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Abstract

The current popular methods for video object segmen-
tation (VOS) implement feature matching through several
hand-crafted modules that separately perform feature ex-
traction and matching. However, the above hand-crafted
designs empirically cause insufficient target interaction,
thus limiting the dynamic target-aware feature learning
in VOS. To tackle these limitations, this paper presents a
scalable Simplified VOS (SimVOS) framework to perform
joint feature extraction and matching by leveraging a sin-
gle transformer backbone. Specifically, SimVOS employs a
scalable ViT backbone for simultaneous feature extraction
and matching between query and reference features. This
design enables SimVOS to learn better target-ware features
for accurate mask prediction. More importantly, SimVOS
could directly apply well-pretrained ViT backbones (e.g.,
MAE [21]) for VOS, which bridges the gap between VOS
and large-scale self-supervised pre-training. To achieve
a better performance-speed trade-off, we further explore
within-frame attention and propose a new token refinement
module to improve the running speed and save computa-
tional cost. Experimentally, our SimVOS achieves state-
of-the-art results on popular video object segmentation
benchmarks, i.e., DAVIS-2017 (88.0% J&F), DAVIS-2016
(92.9% J&F) and YouTube-VOS 2019 (84.2% J&F),
without applying any synthetic video or BL30K pre-training
used in previous VOS approaches.

1. Introduction
Video Object Segmentation (VOS) is an essential and

fundamental computer vision tasks in video analysis [32,
49, 50, 59, 51, 53] and scene understanding [30, 12, 48, 24,
15, 47]. In this paper, we focus on the semi-supervised VOS
task, which aims to segment and track the objects of interest
in each frame of a video, using only the mask annotation of
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the target in the first frame as given. The key challenges in
VOS mainly lie in two aspects: 1) how to effectively distin-
guish the target from the background distractors; 2) how to
accurately match the target across various frames in a video.

In the past few years, modern matching-based VOS ap-
proaches have gained much attention due to their promising
performance on popular VOS benchmarks [56, 34, 35]. The
typical method STM [32] and its following works [8, 59, 7]
mainly use several customized modules to perform semi-
supervised VOS, including feature extraction, target match-
ing and mask prediction modules. The whole mask pre-
diction process in these approaches can be divided into
two sequential steps: 1) feature extraction on the previous
frames (i.e., memory frames) and the new incoming frame
(i.e., search frame); and 2) target matching in the search
frame, which is commonly achieved by calculating per-
pixel matching between the memory frames’ embeddings
and the search frame embedding.

Despite the favorable performance achieved by the above
matching-based approaches, the separated feature extrac-
tion and matching modules used in these methods still have
several limitations. Firstly, the separate schema is unable
to extract dynamic target-aware features, since there is no
interaction between the memory and search frame embed-
dings during the feature extraction. In this way, the feature
extraction module is treated as the fixed feature extractor
after offline training and thus cannot handle objects with
large appearance variations in different frames of a video.
Secondly, the matching module built upon the extracted
features needs to be carefully designed to perform suffi-
cient interaction between query and memory features. Re-
cent works (e.g., FEELVOS [44] and CFBI [58]) explore to
use local and global matching mechanisms. However, their
performance is still degraded due to the limited expressive
power of the extracted fixed features.

To solve the aforementioned problems, this paper
presents a Simplified VOS framework (SimVOS) for joint
feature extraction and matching. This basic idea allows
SimVOS to learn dynamic target-aware features for more
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Figure 1: A comparison between the pipelines of (a) traditional
VOS approaches [32, 8], and (b) our proposed SimVOS. The
previous approaches predict segmentation masks by leveraging
the customized separate feature extraction and matching modules.
Our SimVOS removes hand-crafted designs and employs a unified
transformer backbone for joint feature extraction and matching,
which provides a simplified framework for accurate VOS.

accurate VOS. Inspired by the recent successes on replacing
hand-crafted designs [3, 11, 61] with general-purpose archi-
tectures in computer vision, we implement SimVOS with a
ViT [11] backbone and a mask prediction head. As can be
seen in Fig. 1, this new design removes the customized sep-
arate feature extraction and matching modules used in pre-
vious matching-based VOS approaches, thus facilitating the
development of VOS in a more general and simpler system.

Besides providing a simple yet effective VOS baseline,
the other goal of our work is to bridge the gap between the
VOS and large-scale self-supervised pretraining communi-
ties. Recently, significant progress [21, 36, 20, 4] have been
made in showing the superior performance of large-scale
self-supervised models on some downstream tasks, includ-
ing object classification [21], detection [25] and tracking
[61, 3]. However, existing VOS approaches often rely on
task-specific customized modules, and their architectures
are specifically designed with VOS-specific prior knowl-
edge, which makes it difficult for these approaches to utilize
standard large-scale self-supervised models for VOS. As far
as we know, leveraging a large-scale self-supervised model
to develop a general-purpose architecture for VOS has not
been explored. Our work moves towards a simple yet ef-
fective VOS framework that could naturally benefit from
large-scale self-supervised pretraining tasks.

Taking both memory and query frames as input to the
vanilla ViT for mask prediction may cause a large com-
putational cost (quadratic complexity). To achieve a bet-
ter performance-speed trade-off, we propose a token re-
finement module to reduce the computational cost and im-
prove the running speed of SimVOS. This variant can run

2× faster than the SimVOS baseline, with a small reduc-
tion in VOS performance. We conduct experiments on var-
ious popular VOS benchmarks and show that our SimVOS
achieves state-of-the-art VOS performance. In summary,
this paper makes the following contributions:

• We propose a Simplified VOS framework (SimVOS),
which removes the hand-crafted feature extraction and
matching modules in previous approaches [32, 8], to
perform joint feature extraction and interaction via a
single scalable transformer backbone. We also demon-
strate that large-scale self-supervised pre-trained mod-
els can provide significant benefits to the VOS task.

• We proposed a new token refinement module to
achieve a better speed-accuracy trade-off for scalable
video object segmentation.

• Our SimVOS achieves state-of-the-art performance
on popular VOS benchmarks. Specifically, without
applying any synthetic data pre-training, our vari-
ant SimVOS-B sets new state-of-the-art performance
on DAVIS-2017 (88.0% J&F), DAVIS-2016 (92.9%
J&F) and YouTube-VOS 2019 (84.2% J&F).

2. Related Work
Video Object Segmentation. Traditional VOS methods
follow the basic idea of online fine-tuning at test time to
adapt to online tracked objects. Typical works include OS-
VOS [2], OnAVIS [45], MoNet [54], MaskTrack [33] and
PReMVOS [28]. However, the time-consuming fine-tuning
step limits their applicability to real-time applications, and
meanwhile, the limited number of online training samples
still degrades online fine-tuning. To improve the inference
efficiency, OSMN [57] employs a meta neural network to
guide mask prediction and uses a single forward pass to
adapt the network to a specific test video. PML [5] formu-
lates VOS as a pixel-wise retrieval task in the learned fea-
ture embedding space and uses a nearest-neighbor approach
for real-time pixel-wise classification.

The typical matching-based approach STM [32] em-
ploys an offline-learned matching network, and treats past
frame predictions as memory frames for the current frame
matching. CFBI [58] and FEELVOS [44] further im-
prove the matching mechanism by leveraging foreground-
background integration and local-global matching. AOT
[59] employs a long short-term transformer and an identi-
fication mechanism for the simultaneously multi-object as-
sociation. STCN [8] uses the L2 similarity to replace the dot
product used in STM and establishes correspondences only
on images to further improve the inference speed. To ef-
ficiently encode spatiotemporal cues, SSTVOS [14] uses a
sparse spatiotemporal transformer. XMEM [7] further pro-
poses an Atkinson-Shiffrin memory model to enable STM-
like approaches to perform long-term VOS. Although suc-
cesses have been achieved by these matching-based ap-
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Figure 2: The overall architecture of the proposed Simplified Video Object Segmentation (SimVOS) framework. Our SimVOS consists of
a scalable ViT backbone with token refinement for template and search token interaction, a decoder for segmentation mask prediction, and
image/mask projection modules.

proaches, their performance is still limited due to the sepa-
rate feature extraction and interaction designs. In this work,
we show that the above hand-crafted designs can be effec-
tively replaced with a general-purpose transformer architec-
ture, i.e., a vanilla ViT [11] backbone with joint feature ex-
traction and interaction, which can greatly benefit from ex-
isting large-scale pre-trained models (e.g., MAE [21]) and
thus improve the state-of-the-art VOS performance [34, 35].

Large-scale self-supervised pre-training. Large-scale
self-supervised pre-training has achieved significant
progress in recent years. Traditional approaches mainly
focus on designing various pretext tasks for unsupervised
representation learning, e.g., solving jigsaw puzzle [31],
coloring images [62] and predicting future frame [41, 46]
or rotation angle [17]. Recent advances [4, 20, 52, 42] show
that more discriminative unsupervised feature representa-
tions can be learned in a contrastive paradigm. However,
these approaches may ignore modeling of local image
structures, thus being limited in some fine-grained vision
tasks, e.g., segmentation. The generative MAE [21] ap-
proach further improves on the contrastive learning-based
methods by learning more fine-grained local structures,
which are beneficial for localization or segmentation-based
downstream tasks. In this work, our proposed SimVOS can
directly apply the pre-trained models learned by existing
self-supervised methods, which effectively bridges the
gap between the VOS and the self-supervised learning
communities. We also show that MAE can serve as a strong
pre-trained model for the VOS task.

3. Methodology
In this section, we present our proposed Simplified VOS

(SimVOS) framework. An overview of SimVOS is shown
in Fig. 2. We firstly introduce the basic SimVOS base-
line with joint feature extraction and interaction for accu-
rate video object segmentation in Sec. 3.1. Then, in or-
der to reduce the computational cost and improve the infer-
ence efficiency, multiple speed-up strategies are explored in
Sec. 3.2, including the usage of within-frame attention and
a novel token refinement module for reducing the number
of tokens used in the transformer backbone.

3.1. Simplified Framework

As shown in Fig. 2, our basic SimVOS mainly consists
of a joint featrue extraction module and a mask predic-
tion head. We use a vanilla ViT [11] as the backbone of
SimVOS, which is mainly because: 1) ViT naturally per-
forms the joint feature extraction and interaction, which
perfectly meets our design; and 2) a large amount of pre-
trained ViT models can be directly leveraged in the VOS
task, without needing time-consuming model-specific syn-
thetic video pre-training commonly used for previous VOS
methods [8, 7, 32].

In our SimVOS, the memory frames for online match-
ing consist of the initial template frame Z1 ∈ R3×H×W

with ground truth mask M1 ∈ RH×W and the previ-
ous t-th frame Zt ∈ R3×H×W with the predicted mask
Mt ∈ RH×W . Given a current search frame Xt+1, the
goal of SimVOS is to accurately predict the mask of Xt+1
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Figure 3: Overall pipeline of a scalable ViT backbone with within-
frame attention applied to the first L layers, and our token refine-
ment module applied after the L-th layer.

based on the memory frames. Instead of directly inputing
the input frames to the ViT backbone for joint feature ex-
traction and interaction, the input frames are first serialized
into input sequences. Specifically, each input frame is re-
shaped into a sequence of flattened 2D patches with the size
of N × 3P 2 to obtain the reshaped memory sequences (i.e.,
Ẑ1 ∈ RN×3P 2

and Ẑt ∈ RN×3P 2

) and the search sequence
X̂t+1 ∈ RN×3P 2

, where P × P is the patch resolution and
N = HW/P 2 is the number of patches. After applying the
linear projection E ∈ R3P 2×C to convert the 2D patches to
1D tokens with C dimensions and adding the sinusoidal po-
sitional embedding [11], P ∈ RN×C , we get the memory
embeddings, Hz,1 ∈ RN×C and Hz,t ∈ RN×C , and the
search embeddings Hx,t+1 ∈ RN×C .

Encoding mask annotation. To encode the mask annota-
tion in the joint feature extraction and interaction, we use a
linear projection Em ∈ RP 2×C to convert the 2D mask map
to mask embeddings, which can be alternatively regarded
as target-aware positional embeddings. Following the im-
age sequence generation, the 2D mask maps M1 and Mt

are firstly flattened into sequences, i.e., M̂1, M̂t ∈ RN×P 2

.
Next, the mask annotation are incorporated into the input

memory embeddings,

H̄z,1 = M̂1Em +Hz,1, (1)

H̄z,t = M̂tEm +Hz,t. (2)

The obtained memory embeddings and search embeddings
are concatenated together to form the input embeddings
H0 = [H̄z,1; H̄z,t;Hx,t+1] to the vanilla ViT for joint fea-
ture extraction and interaction.
Joint feature extraction and matching. Previous VOS ap-
proaches extract the features of memory and search frames
firstly, and then employ a manually-designed matching
layer to attend the memory features to the search features
for the final mask prediction. In SimVOS, this feature ex-
traction and matching step can be simultaneously imple-
mented in a more elegant and general way via the multi-
head self-attention used in the vanilla ViT.
Mask Prediction. The updated search embedding H̄x,t+1

output from the last layer of ViT is further reshaped to a 2D
feature map. Following the previous approach STM [32],
we use the same decoder that consists of several convolu-
tional and deconvolutional layers for the final mask predic-
tion. Since the decoder requires multi-resolution inputs,
H̄x,t+1 is firstly upsampled to 2× and 4× sizes via the
deconvolution-based upsampling modules used in [32].

3.2. Speed-up Strategies

Despite the favorable segmentation results achieved by
the proposed basic SimVOS, the computational and mem-
ory complexity for multi-head attention on the long se-
quence input H0 ∈ R3N×C can be very high when the
frame resolution is large. To reduce the computational cost,
we explore multiple speed-up strategies including within-
frame attention and token refinement for foreground and
background prototype generation. Fig. 3 illustrates a scal-
able ViT backbone with our speed-up strategies.
Within-frame attention. In the vanilla ViT, each query
token globally attends to all other tokens, thus leading to
quadratic complexity. However, it may be less necessary to
perform the global token interaction in the early layers since
the shallow features mainly focus more on the local struc-
tures instead of catching the long-range dependency. There-
fore, for each query token, we restrict token attendance to
only those within the same frame, and refer to this as within-
frame attention. By applying the within-frame attention, the
complexity of the computation in a specific layer reduces
from O(9N2) to O(N2). In practice, within-frame atten-
tion is used in the first L layers of ViT.
Token refinement module. The within-frame attention re-
duces the overall complexity in the first L layers of ViT.
However, the global self-attention used in the rest of the lay-
ers in ViT still causes the large quadratic complexity. Con-
tinuing to perform within-frame attention for deep layers
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Figure 4: Detailed pipeline of the token refinement module, which
effectively generates a small number of foreground and back-
ground prototypes guided by mask distribution.

alleviates this issue but also causes significant performance
degradation, which is illustrated in Table 2. To address the
aforementioned issues, we propose a token refinement mod-
ule to further reduce the number of tokens in the memory
embeddings, thus leading to a significant reduction of com-
putational cost in the global self-attention layers.

Recent advances [18, 38, 13] in token reduction for effi-
cient image classification show that the tokens can be effec-
tively clustered by using a learnable convolutional module.
In our work, given a memory embedding Hz ∈ RN×C ex-
tracted from the first L layers of ViT using within-frame
attention. our goal is to cluster or segment Hz into several
foreground and background prototypes, in order to reduce
the overall complexity in the following global self-attention
layers. This can be achieved by proposing a learnable to-
ken refinement module for prototype generation guided by
the segmentation mask M . Specifically, the generation of
foreground prototypes can be formulated as:

W = f([Hz, ϕ(M)]) ∈ RN×K , (3)

Ŵ = softmax(σ(W,ϕ(M))) ∈ RN×K , (4)

where K is the number of generated prototypes. [, ] is the
concatenation operation at the channel dimension, the soft-
max function is applied over each column of the input 2D
matrix ∈ RN×K , and ϕ() denotes a downsampling opera-
tion to reshape the mask M in order to meet the same spa-
tial size with Hz , i.e., ϕ(M) ∈ RN×1. f(·) is a clustering
function, which is implemented as a neural network mod-
ule that consists of several convolutional layers and a fully-

connected layer, (see supplementary for details). Inspired
by [18, 38], the convolutional layers are firstly employed to
map the high-dimensional input features to lower feature di-
mension, and the fully-connected layer predicts a prototype
assignment matrix Ŵ in order to map the original features
to K latent prototypes. We also use a post-processing func-
tion σ(·) to suppress weights at non-target locations in W ,
which is achieved by setting the corresponding rows in W to
negative infinity, such that these elements can be suppressed
after applying the softmax function. Finally, the generated
prototypes are generated as:

hz = ŴTHz ∈ RK×C . (5)

For the background prototype generation, we simply re-
place the mask M used in (3) and (4) with the reverse mask
i.e., 1−M . For clarification, we denote the foreground and
background prototypes as hf

z ∈ RKf×C and hb
z ∈ RKb×C

respectively, where Kf and Kb indicate their correspond-
ing number of generated prototypes. As shown in Fig. 3,
we then feed the concatenation of hf

z , hb
z and the search to-

kens Hx,t+1 to the remaining layers of ViT for global self-
attention calculation.

In Table 3, we explore multiple settings of these two
hyper-parameters Kf and Kb, which can be set to relatively
small numbers without degrading performance much. Since
Kf +Kb ≪ N , the overall complexity is further reduced in
the global self-attention layers based on the proposed token
refinement module. For example, given a memory frame
with the size of 480 × 960, there are 1800 tokens in total
when P = 16. Based on our method, only 512 prototypes
are generated (Kf = Kb = 256), which is about 3.5 times
less than the original variant and achieves a better speed-
accuracy trade-off.

We show the overall pipeline of our token refinement
module in Fig. 4 and further visualize the assignment prob-
ability matrix Ŵ for both foreground and background pro-
totype generation in Fig. 6. Interestingly, we find that the
token refinement (TR) module aims to aggregate boundary
features for prototype generation. This observation pro-
vides a potential explanation on which kinds of spatial fea-
tures are more beneficial for online matching in video object
segmentation. It shows that the boundary structures provide
more useful cues for accurate online segmentation.

3.3. Training and Inference

Training on video datasets. Previous approaches [32,
8, 7, 59] commonly adopt two-stage or three-stage train-
ing including synthetic data pre-training using static image
datasets [27, 10, 16, 19, 40], BL30K [6] pre-training and
main training on video datasets. In this work, we observe
that the proposed SimVOS can be well learned by only us-
ing the single stage of main training on video datasets (e.g.,
DAVIS2017 [35] and YouTube-VOS 2019 [56]), which fur-



Pre-trained Method J&F ↑ J ↑ F ↑
Random 68.8 66.3 71.3

ImageNet1K [43] 81.3 78.8 83.8
ImageNet22K [37] 83.5 80.5 86.6

MoCo-V3 [20] 81.5 79.0 83.9
MAE [21] 88.0 85.0 91.0

Table 1: The ablation study on the DAVIS-2017 val set using var-
ious pre-trained models for SimVOS with ViT-Base backbone.

Backbone L TR J&F ↑ J ↑ F ↑ FPS
ViT-Base 0 88.0% 85.0% 91.0% 4.9
ViT-Large 0 88.5% 85.4% 91.5% 2.0
ViT-Base 2 87.4% 84.4% 90.4% 5.7
ViT-Base 2 ✓ 86.0% 83.2% 88.9% 9.4
ViT-Base 4 86.9% 84.0% 89.8% 6.5
ViT-Base 4 ✓ 87.1% 84.1% 90.1% 9.9
ViT-Base 6 86.8% 83.7% 89.9% 7.6
ViT-Base 6 ✓ 86.5% 83.4% 89.5% 10.7
ViT-Base 8 86.5% 83.6% 89.4% 8.8
ViT-Base 8 ✓ 86.0% 83.0% 89.1% 11.4

Table 2: The performance of SimVOS variants on the DAVIS-
2017 validation set. L denotes the number of layers using
within-frame attention. TR indicates the usage of the token re-
finement module, where the default numbers of generated fore-
ground/background prototypes are 384/384.

ther simplifies the training process. Specifically, we ran-
domly sample two frames in a video clip with a predefined
maximum frame gap (i.e., 10), in order to construct the tem-
plate and search frames during the training. Following the
convention [32, 8], the same bootstrapped cross entropy loss
is used for supervision.
Online inference. During the online inference, we use the
first frame and the predicted previous frame as the memory
frames. The overall pipeline is shown in Fig. 2. There are
no additional online adaptation or fine-tuning steps used.

4. Implementation Details
Evaluation metric. We use the official evaluation metrics,
J and F scores, to evaluate our method. Note J is calcu-
lated as the average IoU between the prediction and ground-
truth masks. F measures the boundary similarity measure
between the prediction and ground-truth. The J&F score
is the average of the above two metrics.
Training and evaluation. The proposed SimVOS is eval-
uated on multiple VOS benchmarks: DAVIS-2016 [34],
DAVIS-2017 [35] and YouTube-VOS 2019 [56]. For a
fair comparison with previous works [32, 59], we train
our method on the training set of YouTube-VOS 2019 for
YouTube-VOS evaluation. For DAVIS evaluation, we train
SimVOS on both DAVIS-2017 and YouTube-VOS 2019. In
the evaluation stage, we use the default 480P 24 FPS videos
for DAVIS and 6 FPS videos for YouTube-VOS 2019 on an
NVIDIA A100 GPU.

Kf Kb J&F ↑ J ↑ F ↑ FPS
384 384 87.1% 84.1% 90.1% 9.9
256 256 86.7% 83.6% 89.8% 11.4
128 128 85.3% 82.1% 88.4% 13.5
512 256 86.0% 83.0% 89.1% 9.9
256 512 86.6% 83.7% 89.5% 9.9

Table 3: The ablation study on the number of generated foreground
(Kf ) and background (Kb) prototypes used in the TR module of
our SimVOS, which employs the ViT-Base backbone and uses the
first L=4 layers for within-frame attention. The default prototype
number used in SimVOS is shown in bold.

Variant J&F ↑ J ↑ F ↑
w/o σ(, ) 84.9 81.9 88.0
w/ σ(, ) 87.1 84.1 90.1

Table 4: The ablation study on the DAVIS-2017 val set w/ and w/o
using the post-processing function σ(, ) in Eq. (4).
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We use randomly cropped 384×384 patches from video
frames for training. We use the mini-batch size of 32 with
a learning rate of 2e−5. The number of training iterations
is set to 210, 000 and the learning rate is decayed to 2e−4
at half the iterations. The predefined maximum frame gap
is set to a fixed value, i.e., 10, without using the curriculum
learning schedule as described in [32, 8, 59] for simplicity.
More training details can be found in the supplementary.

5. Experiments
In this section, we conduct ablation studies, state-of-the-

art comparison and qualitative visualization to demonstrate
the effectiveness of our proposed SimVOS.

5.1. Ablation Study

Large-scale pre-trained models. We test several popular
large-scale pre-trained models for initializing the ViT-Base
backbone used in our SimVOS. As can be seen in Table



Method OL S J&F ↑ J ↑ F ↑

OSVOS-S [57] ✓ ✓ 68.0 64.7 71.3
OSVOS [2] ✓ 60.3 56.6 63.9

OnAVOS [45] ✓ 65.4 61.6 69.1
CINM [1] ✓ 70.6 67.2 74.0

AFB-URR [26] ✓ 76.9 74.4 79.3
STM [32] ✓ 81.8 79.2 84.3

RMNet [55] ✓ 83.5 81.0 86.0
HMMN [39] ✓ 84.7 81.9 87.5
MiVOS∗ [6] ✓ 84.5 81.7 87.4

STCN [8] ✓ 85.4 82.2 88.6
STCN∗ [8] ✓ 85.3 82.0 88.6
AOT [59] ✓ 84.9 82.3 87.5

XMEM [7] ✓ 86.2 82.9 89.5
XMEM∗ [7] ✓ 87.7 84.0 91.4
CFBI [58] 81.9 79.3 84.5

JOINT [29] 83.5 80.8 86.2
SSTVOS [14] 82.5 79.9 85.1

FAVOS [9] 58.2 54.6 61.8
STCN− [8] 82.5 79.3 85.7

XMEM− [7] 84.5 81.4 87.6
SimVOS-BS 87.1 84.1 90.1
SimVOS-B 88.0 85.0 91.0
SimVOS-L 88.5 85.4 91.5

Table 5: Comparisons with previous approaches on the DAVIS-
2017 validation set. OL and S represent the online learning and
synthetic data pre-training. ∗ denotes the BL30K [6] pre-training.
− means to remove synthetic data pre-training.

1, the generative MAE [21] model is the optimal choice
compared with the other pre-trained models, including the
supervised ImageNet1K [43], ImageNet22K [37] and the
contrastive learning-based approach MoCoV3 [20]. This
is mainly because fine-grained local structures are learned
in MAE, which is more beneficial for the pixel-wise VOS
task. Training with random initialization severely degrades
the performance, which indicates that the number of train-
ing videos in DAVIS and YouTube-VOS is not sufficient
enough for learning a robust VOS model. Based on these
observations, we use the MAE pre-trained model as the de-
fault initialization for our SimVOS.
Within-frame attention. The within-frame attention (i.e.,
L = [2, 4, 6, 8]) can reduce the overall computational cost
and improve the inference speed. As shown in Table 2 and
Fig. 5, when the number of within-frame attention layers L
is increased, the variants are more efficient but also suffer
from some performance degradation, due to the insufficient
interaction between the memory and search tokens. Con-
sidering the performance-speed trade-off, we use L = 4 as
our default setting for further token refinement.
Token refinement. The token refinement (TR) module can
further reduce the overall complexity in the global multi-

Method OL S J&F ↑ J ↑ F ↑

OSVOS [2] ✓ 80.2 79.8 80.6
OnAVOS [45] ✓ 85.7 - -

CINM [1] ✓ 84.2 - -
STM [32] ✓ 89.3 88.7 89.9

RMNet [55] ✓ 88.8 88.9 88.7
HMMN [39] ✓ 90.8 89.6 92.0
MiVOS∗ [6] ✓ 91.0 89.6 92.4

STCN [8] ✓ 91.6 90.8 92.5
STCN∗ [8] ✓ 91.7 90.4 93.0
AOT [59] ✓ 91.1 90.1 92.1

XMEM [7] ✓ 91.5 90.4 92.7
XMEM∗ [7] ✓ 92.0 90.7 93.2
FAVOS [9] - 82.4 79.5
CFBI [58] 89.4 88.3 90.5

XMEM− [7] 90.8 89.6 91.9
SimVOS-BS 91.5 89.9 93.1
SimVOS-B 92.9 91.3 94.4
SimVOS-L 93.6 92.0 95.3

Table 6: Comparisons with previous approaches on the DAVIS-16
validation set. OL and S represent the online learning and syn-
thetic data pre-training. ∗ denotes the BL30K [6] pretraining. −
means without applying synthetic data pre-training.

head self-attention layers of SimVOS. There are several ob-
servations in Table 2 and Fig. 5: 1) the TR module applied
in the early layer (e.g., L = 2) may cause insufficient mem-
ory token encoding, thus leading to large performance drop;
2) When L ≥ 4, the TR module improves the inference
speed, and achieves comparable results with the baseline.
Number of prototypes. The number of generated fore-
ground or background prototypes may affect the overall per-
formance of SimVOS. We conduct this ablation study in
Table 3. As can be seen, severely decreasing the prototype
number from 384 to 128 causes a relatively large drop of
1.8% J&F . This shows that the TR module needs enough
prototypes (e.g., 384) to represent large foreground or back-
ground regions in a video frame.
Ratio of foreground and background prototypes. We fix
the total number (i.e., 768) of foreground and background
prototypes, and test different ratios (i.e., 1:1, 2:1, and 1:2)
of these two types of prototypes in Table 3. We find that
the variant with balanced foreground and background pro-
totypes achieves the best performance, which is because the
foreground and background prototypes are all essential for
accurate VOS in future frames of a test video.
Impact of σ(, ). In Table 4, we study the impact of with
(w/) or without (w/o) the usage of mask map for foreground
or background prototype generation. For the variant w/o us-
ing the mask map, we remove the post-processing function
σ(, ) in Eq. 4 and directly use W for prototype generation.



Method S J&F ↑ J ↑ F ↑

RMNet [55] ✓ 75.0 71.9 78.1
STCN [8] ✓ 76.1 73.1 80.0
STCN∗ [8] ✓ 79.9 76.3 83.5
AOT [59] ✓ 79.6 75.9 83.3

MiVOS∗ [6] ✓ 78.6 74.9 82.2
XMEM [7] ✓ 81.0 77.4 84.5
XMEM∗ [7] ✓ 81.2 77.6 84.7
CFBI [58] 75.0 71.4 78.7

CFBI+ [60] 78.0 74.4 81.6
XMEM− [7] 79.8 76.3 83.4
SimVOS-BS 79.3 75.1 83.6
SimVOS-B 80.4 76.1 84.6
SimVOS-L 82.3 78.7 85.8

Table 7: Comparisons with previous approaches on the DAVIS-
2017 test-dev. S indicates the usage of synthetic data pre-training.
∗ denotes the BL30K [6] pre-training. − means without applying
synthetic data pre-training. We use 480p videos for evaluation.

As we can see, w/o the usage of mask map, the generated
prototypes are low quality, which degrades the performance
with a margin of xx in terms of the J&F metric. This is
mainly because this arbitrary generation may fix both fore-
ground and background regions, thus generating ambiguous
prototypes and causing more tracking failures.

5.2. State-of-the-art Comparison

In this section, we compare multiple variants of our
SimVOS with state-of-the-art VOS approaches. Specifi-
cally, the variants employ the VIT-Base or ViT-Large as the
backbone, and do not use within-frame attention or the TR
module, which are respectively denoted as SimVOS-B and
SimVOS-L. We also include a full-version variant that em-
ploys the ViT-Base backbone and all the speed-up strategies
including the within-frame attention and the TR module,
denoted as SimVOS-BS.
DAVIS-2017. DAVIS-2017 [35] is a typical VOS bench-
mark which has been widely for state-of-the-art compar-
isons in the VOS community. This dataset consists of 150
sequences and 376 annotated objects in total. The validation
set of DAVIS-2017 contains 30 challenging videos and uses
a multi-object setting, where multiple annotated objects in
the initial video frame are required to track and segment in
the following frames. The test set contains more challeng-
ing 30 videos for evaluation.

The comparison between our SimVOS and previous ap-
proaches on the DAVIS-2017 validation set is shown in
Table 5. Without applying online learning and synthetic
data pre-training, our SimVOS-B and SimVOS-L set new
state-of-the-art J&F scores, i.e., 88.0% and 88.5%, which
are even better than XMEM∗ that applies both BL30K and

Method S J&F ↑ Jseen ↑ Junseen ↑

MiVOS∗ [6] ✓ 82.4 80.6 78.1
HMMN [39] ✓ 82.5 81.7 77.3

STCN [8] ✓ 82.7 81.1 78.2
STCN∗ [8] ✓ 84.2 82.6 79.4

SwinB-AOT [59] ✓ 84.5 84.0 78.4
XMEM [7] ✓ 85.5 84.3 80.3
XMEM∗ [7] ✓ 85.8 84.8 80.3
CFBI [58] 81.0 80.6 75.2

CFBI+ [60] 82.6 81.7 77.1
JOINT [29] 82.8 80.8 79.0

SSTVOS [14] 81.8 80.9 76.7
XMEM− [7] 84.2 83.8 78.1
SimVOS-B 84.2 83.1 79.1

Table 8: Comparisons with previous approaches on the YouTube-
VOS 2019 validation set. S indicates the usage of synthetic data
pre-training. ∗ denotes the BL30K [6] pretraining. − means with-
out applying synthetic data pre-training.

synthetic data pre-training. The results on DAVIS-2017
test-dev is shown in Table 7, our SimVOS-BS achieves
comparable results to XMEM− that employs more mem-
ory frames. The SimVOS-L variant achieves 82.3% J&F
score, which is the leading performance on this dataset by
using 480P videos for evaluation. We believe the strong
performance of SimVOS can be attributed to two main as-
pects: 1) the generative MAE initialization, and 2) the ViT
backbone is suitable for memory and search interaction.

DAVIS-2016. DAVIS-2016 is a subset of DAVIS-2017 and
it follows a single-object setting. For completeness, we also
compare SimVOS with state-of-the-art approaches on the
DAVIS-2016 validation set, which is illustrated in Table
6. The F scores achieved by our SimVOS-F, SimVOS-
B and SimVOS-L are 93.1%, 94.4% and 95.3%, respec-
tively. These results are significantly better than the pre-
vious SOTA approaches under the same training settings.

YouTube-VOS 2019. YouTube-VOS 2019 [56] is a large-
scale VOS benchmark that consists of 507 validation videos
for evaluation. In Table 11, we show that our SimVOS per-
forms favorably against state-of-the-art approaches on the
YouTube-VOS 2019 validation set. Note that our SimVOS-
B is evaluated at the default 6 FPS videos, but still achieves
comparable performance with XMEM− that uses all the
frames for evaluation. Moreover, the Junseen score of
SimVOS-B is 79.1%, outperforming the others under the
same setting (i.e., w/o synthetic data pre-training), which
shows our method can generalize well to unseen objects
during the testing. More results on YouTube-VOS 2019 and
qualitative visualization are included in the supplementary.



(a) Memory Frame w/ Target Mask (b) Fore. Prototype Generation (c) Back. Prototype Generation

Figure 6: Given the (a) memory frame w/ target mask, the visualization of assignment matrix Ŵ ∈ RN×K (Eq. 4) for both (b) foreground
and (c) background prototype generation. Ŵ ∈ is averaged over each row and then upsampled to the image size for visualization. The TR
module tends to aggregate boundary features to generate prototypes for accurate online VOS. More visualization is shown in supplementary.

6. Conclusion

In this work, we present a scalable video object seg-
mentation approach with simplified frameworks, called
SimVOS. Our SimVOS removes hand-crafted designs (e.g.,
the matching layer) used in previous approaches and em-
ploys a single transformer backbone for joint feature ex-
traction and matching. We show that SimVOS can greatly
benefit from existing large-scale self-supervised pre-trained
models (e.g., MAE) and can be served as a simple yet ef-
fective baseline for developing self-supervised pre-training
tasks in VOS. Moreover, a new token refinement module
is proposed to further reduce the computational cost and
increase the inference speed of SimVOS. The proposed
SimVOS achieves state-of-the-art performance on existing
popular VOS benchmarks, and the simple design can inspire
and serve as a baseline for future ViT-based VOS.
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Config Value
optimizer AdamW [23]

base learning rate 2e-5
weight decay 1e-7
droppath rate 0.1

batch size 32
Iterations 210,000

learning rate decay iteration 125,000
learning rate schedule steplr

maximum sampling frame gap 10
training set DAVIS [35] + YT-VOS [56]

Table 9: The training parameters of SimVOS used for DAVIS [34,
35] evaluation.

In this supplementary material, we provide detailed im-
plementation details, additional ablation study, completed
comparison on YouTube-VOS 19, and more qualitative and
quantitative results to demonstrate the effectiveness of the
proposed Simplified VOS framework (SimVOS). Specifi-
cally, Sec. H shows the detailed training details and archi-
tectures for our SimVOS. Sec. J shows the speed compar-
ison on V100 platform. More completed quantitative and
qualitative results are respectively presented in Sec. I and
Sec. K.

H. Implementation Details

Training hyperparameters. The training details of our
SimVOS are shown in Tables 9 and 10. Following the
previous VOS approaches [32, 59, 58], different training
data sources are used to train our SimVOS model, which
depends on the target evaluation benchmark. Specifically,
for DAVIS 16/17 [34, 35] evalution, the combination of the
training splits in both DAVIS-17 [35] and YouTube-VOS 19
[56] is used for training. For YouTube-VOS 19 evaluation,
only the training split in its own dataset is used. During the
training stage, only a pair of frames is randomly sampled
within the predefined maximum sampling frame gap. We
use a larger maximum sampling frame gap (i.e., 15) for the
YouTube VOS evaluation since the videos in this dataset are
commonly longer than the videos in the DAVIS datasets. To
alleviate overfitting and generalize well to unseen objects
in YouTube-VOS, a larger droppath rate (i.e., 0.25) is em-
ployed for training.
Architecture of the token refinement (TR) module. The
TR module consists of a convolutional layer and a fully-
connected layer, which is denoted as f(·) in Eq. 3 of the
main paper. The convolutional layer firstly reduces the input
channel of (C + 1) to C/4 with a 3 × 3 kernel, and the
output is activated with a GELU [22] function. The fully-
connected layer further maps the input channel of c/4 to K
for the following prototype generation, which is detail in

Config Value
optimizer AdamW [23]

base learning rate 2e-5
weight decay 1e-7
droppath rate 0.25

batch size 32
Iterations 210,000

learning rate decay iteration 125,000
learning rate schedule steplr

maximum sampling frame gap 15
training set YT-VOS [56]

Table 10: The training parameters of SimVOS used for YouTube-
VOS 19 [56] evaluation.

Fig. 4 of the main paper.
Training. The training is conducted on 8 NVIDIA A100
GPUs, which takes about 15 hours to finish the whole main
training on video datasets.

I. Results on YouTube-VOS 19

We show the complete results on YouTube-VOS 19 [56]
in Table 11. Our methods perform favorably against state-
of-the-art VOS approaches under the same training setting.
Specifically, SimVOS-B achieves better performance on un-
seen objects than the other approaches, which shows its
generalization ability to new objects. Although our efficient
variant (SimVOS-BS) obtains inferior results to SimVOS-
B, it still outperforms the other transformer-based approach
(SSTVOS) in terms of the J&F metric.

J. Speed Comparison on the V100 platform

Tab. 12 shows the speed using a V100 on 3 datasets.
Despite its lower speed, our SimVOS-B gets best perfor-
mance on 3 VOS benchmarks w/ the naive memory mech-
anism, which demonstrates its strong matching ability. Our
TR module reduces the generated tokens to speed-up VOS.
Other solutions are also possible, e.g., modifying ViT to be
more efficient. We leave this as future work since our aim
is to bridge the gap between VOS and self-supervised pre-
training ViT communities, inspiring future works in VOS
pre-training.

K. Qualitative Visualization

We show more qualitative visualization in Fig. 7. The
visualization of the attention in foreground prototype gen-
eration indicates that the TR module tends to aggregate dis-
criminative boundary features. This can be explained that
the local boundary cues play an essential role in accurate
VOS.



Method S J&F ↑ Jseen ↑ Fseen ↑ Junseen ↑ Funseen ↑

MiVOS∗ [6] ✓ 82.4 80.6 84.7 78.1 86.4
HMMN [39] ✓ 82.5 81.7 86.1 77.3 85.0

STCN [8] ✓ 82.7 81.1 85.4 78.2 85.9
STCN∗ [8] ✓ 84.2 82.6 87.0 79.4 87.7

SwinB-AOT [59] ✓ 84.5 84.0 88.8 78.4 86.7
XMEM [7] ✓ 85.5 84.3 88.6 80.3 88.6
XMEM∗ [7] ✓ 85.8 84.8 89.2 80.3 88.8
CFBI [58] 81.0 80.6 85.1 75.2 83.0

CFBI+ [60] 82.6 81.7 86.2 77.1 85.2
JOINT [29] 82.8 80.8 84.8 79.0 86.6

SSTVOS [14] 81.8 80.9 - 76.7 -
XMEM− [7] 84.2 83.8 88.3 78.1 86.7
SimVOS-BS 82.2 81.7 86.1 76.4 84.7
SimVOS-B 84.2 83.1 87.5 79.1 87.2

Table 11: Comparisons with previous approaches on the YouTube-VOS 2019 validation set. S indicates the usage of synthetic data pre-
training. ∗ denotes the BL30K [6] pretraining. − means without applying synthetic data pre-training. We use the default 480P 6 FPS
videos evaluation on YouTube-VOS 2019.

Method DAVIS-16 DAVIS-17 YT-19
J&F J FPS J&F J FPS J&F Junseen FPS

STCN (NeurIPS‘21) - - 26.9 82.5 79.3 20.2 - - 13.2
SwinB-DeAOT-L (NeurIPS‘22) 89.8 88.7 - 83.8 81.0 15.4 82.0 76.1 11.9

XMEM (ECCV‘22) 90.8 89.6 29.6 84.5 81.4 22.6 84.2 78.1 22.6
SimVOS-BS 91.5 89.9 12.3 87.1 84.1 8.0 82.2 76.4 7.5
SimVOS-B 92.9 91.3 7.2 88.0 85.0 3.5 84.2 79.1 3.3

Table 12: Performance and FPS comparison between our SimVOS and SOTA approaches. All methods use a single training stage on
DAVIS17+YT-19) for fair comparison. FPS is measured on one V100.
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