ing subtle clues and global semantics simultaneously. We
show further visualization and analysis in the appendix.

5. Conclusion
In this work, we analyze the uncertain matching problem

in existing multi-grained text-video retrieval and propose a
novel uncertainty-adaptive matching framework (UATVR)
in complementary deterministic and probabilistic views.
We model each text-video lookup as a distribution match-
ing procedure by introducing semantic aggregation learn-
able tokens and distribution-based probabilistic embed-
dings. UATVR adaptively addresses the uncertain matching
problem and formulates realistic one-to-many text-video
correspondences. Thorough ablation studies and remark-
able performance demonstrate the effectiveness of UATVR.
We leave more sophisticated and refined distribution mod-
elling, like a Mixture of Gaussians, as part of future work.
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