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Abstract
We propose a self-supervised method for learning

motion-focused video representations. Existing approaches
minimize distances between temporally augmented videos,
which maintain high spatial similarity. We instead propose
to learn similarities between videos with identical local mo-
tion dynamics but an otherwise different appearance. We do
so by adding synthetic motion trajectories to videos which
we refer to as tubelets. By simulating different tubelet mo-
tions and applying transformations, such as scaling and ro-
tation, we introduce motion patterns beyond what is present
in the pretraining data. This allows us to learn a video rep-
resentation that is remarkably data efficient: our approach
maintains performance when using only 25% of the pre-
training videos. Experiments on 10 diverse downstream set-
tings demonstrate our competitive performance and gener-
alizability to new domains and fine-grained actions. Code
is available at https://github.com/fmthoker/tubelet-contrast.

1. Introduction
This paper aims to learn self-supervised video represen-

tations, useful for distinguishing actions. In a community
effort to reduce the manual, expensive, and hard-to-scale
annotations needed for many downstream deployment set-
tings, the topic has witnessed tremendous progress in re-
cent years [21, 34, 66, 84], particularly through contrastive
learning [18,59,61,64]. Contrastive approaches learn repre-
sentations through instance discrimination [58], by increas-
ing feature similarity between spatially and temporally aug-
mented clips from the same video. Despite temporal differ-
ences, such positive video pairs often maintain high spatial
similarity (see Figure 1), allowing the contrastive task to be
solved by coarse-grained features without explicitly captur-
ing local motion dynamics. This limits the generalizability
of the learned video representations, as shown in our prior
work [74]. Furthermore, prior approaches are constrained
by the amount and types of motions present in the pretrain-
ing data. This makes them data-hungry, as video data has
high redundancy with periods of little to no motion. In this
work, we address the need for data-efficient and general-
izable self-supervised video representations by proposing a
contrastive method to learn local motion dynamics.

Figure 1: Tubelet-Contrastive Positive Pairs (bottom)
only share the spatiotemporal motion dynamics inside the
simulated tubelets, while temporal contrastive pairs (top)
suffer from a high spatial bias. Contrasting tubelets results
in a data-efficient and generalizable video representation.

We take inspiration from action detection, where tubelets
are used to represent the motions of people and objects in
videos through bounding box sequences e.g., [32, 35, 45].
Typically, many tubelet proposals are generated for a video,
which are processed to find the best prediction. Rather than
finding tubelets in video data, we simulate them. In partic-
ular, we sample an image patch and ‘paste’ it with a ran-
domized motion onto two different video clips as a shared
tubelet (see Figure 1). These two clips form a positive pair
for contrastive learning where the model has to rely on the
spatiotemporal dynamics of the tubelet to learn the similar-
ity. With such a formulation, we can simulate a large variety
of motion patterns that are not present in the original videos.
This allows our model to be data-efficient while improving
generalization to new domains and fine-grained actions.

We make four contributions. First, we explicitly learn
from local motion dynamics in the form of synthetic
tubelets and design a simple but effective tubelet-contrastive
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framework. Second, we propose different ways of sim-
ulating tubelet motion and transformations to generate a
variety of motion patterns for learning. Third, we reveal
the remarkable data efficiency of our proposal: on five ac-
tion recognition datasets our approach maintains perfor-
mance when using only 25% of the pretraining videos.
What is more, with only 5-10% of the videos we still out-
perform the vanilla contrastive baseline with 100% pre-
training data for several datasets. Fourth, our compar-
ative experiments on 10 downstream settings, including
UCF101 [71], HMDB51 [40], Something Something [23],
and FineGym [67], further demonstrate our competitive per-
formance, generalizability to new domains, and suitability
of our learned representation for fine-grained actions.

2. Related Work
Self-Supervised Video Representation Learning. The
success of contrastive learning in images [8, 24, 26, 55] in-
spired many video contrastive works [30, 48, 59, 61, 64, 73].
Alongside spatial invariances, these works learn invariances
to temporal crops [59, 64, 65] and video speed [30, 48, 61].
Some diverge from temporal invariances and encourage
equivariance [10,60] to learn finer temporal representations.
For instance, TCLR [10] enforces within-instance tempo-
ral feature variation, while TE [33] learns equivariance to
temporal crops and speed with contrastive learning. Alter-
natively, many works learn to predict temporal transforma-
tions such as clip order [21, 42, 53, 84], speed [5, 9, 87] and
their combinations [34,50]. These self-supervised temporal
representations are effective for classifying and retrieving
coarse-grained actions but are challenged by downstream
settings with subtle motions [66, 74]. Other works utilize
the multimodal nature of videos [1, 2, 22, 25, 51, 54, 60] and
learn similarity with audio [1,2,54] and optical flow [22,25,
57,82]. We contrast motions of synthetic tubelets to learn a
video representation from only RGB data that can general-
ize to tasks requiring fine-grained motion understanding.

Other self-supervised works learn from the spatiotem-
poral dynamics of video. Both BE [80] and FAME [11]
remove background bias by adding static frames [80] or re-
placing the background [11] in positive pairs. Several works
instead use masked autoencoding to learn video represen-
tations [16, 75]. However, these works are all limited to
the motions present in the pretraining dataset. We prefer
to be less dataset-dependent and generate synthetic motion
tubelets for contrastive learning, which also offers a consid-
erable data-efficiency benefit. CtP [78] and MoSI [31] both
aim to predict motions in pretraining. CtP [78] learns to
track image patches in video clips while MoSI [31] learns
to predict the speed and direction of added pseudo-motions.
We take inspiration from these works and contrast synthetic
motions from tubelets which allows us to learn generaliz-
able and data-efficient representations.

Supervised Fine-Grained Motion Learning. While self-
supervised works have mainly focused on learning rep-
resentations to distinguish coarse-grained actions, much
progress has been made in supervised learning of mo-
tions. Approaches distinguish actions by motion-focused
neural network blocks [39, 41, 46, 51], decoupling motion
from appearance [43, 72], aggregating multiple temporal
scales [17, 56, 85], and sparse coding to obtain a mid-level
motion representation [52, 62, 68]. Other works exploit
skeleton data [15,27] or optical flow [19,70]. Alternatively,
several works identify motion differences within an action
class, by repetition counting [29, 89, 90], recognizing ad-
verbs [13, 14] or querying for action attributes [88]. Differ-
ent from all these works, we learn a motion-sensitive video
representation with self-supervision. We do so by relying
on just coarse-grained video data in pretraining and demon-
strate downstream generalization to fine-grained actions.
Tubelets. Jain et al. defined tubelets as class-agnostic se-
quences of bounding boxes over time [32]. Tubelets can
represent the movement of people and objects and are com-
monly used for object detection in videos [20, 36, 37], spa-
tiotemporal action localization [28, 32, 35, 45, 86, 91] and
video relation detection [7]. Initially, tubelets were obtained
by supervoxel groupings and dense trajectories [32,77] and
later from 2D CNNs [35, 45], 3D CNNs [28, 86] and trans-
formers [91]. We introduce (synthetic) tubelets of pseudo-
objects for contrastive video self-supervised learning.

3. Tubelet Contrast
We aim to learn motion-focused video representations

from RGB video data with self-supervision. After revis-
iting temporal contrastive learning, we propose tubelet-
contrastive learning to reduce the spatial focus of video rep-
resentations and instead learn similarities between spatio-
temporal tubelet dynamics (Section 3.1). We encourage our
representation to be motion-focused by simulating a vari-
ety of tubelet motions (Section 3.2). To further improve
data efficiency and generalizability, we add complexity and
variety to the motions through tubelet transformations (Sec-
tion 3.3). Figure 2 shows an overview of our approach.
Temporal Contrastive Learning. Temporal contrastive
learning learns feature representations via instance discrim-
ination [58]. This is achieved by maximizing the similar-
ity between augmented clips from the same video (positive
pairs) and minimizing the similarity between clips from dif-
ferent videos (negatives). Concretely given a set of videos
V , the positive pairs (v, v′) are obtained by sampling differ-
ent temporal crops of the same video [59, 61] and applying
spatial augmentations such as cropping and color jittering.
Clips sampled from other videos in the training set act as
negatives. The extracted clips are passed through a video
encoder and projected on a representation space by a non-
linear projection head to obtain clip embeddings (Zv, Zv′).



Figure 2: Tubelet-Contrastive Learning. We sample two clips (v1, v2) from different videos and randomly crop an image
patch from v1. We generate a tubelet by replicating the patch in time and add motion through a sequence of target locations
for the patch. We then add complexity to these motions by applying transformations, such as rotation, to the tubelet. The
tubelet is overlaid ⊙ onto both clips to form a positive tubelet pair (v̂1, v̂2). We learn similarities between clips with the same
tubelets (positive pairs) and dissimilarities between clips with different tubelets (negatives) using a contrastive loss.

The noise contrastive estimation loss InfoNCE [58] is used
for the optimization:

Lcontrast(v, v
′) = − log

h(Zv, Zv′)

h(Zv, Zv′) +
∑

Zn∼N
h(Zv, Zn)

(1)

where h(Zv, Zv′)=exp(Zv · Zv′/τ), τ is the temperature
parameter and N is a set of negative clip embeddings.

3.1. Tubelet-Contrastive Learning
Different from existing video contrastive self-supervised

methods, we explicitly aim to learn motion-focused video
representations while relying only on RGB data. To achieve
this we propose to learn similarities between simulated
tubelets. Concretely, we first generate tubelets in the form
of moving patches which are then overlaid onto two differ-
ent video clips to generate positive pairs that have a high
motion similarity and a low spatial similarity. Such positive
pairs are then employed to learn video representations via
instance discrimination, allowing us to learn more general-
izable and motion-sensitive video representations.
Tubelet Generation. We define a tubelet as a sequence of
object locations in each frame of a video clip. Let’s assume
an object p of size H ′ × W ′ moving in a video clip v of
length T . Then the tubelet is defined as follows:

Tubeletp = [(x1, y1), .., (xT , yT )], (2)

where (xi, yi) is the center coordinate of the object p in
frame i of clip v. For this work, a random image patch of
size H ′ × W ′ acts as a pseudo-object overlaid on a video
clip to form a tubelet. To generate the tubelet we first make
the object appear static, i.e., x1=x2=...=xT and y1=y2 =
...=yT , and explain how we add motion in Section 3.2.
Tubelet-Contrastive Pairs. To create contrastive tubelet
pairs, we first randomly sample clips v1 and v2 of size
H×W and length T from two different videos in V . From

v1 we randomly crop an image patch p of size H ′ × W ′.
such that H ′ ≪ H and W ′ ≪ W . From the patch p, we
construct a tubelet Tubeletp as in Eq. (2). Then, we over-
lay the generated tubelet Tubeletp onto both v1 and v2 to
create two modified video clips v̂1 and v̂2:

v̂1 = v1 ⊙ Tubeletp v̂2 = v2 ⊙ Tubeletp, (3)

where ⊙ refers to pasting patch p in each video frame at
locations determined by Tubeletp. Eq. (3) can be extended
for a set of M tubelets {Tubeletp1

, ...,TubeletpM
} from

M patches randomly cropped from v1 as:

v̂1 = v1 ⊙ {Tubeletp1 , ...,TubeletpM
}

v̂2 = v2 ⊙ {Tubeletp1 , ...,TubeletpM
}. (4)

As a result, v̂1 and v̂2 share the spatiotemporal dynamics
of the moving patches in the form of tubelets and have low
spatial bias since the two clips come from different videos.
Finally, we adapt the contrastive loss from Eq. (1) and ap-
ply Lcontrast(v̂1, v̂2). Here the set of negatives N contains
videos with different tubelets. Since the only similarity in
positive pairs is the tubelets, the network must rely on tem-
poral cues causing a motion-focused video representation.

3.2. Tubelet Motion
To learn motion-focused video representations, we need

to give our tubelets motion variety. Here, we discuss how to
simulate motions by generating different patch movements
in the tubelets. Recall, Eq. (2) defines a tubelet by image
patch p and its center coordinate in each video frame. We
consider two types of tubelet motion: linear and non-linear.
Linear Motion. We randomly sample the center locations
for the patch in K keyframes: the first frame (i=1), the last
frame (i=T ), and K−2 randomly selected frames. These
patch locations are sampled from uniform distributions x ∈
[0,W ] and y ∈ [0, H], where W and H are the video width
and height. Patch locations for the remaining frames i /∈



Figure 3: Tubelet Motion. Examples for Linear (left) and
Non-Linear (right). Non-linear motions enable the simula-
tion of a larger variety of motion patterns to learn from.

K are then linearly interpolated between keyframes so we
obtain the following linear motion definition:

TubeletLin = [(x1, y1), (x2, y2), ..., (xT , yT )], s.t. (5)

(xi, yi) =

{
(U(0,W ),U(0, H)), if i ∈ K

Interp((xk, yk), (xk+1, yk+1)), otherwise

where U is a function for uniform sampling, k and k+1 are
the neighboring keyframes to frame i and Interp gives a
linear interpolation between keyframes. To ensure smooth-
ness, we constrain the difference between the center loca-
tions in neighboring keyframes to be less than ∆ pixels.
This formulation results in tubelet motions where patches
follow linear paths across the video frames. The left of Fig-
ure 3 shows examples of such linear tubelet motions.
Non-Linear Motion. Linear motions are simple and limit
the variety of motion patterns that can be generated. Next,
we simulate motions where patches move along more com-
plex non-linear paths, to better emulate motions in real
videos. We create non-linear motions by first sampling N
2D coordinates (N ≫ T ) uniformly from x ∈ [0,W ] and
y ∈ [0, H]. Then, we apply a 1D Gaussian filter along x
and y axes to generate a random smooth nonlinear path as:

TubeletNonLin =[(g(x1), g(y1)), ..., (g(xN ), g(yN ))]

s.t. g(z) =
1√
2πσ

e−z2/2σ2

(6)

where σ is the smoothing factor for the gaussian kernels.
Note the importance of sampling N ≫ T points to ensure a
non-linear path. If N is too small then the path becomes lin-
ear after gaussian smoothing. We downsample the resulting
non-linear tubelet in Eq. (6) from N to T coordinates result-
ing in the locations for patch p in the T frames. The right
of Figure 3 shows examples of non-linear tubelet motions.

3.3. Tubelet Transformation
The tubelet motions are simulated by changing the po-

sition of the patch across the frames in a video clip, i.e.
with translation. In reality, the motion of objects in space
may appear as other transformations in videos, for instance,
scale decreasing as the object moves away from the cam-
era or motions due to planer rotations. Motivated by this,
we propose to add more complexity and variety to the sim-

Figure 4: Tubelet Transformation. Examples for Scale
(left), Rotation (middle), and Shear (right). The patch is
transformed as it moves through the tubelet.

ulated motions by transforming the tubelets. In particular,
we propose scale, rotation, and shear transformations. As
before, we sample keyframes K with the first (i=0) and
last frames (i=T ) always included. Transformations for re-
maining frames are linearly interpolated. Formally, we de-
fine a tubelet transformation as a sequence of spatial trans-
formations applied to the patch p in each frame i as:

TransF = [p, F (p, θ2), ...., .., F (p, θT )], s.t.

θi =

{
U(Min,Max), if i ∈ K

Interp(θk, θk+1), otherwise

(7)

where F (p, θi) applies the transformation to patch p accord-
ing to parameters θi, U samples from a uniform distribution
and θk and θk+1 are the parameters for the keyframes neigh-
boring frame i. For the first keyframe, no transformation
is applied thus representing the initial state of the patch p.
We instantiate three types of such tubelet transformations:
scale, rotation, and shear. Examples are shown in Figure 4.
Scale. We scale the patch across time with F (p, θi) and hor-
izontal and vertical scaling factors θi=(wi, hi). To sample
wi and hi, we use Min=0.5 and Max=1.5.
Rotation. In this transformation F (p, θi) applies in-plane
rotations to tubelet patches. Thus, θi is a rotation angle
sampled from Min=−90◦ and Max=+90◦.
Shear. We shear the patch as the tubelet progresses with
F (p, θi). The shearing parameters are θi=(ri, si) which
are sampled using Min=−1.5 and Max=1.5.

With these tubelet transformations and the motions cre-
ated in Section 3.2 we are able to simulate a variety of sub-
tle motions in videos, making the model data-efficient. By
learning the similarity between the same tubelet overlaid
onto different videos, our model pays less attention to spa-
tial features, instead learning to represent these subtle mo-
tions. This makes the learned representation generalizable
to different domains and action granularities.

4. Experiments
4.1. Datasets, Evaluation & Implementation
Pretraining Datasets. Following prior work [10, 30,
59–61, 78] we use Kinetics-400 [38] for self-supervised
pretraining. Kinetics-400 is a large-scale action recogni-



Evaluation Factor Experiment Dataset Task #Classes #Finetuning #Testing Eval Metric

Standard UCF101 UCF 101 [71] Action Recognition 101 9,537 3,783 Top-1 Accuracy
HMDB51 HMDB 51 [40] Action Recognition 51 3,570 1,530 Top-1 Accuracy

Domain Shift SSv2 Something-Something [23] Action Recognition 174 168,913 24,777 Top-1 Accuracy
Gym99 FineGym [67] Action Recognition 99 20,484 8,521 Top-1 Accuracy

Sample Efficiency UCF (103) UCF 101 [71] Action Recognition 101 1,000 3,783 Top-1 Accuracy
Gym (103) FineGym [67] Action Recognition 99 1,000 8,521 Top-1 Accuracy

Action Granularity FX-S1 FineGym [67] Action Recognition 11 1,882 777 Mean Class Acc
UB-S1 FineGym [67] Action Recognition 15 3,511 1,471 Mean Class Acc

Task Shift UCF-RC UCFRep [89] Repetition Counting - 421 105 Mean Error
Charades Charades [69] Multi-label Recognition 157 7,985 1,863 mAP

Table 1: Benchmark Details for the downstream evaluation factors, experiments, and datasets we cover. For non-standard
evaluations, we follow the SEVERE benchmark [74]. For self-supervised pretraining, we use Kinetics-400 or Mini-Kinetics.

tion dataset containing 250K videos of 400 action classes.
To show data efficiency, we also pretrain with Mini-
Kinetics [83], a subset containing 85K videos of 200 action
classes.
Downstream Evaluation. To evaluate the video repre-
sentations learned by our tubelet contrast, we finetune and
evaluate our model on various downstream datasets summa-
rized in Table 1. Following previous self-supervised work,
we evaluate on standard benchmarks: UCF101 [71] and
HMDB51 [40]. These action recognition datasets contain
coarse-grained actions with domains similar to Kinetics-
400. For both, we report top-1 accuracy on split 1 from
the original papers. We examine the generalizability of our
model with the SEVERE benchmark proposed in our pre-
vious work [74]. This consists of eight experiments over
four downstream generalization factors: domain shift, sam-
ple efficiency, action granularity, and task shift. Domain
shift is evaluated on Something-Something v2 [23] (SSv2)
and FineGym [67] (Gym99) which vary in domain relative
to Kinetics-400. Sample efficiency evaluates low-shot ac-
tion recognition on UCF101 [71] and FineGym [67] with
1,000 training samples, referred to as UCF (103) and Gym
(103). Action granularity evaluates semantically similar ac-
tions using FX-S1 and UB-S1 subsets from FineGym [67].
In both subsets, action classes belong to the same element
of a gymnastic routine, e.g., FX-S1 is types of jump. Task
shift evaluates tasks beyond single-label action recogni-
tion. Specifically, it uses temporal repetition counting on
UCFRep [89], a subset of UCF-101 [89], and multi-label
action recognition on Charades [69]. The experimental se-
tups are detailed in Table 1 and all follow SEVERE [74].
Tubelet Generation and Transformation. Our clips are
16 112×112 frames with standard spatial augmentations:
random crops, horizontal flip, and color jitter. We randomly
crop 2 patches to generate M=2 tubelets (Eq. 4). The patch
size H

′×W
′

is uniformly sampled from [16×16, 64×64].
We also randomly sample a patch shape from a set of pre-
defined shapes. For linear motions, we use ∆=[40−80] dis-
placement difference. For non-linear motion, we use N=48

UCF (103) Gym (103) SSv2-Sub UB-S1

Temporal Contrast
Baseline 57.5 29.5 44.2 84.8
Tubelet Contrast
Tubelet Generation 48.2 28.2 40.1 84.1
Tubelet Motion 63.0 45.6 47.5 90.3
Tubelet Transformation 65.5 48.0 47.9 90.9

Table 2: Tubelet-Contrastive Learning considerably out-
performs temporal contrast on multiple downstream set-
tings. Tubelet motion and transformations are key.

and a smoothing factor of σ=8 (Eq. 6). For linear motion
and all tubelet transformations, we use K=3 keyframes.
Networks, Pretraining and Finetuning. We use R(2+1)D-
18 [76] as the video encoder, following previous self-
supervision works [10,11,59–61,81]. The projection head is
a 2-layer MLP with 128D output. We use momentum con-
trast [26] to increase the number of negatives |N | (Eq. 1) to
16,384 for Mini-Kinetics and 65,536 for Kinetics. We use
temperature τ=0.2 (Eq. 1). The model is optimized using
SGD with momentum 0.9, learning rate 0.01, and weight
decay 0.0001. We use a batch size of 32 for Mini-Kinetics
and 128 for Kinetics, a cosine scheduler [49], and pretrain
for 100 epochs. After pretraining, we replace the projection
head with a task-dependent head as in SEVERE [74] and
finetune the whole network with labels for the downstream
task. We provide finetuning details in the supplementary.

4.2. Ablation Studies & Analysis
To ablate the effectiveness of individual components we

pretrain on Mini-Kinetics and evaluate on UCF (103), Gym
(103), Something-Something v2 and UB-S1. To decrease
the finetuning time we use a subset of Something Some-
thing (SSv2-Sub) with 25% of the training data (details in
supplementary). Unless specified otherwise, we use non-
linear motion and rotation to generate tubelets.
Tubelet-Contrastive Learning. Table 2 shows the bene-
fits brought by our tubelet-contrastive learning. We first
observe that our full tubelet-contrastive model improves



Tubelet Motion UCF (103) Gym (103) SSv2-Sub UB-S1

No motion 48.2 28.2 40.1 84.1
Linear 55.5 34.6 45.3 88.5
Non-Linear 63.0 45.6 47.5 90.3

Table 3: Tubelet Motions. Learning from tubelets with
non-linear motion benefits multiple downstream settings.

Transformation UCF (103) Gym (103) SSv2-Sub UB-S1

None 63.0 45.6 47.5 90.5
Scale 65.1 46.5 47.0 90.5
Shear 65.2 47.5 47.3 90.9
Rotation 65.5 48.0 47.9 90.9

Table 4: Tubelet Transformation. Adding motion patterns
to tubelet-contrastive learning through transformations im-
proves downstream performance. Best results for rotation.

considerably over the temporal contrastive baseline, which
uses MoCo [26] with a temporal crop augmentation. This
improvement applies to all downstream datasets but is es-
pecially observable with Gym (103) (+18.5%) and UB-S1
(+6.1%) where temporal cues are crucial. Our model is also
effective on UCF (103) (+8.0%) where spatial cues are of-
ten as important as temporal ones. These results demon-
strate that learning similarities between synthetic tubelets
produces generalizable, but motion-focused, video repre-
sentations required for finer temporal understanding.

It is clear that the motion within tubelets is critical to
our model’s success as contrasting static tubelets obtained
from our tubelet generation (Section 3.1) actually decreases
the performance from the temporal contrast baseline. When
tubelet motion is added (Section 3.2), performance im-
proves considerably, e.g., Gym (103) +17.4% and SSv2-Sub
+7.4%. Finally, adding more motion types via tubelet trans-
formations (Section 3.3) further improves the video repre-
sentation quality, e.g., UCF (103) +2.5% and Gym (103)
+2.4%. This highlights the importance of including a va-
riety of motions beyond what is present in the pretraining
data to learn generalizable video representations.
Tubelet Motions. Next, we ablate the impact of the tubelet
motion type (Section 3.2) without transformations. We
compare the performance of static tubelets with no motion,
linear motion, and non-linear motion in Table 3. Tubelets
with simple linear motion already improve performance for
all four datasets, e.g., +6.4% on Gym (103). Using non-
linear motion further improves results, for instance with an
additional +11.0% improvement on Gym (103). We con-
clude that learning from non-linear motions provides more
generalizable video representations.
Tubelet Transformation. Table 4 compares the proposed
tubelet transformations (Section 3.3). All four datasets ben-
efit from transformations, with rotation being the most ef-
fective. The differences in improvement for each transfor-
mation are likely due to the types of motion present in the

#Tubelets UCF (103) Gym (103) SSv2-Sub UB-S1

1 62.0 39.5 47.1 89.5
2 65.5 48.0 47.9 90.9
3 66.5 46.0 47.5 90.9

Table 5: Number of Tubelets. Overlaying two tubelets in
positive pairs improves downstream performance.

Temporal Contrastive Learning Tubelet-Contrastive Learning (Ours)

Figure 5: Class-Agnostic Activation Maps without Fine-
tuning for the temporal contrastive baseline and our tubelet-
contrast. Our model better attends to regions with motion.

Linear Classification Finetuning

UCF101 Gym99 UCF101 Gym99

Temporal Contrast 58.9 19.7 87.1 90.8
Tubelet Contrast 30.0 34.1 91.0 92.8

Table 6: Appearance vs Motion. Our method learns to
capture motion dynamics with pretraining and can easily
learn appearance features with finetuning.

downstream datasets. For instance, Gym (103) and UB-S1
contain gymnastic videos where actors are often spinning
and turning but do not change in scale due to the fixed cam-
era, therefore rotation is more helpful than scaling. We also
experiment with combinations of transformations in supple-
mentary but observe no further improvement.
Number of Tubelets. We investigate the number of tubelets
used in each video in Table 5. One tubelet is already more
effective than temporal contrastive learning, e.g., 29.5% vs.
39.5% for Gym (103). Adding two tubelets improves accu-
racy on all datasets, e.g., +8.5% for Gym (103).
Analysis of Motion-Focus. To further understand what
our model learns, Figure 5 visualizes the class agnostic ac-
tivation maps [3] without finetuning for the baseline and our
approach. We observe that even without previously seeing
any FineGym data, our approach attends better to the mo-
tions than the temporal contrastive baseline, which attends
to the background regions. This observation is supported by
the linear classification and finetuning results on UCF101
(appearance-focused) and Gym99 (motion-focused) in Ta-
ble 6. When directly predicting from the learned features
with linear classification, our model is less effective than
temporal contrast for appearance-based actions in UCF101,
but positively affects actions requiring fine-grained motion
understanding in Gym99. With finetuning, our tubelet-
contrastive representation is able to add spatial appearance
understanding and maintain its ability to capture temporal
motion dynamics, thus it benefits both UCF101 and Gym99.



Figure 6: Video-Data Efficiency of Tubelet-Contrastive Learning. Our approach maintains performance when using only
25% of the pretraining data. When using 5% of the pretraining data, our approach is still more effective than using 100% with
the baseline for Gym (103), UB-S1, and HMDB51. Results are averaged over three pretraining runs with different seeds.

4.3. Video-Data Efficiency
To demonstrate our method’s data efficiency, we pretrain

using subsets of the Kinetics-400. In particular, we sam-
ple 5%, 10%, 25%, 33% and 50% of the Kinetics-400 train-
ing set with three random seeds and pretrain our model and
the temporal contrastive baseline. We compare the effec-
tiveness of these representations after finetuning on UCF
(103), Gym(103), SSv2-Sub, UB-S1, and HMDB51 in Fig-
ure 6. On all downstream setups, our method maintains
similar performance when reducing the pretraining data to
just 25%, while the temporal contrastive baseline perfor-
mance decreases significantly. Our method is less effective
when using only 5% or 10% of the data, but remarkably still
outperforms the baseline trained with 100% data for Gym
(103), UB-S1, and HMDB. We attribute our model’s data
efficiency to the tubelets we add to the pretraining data. In
particular, our non-linear motion and transformations gen-
erate a variety of synthetic tubelets that simulate a greater
variety of fine-grained motions than are present in the orig-
inal data.
4.4. Standard Evaluation: UCF101 and HMDB51

We first show the effectiveness of our proposed method
on standard coarse-grained action recognition benchmarks
UCF101 and HMBD51, where we compare with prior video
self-supervised works. For a fair comparison, we only re-
port methods in Table 7 that use the R(2+1)D-18 backbone
and Kinetics-400 as the pretraining dataset.

First, we observe that our method obtains the best results
for UCF101 and HMDB51. The supplementary material
shows we also achieve similar improvement with the R3D
and I3D backbones. In particular, with R(2+1)D our method
beats CtP [78] by 2.6% and 2.4%, TCLR [10] by 2.8% and
4.1%, and TE [33] by 2.8% and 1.9% all of which aim to
learn finer temporal representations. This confirms that ex-
plicitly contrasting tubelet-based motion patterns results in
a better video representation than learning temporal distinc-
tiveness or prediction. We also outperform FAME [11] by
6.2% and 9.6% on UCF101 and HMDB51. FAME aims
to learn a motion-focus representation by pasting the fore-
ground region of one video onto the background of an-

Method Modality UCF101 HMDB51

VideoMoCo [59] RGB 78.7 49.2
RSPNet [61] RGB 81.1 44.6
SRTC [48] RGB 82.0 51.2
FAME [11] RGB 84.8 53.5
MCN [47] RGB 84.8 54.5
AVID-CMA [54] RGB+Audio 87.5 60.8
TCLR [10] RGB 88.2 60.0
TE [33] RGB 88.2 62.2
CtP [78] RGB 88.4 61.7
MotionFit [22] RGB+Flow 88.9 61.4
GDT [60] RGB+Audio 89.3 60.0

This paper † RGB 90.7 65.0
This paper RGB 91.0 64.1

Table 7: Standard Evaluation: UCF101 and HMDB51
using R(2+1)D. Gray lines indicate use of additional modal-
ities during self-supervised pretraining. Note that our
method pretrained on Mini-Kinetics (†) outperforms all
methods which pretrain on the 3× larger Kinetics-400.

other to construct positive pairs for contrastive learning. We
however are not limited by the motions present in the set
of pretraining videos as we simulate new motion patterns
for learning. We also outperform prior multi-modal works
which incorporate audio or explicitly learn motion from op-
tical flow. Since our model is data-efficient, we can pretrain
on Mini-Kinetics and still outperform all baselines which
are trained on the 3x larger Kinetics-400.

4.5. SEVERE Generalization Benchmark
Next, we compare to prior works on the challenging SE-

VERE benchmark [74], which evaluates video representa-
tions for generalizability in domain shift, sample efficiency,
action granularity, and task shift. We follow the same setup
as in the original SEVERE benchmark and use an R(2+1)D-
18 backbone pretrained on Kinetics-400 with our tubelet-
contrast before finetuning on the different downstream set-
tings. Results are shown in Table 8.
Domain Shift. Among the evaluated methods our pro-
posal achieves the best results on SSv2 and Gym99. These
datasets differ considerably from Kinetics-400, particularly



Domains Samples Actions Tasks
Backbone SSv2 Gym99 UCF (103) Gym (103) FX-S1 UB-S1 UCF-RC↓ Charades Mean Rank↓

SVT [65] ViT-B 59.2 62.3 83.9 18.5 35.4 55.1 0.421 35.5 51.0 8.9
VideoMAE [75] ViT-B 69.7 85.1 77.2 27.5 37.0 78.5 0.172 12.6 58.1 8.3
Supervised [76] R(2+1)D-18 60.8 92.1 86.6 51.3 79.0 87.1 0.132 23.5 70.9 3.9
None R(2+1)D-18 57.1 89.8 38.3 22.7 46.6 82.3 0.217 7.9 52.9 11.6
SeLaVi [2] R(2+1)D-18 56.2 88.9 69.0 30.2 51.3 80.9 0.162 8.4 58.6 11.0
MoCo [26] R(2+1)D-18 57.1 90.7 60.4 30.9 65.0 84.5 0.208 8.3 59.5 9.1
VideoMoCo [59] R(2+1)D-18 59.0 90.3 65.4 20.6 57.3 83.9 0.185 10.5 58.6 9.1
Pre-Contrast [73] R(2+1)D-18 56.9 90.5 64.6 27.5 66.1 86.1 0.164 8.9 60.5 9.0
AVID-CMA [54] R(2+1)D-18 52.0 90.4 68.2 33.4 68.0 87.3 0.148 8.2 61.6 9.0
GDT [60] R(2+1)D-18 58.0 90.5 78.4 45.6 66.0 83.4 0.123 8.5 64.8 8.6
RSPNet [61] R(2+1)D-18 59.0 91.1 74.7 32.2 65.4 83.6 0.145 9.0 62.6 8.0
TCLR [10] R(2+1)D-18 59.8 91.6 72.6 26.3 60.7 84.7 0.142 12.2 61.7 7.6
CtP [78] R(2+1)D-18 59.6 92.0 61.0 32.9 79.1 88.8 0.178 9.6 63.2 5.6
This paper † R(2+1)D-18 59.4 92.2 65.5 48.0 78.3 90.9 0.150 9.0 66.0 5.4
This paper R(2+1)D-18 60.2 92.8 65.7 47.0 80.1 91.0 0.150 10.3 66.5 4.1

Table 8: SEVERE Generalization Benchmark. Comparison with prior self-supervised methods for generalization to down-
stream domains, fewer samples, action granularity, and tasks. ↓ indicates lower is better. Results for baselines are taken from
SEVERE [74]. Our method generalizes best, even when using the 3x smaller Mini-Kinetics dataset (†) for pretraining.

in regard to the actions, environment and viewpoint. Our
improvement demonstrates that the representation learned
by our tubelet-contrast is robust to various domain shifts.
Sample Efficiency. For sample efficiency, we achieve a
good gain over all prior works on Gym (103), e.g., +20.7%
over TCLR [10] and +14.1% over CtP [78]. Notably, the
gap between the second best method GDT [60] and all oth-
ers is large, demonstrating the challenge. For UCF (103),
our method is on par with VideoMoCo [59] and CtP but is
outperformed by GDT and RSPNet [61]. This is likely due
to most actions in UCF101 requiring more spatial than tem-
poral understanding, thus it benefits from the augmentations
used by GDT and RSPNet. Our motion-focused represen-
tation requires more finetuning samples on such datasets.
Action Granularity. For fine-grained actions in FX-S1 and
UB-S1, our method achieves the best performance, even
outperforming supervised Kinetics-400 pretraining. We
achieve a considerable improvement over other RGB-only
models, e.g., +19.6% and +6.3% over TCLR, as well as
audio-visual models, e.g., +14.1% and +7.6% over GDT.
These results demonstrate that the video representation
learned by our method are better suited to fine-grained ac-
tions than existing self-supervised methods. We addition-
ally report results on Diving48 [44] in the supplementary.
Task Shift. For the task shift to repetition counting, our
method is on par with AVID-CMA [54] and RSPNet, but
worse than GDT. For multi-label action recognition on Cha-
rades, our approach is 3rd, comparable to VideoMoCo but
worse than TCLR. This suggests the representations learned
by our method are somewhat transferable to tasks beyond
single-label action recognition. However, the remaining gap
between supervised and self-supervised highlights the need
for future work to explore task generalizability further.
Comparison with Transformers. Table 8 also contains re-

cent transformer-based self-supervised works SVT [65] and
VideoMAE [75]. We observe that both SVT and Video-
MAE have good performance with large amounts of fine-
tuning data (SSv2), in-domain fine-tuning (UCF(103)), and
multi-label action recognition (Charades). However, they
considerably lag in performance for motion-focused setups
Gym99, FX-S1, UB-S1, and repetition counting compared
to our tubelet contrast with a small CNN backbone.
Overall SEVERE Performance. Finally, we compare the
mean and the average rank across all generalizability fac-
tors. Our method has the best mean performance (66.5) and
achieves the best average rank (4.1). When pretraining with
the 3x smaller Mini-Kinetics our approach still achieves im-
pressive results. We conclude our method improves the gen-
eralizability of video self-supervised representations across
these four downstream factors while being data-efficient.

5. Conclusion
This paper presents a contrastive learning method to

learn motion-focused video representations in a self-
supervised manner. Our model adds synthetic tubelets to
videos so that the only similarities between positive pairs
are the spatiotemporal dynamics of the tubelets. By alter-
ing the motions of these tubelets and applying transforma-
tions we can simulate motions not present in the pretrain-
ing data. Experiments show that our proposed method is
data-efficient and more generalizable to new domains and
fine-grained actions than prior self-supervised methods.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Remi Munos,
and Michal Valko. Bootstrap your own latent-a new ap-
proach to self-supervised learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2020. 2



[25] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-
supervised co-training for video representation learning.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020. 2

[26] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2020. 2, 5, 6, 8

[27] James Hong, Matthew Fisher, Michaël Gharbi, and Kayvon
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Appendix
A. Generalization on Diving48

To further highlight the generalizability of our method to
new domains and fine-grained actions, we finetune and eval-
uate with the challenging Diving48 dataset [44]. It contains
18K trimmed videos for 48 different diving sequences all of
which take place in similar backgrounds and need to be dis-
tinguished by subtle differences such as the number of som-
ersaults or the starting position. We use standard train/test
split and report top-1 accuracy.

In Table 9, we show the performance of our model
when pretrained on the full Kinetics-400 and on Mini-
Kinetics (†). We compare these results to no pretraining,
the temporal contrastive baseline pretrained on Kinetics-
400, and supervised pretraining on Kinetics-400 with la-
bels. Our method increases the performance over training
from scratch by 7.9% and the temporal contrastive base-
line by 6.6%. Our method even outperforms the supervised
pretraining baseline by 4.5%. This suggests that by con-
trasting tubelets with different motions, our method is able
to learn better video representations for fine-grained actions
than supervised pretraining on Kinetics. When pretraining
on Mini-Kinetics (3x smaller than Kinetics-400) the perfor-
mance of our model does not decrease, again demonstrating
the data efficiency of our approach.

B. Evaluation with R3D and I3D Backbones
In addition to the R(2+1)-18 backbone, we also show

the performance of our proposed method with other com-
monly used video encoders i.e., R3D-18 [76] and I3D [6].
For R3D-18, we use the same tubelet generation and
transformation as that of R(2+1)D-18, as described in the
main paper. For I3D, we change the input resolution to
224x224 and sample the patch size H

′×W
′

uniformly from
[32×32, 128×128]. For both, we follow the same pretrain-
ing protocol as described in the main paper.

We compare with prior works on the standard
UCF101 [71] and HMDB51 [40] datasets. Table 10 shows
the results with Kinetics-400 as the pretraining dataset.
With the I3D backbone, our method outperforms prior
works on both UCF101 and HMDB51. Similarly, with
the R3D-18 backbone, we outperform prior works using
the RGB modality on UCF101. We also achieve com-
parable performance to the best-performing method on
HMDB51, improving over the next best method by 6.3%.
On HMDB51 we also outperform prior works which pre-
train on an additional optical flow modality and achieve
competitive results with these methods on UCF101.

C. Evaluation on Kinetics Dataset
To show whether our tubelet-contrastive pretraining can

improve the performance of downstream tasks when plenty

Pretraining Top-1

Supervised [76] 84.5

None 81.1
Temporal Contrast Baseline 82.4

This paper† 89.4
This paper 89.0

Table 9: Generalization on Diving48 [44]. Comparison
with temporal contrastive pretraining and supervised pre-
training on Diving48. All models use R(2+1)D-18. † indi-
cates pretraining on Mini-Kinetics, otherwise all pretraining
was done on Kinetics-400.

Method Modality UCF HMDB

I3D
SpeedNet [5] RGB 66.7 43.7
DSM [79] RGB 74.8 52.5
BE [80] RGB 86.2 55.4
FAME [11] RGB 88.6 61.1
This paper† RGB 89.5 64.0
This paper RGB 89.7 63.9

R3D-18
VideoMoCo [59] RGB 74.1 43.6
RSPNet [61] RGB 74.3 41.6
LSFD [4] RGB 77.2 53.7
MLFO [63] RGB 79.1 47.6
ASCNet [30] RGB 80.5 52.3
MCN [47] RGB 85.4 54.8
TCLR [10] RGB 85.4 55.4
CtP [78] RGB 86.2 57.0
TE [33] RGB 87.1 63.6
MSCL [57] RGB+Flow 90.7 62.3
MaCLR [82] RGB+Flow 91.3 62.1
This paper† RGB 88.8 62.0
This paper RGB 90.1 63.3

Table 10: Evaluation with I3D and R3D backbones:
on standard UCF101 and HMDB51 benchmarks. Gray
lines indicate the use of additional modalities during self-
supervised pretraining. † indicates pretraining on Mini-
Kinetics, otherwise, all models were pretrained on Kinetics-
400.

of labeled data is available for finetuning, we evaluate it on
the Kinetics-400 [38] dataset for the task of action classifi-
cation. The dataset contains about 220K labeled videos for
training and 18K videos for validation. As evident from Ta-
ble 12, such large-scale datasets can still benefit from our
pretraining with a 3.4% improvement over training from
scratch and 0.7% over the temporal contrast baseline.

D. Finetuning Details
During finetuning, we follow the setup from the SE-

VERE benchmark [74] which is detailed here for complete-



Evaluation Factor Experiment Dataset Batch Size Learning rate Epochs Steps

Standard UCF101 UCF 101 [71] 32 0.0001 160 [60,100,140]
HMDB51 HMDB 51 [40] 32 0.0001 160 [60,100,140]

Domain Shift SS-v2 Something-Something [23] 32 0.0001 45 [25, 35, 40]
Gym-99 FineGym [67] 32 0.0001 160 [60,100,140]

Sample Efficiency UCF (103) UCF 101 [71] 32 0.0001 160 [80,120,140]
Gym (103) FineGym [67] 32 0.0001 160 [80,120,140]

Action Granularity FX-S1 FineGym [67] 32 0.0001 160 [70,120,140]
UB-S1 FineGym [67] 32 0.0001 160 [70,120,140]

Task Shift UCF-RC UCFRep [89] 32 0.00005 100 -
Charades Charades [69] 16 0.0375 57 [41,49]

Table 11: Training Details of finetuning on various downstream datasets and tasks.

Pretraining Top-1

None 61.4
Temporal Contrast Baseline 64.1

This paper 64.8

Table 12: Kinetics-400 Evaluation. Comparison with tem-
poral contrastive pretraining for large-scale action recogni-
tion. All models use R(2+1)D-18 and pretraining was done
on Kinetics-400 training set.

ness. For all tasks, we replace the projection of the pre-
trained model with a task-dependent head.
Action Recognition. Downstream settings which examine
domain shift, sample efficiency, and action granularity all
perform action recognition. We use a similar finetuning pro-
cess for all experiments on these three factors. During the
training process, a random clip of 32 frames is taken from
each video and standard augmentations are applied: a multi-
scale crop of 112x112 size, horizontal flipping, and color
jittering. The Adam optimizer is used for training, with the
learning rate, scheduling, and total number of epochs for
each experiment shown in Table 11. During inference, 10
linearly spaced clips of 32 frames each are used, with a cen-
ter crop of 112x112. To determine the action class predic-
tion for a video, the predictions from each clip are averaged.
For domain shift and sample efficiency, we report the top-
1 accuracy. For action granularity experiments we report
mean class accuracy, which we obtain by computing accu-
racy per action class and averaging over all action classes.
Repetition counting. The implementation follows the
original repetition counting work proposed in UCFrep
work [89]. From the annotated videos, 2M sequences of
32 frames with spatial size 112x112 are constructed. These
are used as the input. The model is trained with a batch size
of 32 for 100 epochs using the Adam optimizer with a learn-
ing rate of 0.00005. For testing, we report mean counting
error following [89].
Multi-label classification on Charades. Following [18], a
per-class sigmoid output is utilized for multi-class predic-

Transformation UCF (103) Gym (103)

None 63.0 45.6

Scale 65.1 46.5
Shear 65.2 47.5
Rotate 65.5 48.0

Scale + Shear 65.2 46.0
Rotate + Scale 65.4 46.9
Rotate + Shear 65.3 45.7
Rotate + Scale + Shear 65.6 46.0

Table 13: Tubelet Transformation Combinations. Com-
bining transformations doesn’t give a further increase in
performance compared to using individual transformations.

tion. During the training process, 32 frames are sampled
with a stride of 8. Frames are cropped to 112x112 and ran-
dom short-side scaling, random spatial crop, and horizontal
flip augmentations are applied. The model is trained for a
total of 57 epochs with a batch size of 16 and a learning rate
of 0.0375. A multi-step scheduler with γ = 0.1 is applied
at epochs [41, 49]. During the testing phase, spatiotemporal
max-pooling is performed over 10 clips for a single video.
We report mean average precision (mAP) across all classes.
SSv2-Sub details. We use a subset of Something-
Something v2 for ablations. In particular, we randomly
sample 25% of the data from the whole train set and span-
ning all categories. This results in a subset consisting of
34409 training samples from 174 classes. We use the full
validation set of Something-Something v2 for testing.

E. Tubelet Transformation Hyperparameters
Table 13 shows the results when applying multiple

tubelet transformations in the tubelet generation. While ap-
plying individual transformations improves results, comb-
ing multiple transformations doesn’t improve the perfor-
mance further. This is likely because rotation motions
are common in the downstream datasets while scaling and
shearing are less common.

Table 14 shows an ablation over Min and Max values



Min Max UCF (103) Gym (103)

None
- - 63.0 45.6
Scale
0.5 1.25 65.6 45.3
0.5 1.5 65.1 46.5
0.5 2.0 65.6 46.0
Shear
-0.75 0.75 64.4 47.5
-1.0 1.0 65.2 48.0
-1.5 1.5 65.2 47.5
Rotation
-45 45 65.2 49.3
-90 90 65.5 48.0
-180 180 65.6 49.6

Table 14: Tubelet Transformation Hyperparameters. We
change Min and Max values for tubelet transformations.
Our model is robust to changes in these parameters, with
all choices tested giving an improvement over no tubelet
transformation.

UCF (103) Gym (103) SSv2-Sub UB-S1

Randomly Scaled Crops 59.5 37.5 44.8 87.0
Tubelets 65.5 48.0 47.9 90.9

Table 15: Tubelets vs Randomly Scaled Crops. Our
tubelets generate smooth motions to learn better video rep-
resentations than strongly jittered crops.

for tubelet transformations. In the main paper, we use scale
values between 0.5 and 1.5, shear values between -1.0 and
1.0, and rotation values between -90 and 90. Here, we ex-
periment with values that result in more subtle and extreme
variations of these transformations. We observe that all val-
ues for each of the transformations improve over no trans-
formation. Our model is reasonably robust to these choices
in hyperparameters, but subtle variations e.g., scale change
between 0.5 to 1.25 or shear from 0.75 to 0.75 tend to be
slightly less effective.

F. Tubelets vs. Randomly Scaled Crops
To show that our proposed tubelets inject useful motions

in the training pipeline, we compare them with randomly
scaled crops. In particular, we randomly crop, scale, and
jitter the patches pasted into the video clips when generat-
ing positive pairs and pretrain this and our model on Mini-
Kinetics. Table 15 shows that our proposed motion tubelets
outperform such randomly scaled crops in all downstream
settings. This validates that the spatiotemporal continuity in
motion tubelets is important to simulate smooth motions for
learning better video representations.
G. Per-Class Results

Examining the improvement for individual classes gives
us some insight into our model. Figure 7 shows the dif-
ference between our approach and the baseline for the 10

Figure 7: Per-Class Accuracy Difference on UCF (103)
between our model and the temporal contrastive baseline.
We show the 10 actions with the highest increase and de-
crease. Our model can better distinguish classes requiring
motion but loses some ability to distinguish spatial classes.

classes in UCF (103) with the highest increase and decrease
in accuracy. Many of the actions that increase in accu-
racy are motion-focused, e.g., pullups, lunges and jump
rope. Other actions are confused by the baseline because
of the similar background, e.g., throw discus is confused
with hammer throw and apply eye makeup is confused with
haircut. The motion-focused features our model introduces
help distinguish these classes. However, our model does
lose some useful spatial features for distinguishing classes
such as band marching and biking.
H. Class Agnostic Activation Maps

Figure 8 show more examples of class agnostic acti-
vation maps [3] for video clips from various downstream
datasets. Note that no finetuning is performed, we directly
apply the representation from our tubelet contrastive learn-
ing pretrained on Kinetics-400. For examples from Fine-
Gym, Something Something v2, and UCF101, we observe
that our approach attends to regions with motion while the
temporal contrastive baseline mostly attends to background.
I. Limitations and Future Work

There are several open avenues for future work based
on the limitations of this work. First, while we compare to
transformer-based approaches, we do not present the results
of our tubelet-contrast with a transformer backbone. Our
initial experiments with a transformer-based encoder [12]
did not converge with off-the-shelf settings. We hope future
work can address this problem for an encoder-independent
solution. Additionally, we simulate tubelets with random
image crops that can come from both background and fore-
ground regions. Explicitly generating tubelets from fore-
ground regions or pre-defined objects is a potential fu-
ture direction worth investigating. Finally, we only simu-
late tubelets over short clips, it is also worth investigating
whether long-range tubelets can be used for tasks that re-
quire long-range motion understanding.
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Figure 8: Class-Agnostic Activation Maps Without Finetuning for the temporal contrastive baseline and our tubelet con-
trast for different downstream datasets. Our model better attends to regions with motion irrespective of the domain.


