
CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network

Ruyi Lian Haibin Ling
Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-2424, USA

{rulian,hling}@cs.stonybrook.edu

Abstract

Estimating the 6-DoF pose of a rigid object from a
single RGB image is a crucial yet challenging task. Re-
cent studies have shown the great potential of dense
correspondence-based solutions, yet improvements are still
needed to reach practical deployment. In this paper, we
propose a novel pose estimation algorithm named Check-
erPose, which improves on three main aspects. Firstly,
CheckerPose densely samples 3D keypoints from the sur-
face of the 3D object and finds their 2D correspondences
progressively in the 2D image. Compared to previous so-
lutions that conduct dense sampling in the image space,
our strategy enables the correspondence searching in a
2D grid (i.e., pixel coordinate). Secondly, for our 3D-
to-2D correspondence, we design a compact binary code
representation for 2D image locations. This representa-
tion not only allows for progressive correspondence refine-
ment but also converts the correspondence regression to
a more efficient classification problem. Thirdly, we adopt
a graph neural network to explicitly model the interac-
tions among the sampled 3D keypoints, further boosting
the reliability and accuracy of the correspondences. To-
gether, these novel components make CheckerPose a strong
pose estimation algorithm. When evaluated on the pop-
ular Linemod, Linemod-O, and YCB-V object pose esti-
mation benchmarks, CheckerPose clearly boosts the accu-
racy of correspondence-based methods and achieves state-
of-the-art performances. Code is available at https:
//github.com/RuyiLian/CheckerPose.

1. Introduction

Object pose estimation from RGB images aims to es-
timate the rotation and translation of a given rigid object
relative to the camera. It is crucial in various applications
including robot grasping and manipulation [84, 70, 71], au-
tonomous driving [43, 78, 34], augmented reality [44, 67],
etc. Most existing methods [56, 68, 46, 22, 51, 81, 48, 38,

Dense 3D Keypoints 2D Projections

(1, 1)

(11, 10)

Binary Code Representation

…

bx = 11…, by = 10…

GNN

Figure 1: Illustration of CheckerPose. We evenly sam-
ple dense keypoints from the object surface, and predict the
2D locations in the input image. We design a binary code
representation to progressively localize each keypoint in the
iteratively refined 2D grids. To improve the localization, we
also use graph neural networks to explicitly model the inter-
actions between 3D keypoints. Note: we plot 8 keypoints
for better visualization, while use 512 keypoints in practice.

61] first estimate an intermediate geometric representation,
i.e., the correspondences between 3D object keypoints and
2D image locations, and then recover the object pose us-
ing the Perspective-n-Point (PnP) algorithm. Theoretically,
for a rigid object, four pairs of 3D-2D correspondences can
determine a unique pose [55, 12, 52]. In practice, how-
ever, sparse correspondences easily degrade due to occlu-
sion, background clutter, lighting variation, etc.

Increasing the number of 3D-2D correspondences is
a feasible solution to enhance robustness, especially
when combined with outlier removal mechanisms such as
RANSAC. Recent methods [81, 48, 38, 18, 21, 75, 10]
densely sample 2D image pixels and predict their 3D ob-
ject coordinates. While these dense predictions improve
the robustness of pose estimation, they have several draw-
backs. Firstly, the predictions consider only visible pixels
and ignore global relations between visible and occluded
keypoints, making them unstable when the object is under
severe occlusions. Secondly, estimating the corresponding

ar
X

iv
:2

30
3.

16
87

4v
2 

 [
cs

.C
V

] 
 1

3 
A

ug
 2

02
3

https://github.com/RuyiLian/CheckerPose
https://github.com/RuyiLian/CheckerPose


3D coordinates is nontrivial. Finally, the rich shape prior
information is not effectively encoded.

To overcome the above issues, we propose a novel 6D
pose estimation algorithm, named CheckerPose, which im-
proves dense correspondence with three cooperative com-
ponents: dense 3D sampling, progressive 2D localization
through binary coding, and shape prior encoding with graph
neural network, as illustrated in Figure 1.

For dense correspondence, CheckerPose samples 3D
keypoints on the object surface and then finds their 2D pixel
correspondences in the 3D-to-2D matching way. Compared
to previous solutions that conduct dense sampling in the 2D
image space, our strategy enables more efficient correspon-
dence searching in a 2D grid (i.e., pixel coordinate) using
2D binary coding, as well as explicit shape prior modeling
with graph representation.

Then, to facilitate the localization of dense keypoints,
we propose a 2D hierarchical binary coding to represent a
2D image position. Specifically, we superpose a grid on
the input image and predict which cells contain the desired
keypoints. The precision of the 2D keypoint location is con-
trolled by the resolution of the grid. This novel representa-
tion allows us to refine the correspondence progressively.
We first localize the keypoints in the 2 × 2 grid, and then
iteratively subdivide each cell and localize the keypoints in
the refined grid. Inspired by ZebraPose [64], we use binary
codes on the x and y directions to represent each cell, which
makes the grids have a checkerboard pattern.

Furthermore, to capture the shape prior of the 3D object,
we adopt a graph neural network to explicitly model the in-
teractions among the sampled 3D keypoints and to guide the
progressive correspondence estimation. In particular, we
construct the k-nearest neighbor (k-NN) graph of the dense
keypoints and utilize graph network layers to fuse informa-
tion from a keypoint and its neighbors. By stacking multiple
such layers, we can capture non-local interactions between
invisible and visible keypoints, and thus significantly im-
prove the prediction robustness of invisible keypoints.

To summarize, our main contributions are as follows:
• We propose to localize dense 3D keypoints in the

input image, to establish dense correspondences for
instance-level object pose estimation.

• We design a hierarchical binary coding strategy for 2D
projections, which enables progressive localization of
dense keypoints.

• We utilize graph neural networks to explicitly model
the interactions between 3D keypoints and improve the
predictions of invisible keypoints.

Together, these novel contributions make our CheckerPose
a strong pose estimation algorithm. We conduct extensive
experiments on the popular benchmarks including Linemod
[17], Linemod-Occlusion [2], and YCB-V [79], and Check-
erPose consistently achieves state-of-the-art performances.

2. Related Work

In this section we review previous studies that are closely
related to our work, mainly including different types of pose
estimators and graph neural networks.

Direct Methods. Given an input RGB image, direct
methods estimate the 6D pose of the object in the image
without intermediate geometric representations, e.g., 3D-
2D correspondences. Traditional direct methods mainly
adopt template matching techniques with hand-crafted fea-
tures [25, 13, 16], and thus can not handle textureless ob-
jects well. Recent deep learning based methods utilize fea-
tures learned by CNNs to directly regress 6D pose [79] or
formulate the rotation estimation as a classification task by
discretizing the rotation space SO(3) [72, 63, 28, 65].

Correspondence Guided Methods. Instead of direct es-
timation, correspondence guided methods [50, 56, 68, 46,
22, 51, 21, 23, 81, 48, 38, 75, 10, 64] follow a two-stage
framework: they first predict a set of correspondences be-
tween 3D object frame coordinates and 2D image plane co-
ordinates, and then recover the pose from the 3D-2D cor-
respondences with a PnP algorithm [32, 30, 11, 73, 6].
RANSAC can be used to remove the outliers in the corre-
spondences. Keypoint-localization based methods [50, 56,
68, 46, 22, 51, 21, 23] estimate the 2D coordinates for a
sparse set of predefined 3D keypoints, while dense meth-
ods [81, 48, 38, 75, 10, 64] predict the 3D object frame coor-
dinate of each 2D image pixel. Compared with sparse corre-
spondences, dense correspondences contain richer context
information of the scene and is more robust to occlusion.

Graph Neural Networks for 3D Vision. In 3D vision
tasks, point clouds and meshes are important input data for-
mats since they can efficiently represent complex shapes.
Compared with convolutional neural networks (CNNs),
graph neural networks (GNNs) [62] can handle inputs with
irregular structures and effectively model the long-range de-
pendencies, and thus are widely used for processing point
clouds and meshes. While meshes can be naturally treated
as graphs, a common practice of constructing graphs from
point clouds is to treat each 3D point as graph nodes and
connect each node to its k nearest neighbors [77, 60, 8].
GNN-based methods have been proposed for representa-
tion learning [60, 77, 40, 74], detection [59, 8], segmen-
tation [53, 33], data generation [54, 39], camera pose in-
ference [35, 36], etc. Graph techniques have also been used
for learning dense correspondences between 3D shapes [58]
using both local and global information. For object pose es-
timation, GNNs are mainly used for RGB-D inputs [9, 83]
to enhance the feature extraction from different modalities.
Another recent application is to learn geometric structures
of the sparse keypoints for domain adaptation [82].



FG 
(0)

FI 
(0)

bx (d0+1)
by (d0+1)

M

IO

(a) Initialization

FI FI FI 

bx (1:d0 )
by (1:d0 )

2D
Conv

2D
Conv

2D
Conv

2D
Conv

Edge
Conv

Edge
Conv

Edge
Conv

Edge
Conv

MLP MLP MLP MLP

FG FG FG FG

bx (d0+2)
by (d0+2)

bx (d0+3)
by (d0+3)

bv

(b) Progressive Prediction

FF FF FF

Backbone

Flatten

Feature Fusion Network Module Image Feature Binary CodeFF Graph Embedding

MLP

FI FG

FG

FG

FI 

(c) Feature Fusion

1D Conv
FG

Figure 2: Framework of our progressive dense keypoint localization with graph neural network, i.e., CheckerPose.
Given an RGB image and object detection results, we progressively generate the binary codes representing the 2D locations
of N 3D keypoints. (a) Initial graph embedding generation: we use a CNN backbone network to extract feature F

(0)
I from

the zoomed-in RoI IO, and then transform F
(0)
I to the initial keypoint embeddings F (0)

G in the k-NN graph G. (b) Progressive
prediction: we use a graph neural network to generate the binary code representation in a coarse-to-fine manner. We adopt
an additional CNN decoder network to generate image features with increased resolutions from F

(0)
I , and fuse the features in

the graph neural network based on current predictions. Object segmentation masks M are predicted as an auxiliary learning
task. (c) Feature fusion: to fuse the image feature FI into the graph embeddings FG, for each keypoint, we crop a feature
patch from FI based on the current localization result, and concatenate the flattened feature with keypoint embedding. We
then use a shared MLP to fuse the concatenation and the result is the updated keypoint embedding.

Our work follows the two-stage framework and combines
the strengths of both keypoint-based methods and dense
methods, by localizing a dense set of predefined 3D key-
points to establish dense correspondences. Moreover, it
utilizes GNNs to efficiently model the interactions among
dense 3D keypoints and thus improve the localization in the
input RGB image for monocular object pose estimation.

3. Method
3.1. Problem Formulation and Method Overview

Given an RGB image I and a rigid object O, our goal is
to estimate rotation R ∈ SO(3) and translation t ∈ R3 of
O relative to the calibrated camera. We assume the 3D ge-
ometry information, e.g., the 3D CAD model, is available,
thus we can obtain N(N ≫ 8) keypoints P ⊂ R3 from the
object surface using farthest point sampling (FPS).

We adopt a two-stage pipeline for object pose estimation:
we first predict 2D projection ρ ∈ R2 for each keypoint
P ∈ P , and then regress the rotation and translation from
the 3D-2D correspondences via a PnP solver. For the input
RGB image, we use an off-the-shelf object detector [57, 69]
to detect the object bounding box and extract the zoomed-
in Region of Interest (RoI) IO, following the common prac-

tice in instance-level object pose estimation [38, 75, 10, 64].
Figure 2 illustrates our proposed pipeline. We first process
the input RoI IO by a backbone network to obtain back-
bone feature F

(0)
I and keypoint embedding F

(0)
G in the k-

NN graph G. Then we use graph network layers (i.e., Edge-
Conv [77]) to progressively localize the keypoints, which
are represented as binary codes bv,bx, and by. We also
use a standard CNN decoder to transform F

(0)
I to a series of

image feature maps, and fuse the features in the graph neu-
ral network based on the current predicted locations. The
CNN decoder also outputs object segmentation masks M
as an auxiliary learning task. Finally, we convert the binary
codes to 2D coordinates and use a PnP solver to recover the
pose from the established correspondences. We describe
our method, named CheckerPose due to the checkerboard-
like binary pattern, in details as follows.

3.2. Hierarchical Representation of 2D Keypoints

Establishing 3D-2D correspondences provides an inter-
mediate representation for object pose estimation. In this
work, we focus on localizing a dense set of predefined 3D
keypoints P in the 2D image plane. For N(N ≫ 8) 3D
keypoints P , we first predict whether their 2D projections



3D Keypoint 2D Projection

bx (1) = 0

by (1) = 0

bx (1:2) = 01

by (1:2) = 00

bx (1:3) = 011

by (1:3) = 001

(a) bx = 011, by = 001

(b)

Figure 3: Keypoint location representation. (a) We rep-
resent the 2D projection coordinate as the center of the cell
containing the 2D projection. (b) We iteratively refine the
grid and represent the cell as binary codes bx,by.

appear in the RoI IO, and then localize the keypoints in-
side IO, denoted as PI . In contrast to directly regressing
the precise coordinates, we superpose a 2d × 2d grid S on
the RoI IO and predict which cell s ∈ S contains the 2D
projection ρ (Figure 3 (a)). Then we can use the coordinate
of the cell center to approximate ρ, and only need to predict
the discrete index (ix, iy)(0 ≤ ix, iy ≤ 2d − 1) of the cell
s, which is much easier than precise regression. The local-
ization precision is controlled by the resolution of the grid
S, and approaches the actual 2D projection as d → ∞.

Based on the approximate representation, we can further
localize the keypoint P ∈ PI in a coarse-to-fine manner.
As shown in Figure 3 (b), at the beginning, we superpose
a 2 × 2 grid S(1) on the RoI IO and predict the index of
the cell s(1)P . Then at iteration j (2 ≤ j ≤ d), we increase
the grid resolution from 2j−1 × 2j−1 to 2j × 2j by evenly
splitting each cell s(j−1) ∈ S(j−1) into halves on both x and
y directions. With the prediction of s(j−1)

P in iteration j−1,
we only need to search the corresponding 2× 2 sub-cells to
find s

(j)
P in the refined grid S(j).

Inspired by ZebraPose [64], we use binary codes to con-
cisely represent the hierarchical localization. For the cell
sP in the final 2d × 2d grid S, we use a d-bit binary code
bx to represent the index ix as

ix =

d∑
k=1

bx(k)× 2d−k, (1)

where bx(k) is the k-th bit of bx. We use another d-bit
binary code by to represent the index iy in the same way.
The first j(1 ≤ j ≤ d) bits of bx and by also represent the
cell s(j)P ∈ S(j). We use an additional 1-bit binary code bv

to indicate the existence of the projection ρ in the RoI IO,

where bv = 1 means ρ ∈ IO while bv = 0 means ρ /∈ IO.
Compared with dense representations (e.g.,

heatmaps [50, 46] and vector-fields [51, 22]), our rep-
resentation needs only 2d+1 binary bits for each keypoint,
thus greatly reduces the memory usage for dense keypoint
localization. In addition, during inference, we can effi-
ciently convert the binary codes to the 2D coordinates.
Furthermore, our representation can be naturally predicted
in a progressive way, which allows to gradually improve
the localization via iterative refinements.

3.3. Dense Keypoint Localization via Graph Neural
Network

Modeling the interactions among the keypoints P is cru-
cial for predicting their 2D locations. For the keypoints that
are invisible due to occlusions or self-occlusions, the fea-
tures of the visible ones provide additional clues to infer the
2D locations. However, previous keypoint-based methods
mainly use convolutional neural networks (CNNs), which
can not handle inputs with irregular structure and thus fail
to explicitly capture the interactions among P .

We instead utilize graph neural networks (GNNs) to pro-
cess the features F = {f1, · · · , fN} of N keypoints P .
To construct a graph G from P , we treat each keypoint
Pi ∈ P(1 ≤ i ≤ N) as a graph node, and connect Pi

to its k nearest neighbors in 3D Euclidean space to gener-
ate edges E . We adopt the EdgeConv operation [77] as our
graph network layer, which directly models local interac-
tions between Pi and its neighbors. For edge (i, j) ∈ E , we
compute the feature eij as

eijm = ReLU(θm · (fj − fi) + ϕm · fi), (2)

where eijm is the m-th channel of eij , and θm, ϕm are the
weights of the filters. The feature of Pi is updated by ag-
gregating the edge features as

f
′

im = max
j:(i,j)∈E

eijm, (3)

where f
′

im is the m-th channel of updated feature f
′

i . By
stacking multiple EdgeConv operations, our network can
gradually learn the non-local interactions in a computation-
ally efficient way for dense keypoints P .

As shown in Figure 2 (a), to obtain the initial keypoint
embeddings F

(0)
G in G, we first use a backbone network

to extract a C0 × 2d0 × 2d0 feature map F
(0)
I from RoI

IO, where C0 is the number of the feature channels, and
2d0 × 2d0 is the spatial size. We then reshape F

(0)
I to

C0 × 22d0 by flattening the spatial dimensions, and use a
1D convolutional network layer to obtain a N × 22d0 fea-
ture map, which is regarded as the initial 22d0 -dimensional
embeddings F (0)

G for N keypoints.



After obtaining F
(0)
G , we use a graph neural network to

predict the 1-bit indicator code bv, and progressively gener-
ate the d-bit index codes bx,by. Specifically, at stage 0, we
apply L0 EdgeConv [77] operations to F

(0)
G to get the up-

dated embeddings F (1)
G , and then use shared MLPs to gen-

erate bv and the first d0 bits of bx,by, respectively. Then at
stage j(1 ≤ j ≤ d−d0), we apply Lj EdgeConv operations
to F

(j)
G to obtain F

(j+1)
G , and use shared MLPs to generate

new bits bx(d0 + j), by(d0 + j) for bx,by, respectively.
We regard stage j(1 ≤ j ≤ d − d0) as refinement stage,
since it refines the localization from the low-resolution grid
S(d0+j−1) to the high-resolution one S(d0+j).

Compared with generating all bits at the network out-
put layer, our progressive prediction enables image fea-
ture fusion at each refinement stage. As shown in Fig-
ure 2 (b), starting with the image feature map F

(0)
I with

low spatial resolution 2d0 × 2d0 , we use an additional
CNN-based decoder to progressively generate image fea-
ture maps F (1)

I , · · · , F (d−d0)
I with increased spatial resolu-

tions 2d0+1×2d0+1, · · · , 2d×2d, respectively. We also add
skip connections between the backbone and the decoder to
recover the high-resolution details lost in F

(0)
I . As shown in

Figure 2 (c), at the beginning of the refinement stage j, for
each keypoint P , we select local image feature from F

(j)
I

based on the localization result in the previous stage. We
then concatenate F

(j)
l with the keypoint embedding in the

graph G, and use a shared MLP to fuse the concatenation.
The fused feature is used as the updated keypoint embed-
ding. Since the initial keypoint embeddings F

(0)
G are ob-

tained from F
(0)
I , fusing the local image features in the re-

finement stages provides critical high-resolution details for
fine-grained localization.

3.4. Training

For the 1-bit indicator code bv of keypoint P ∈ P , our
network output b̂v is the probability that bv = 1. We use
binary cross-entropy loss for bv as below:

Lv =
1

N

∑
P∈P

bv log b̂v + (1− bv) log(1− b̂v), (4)

where N is the number of the keypoints. For d-bit index
codes bx,by, since we only localize the keypoints inside
the RoI (i.e., bv = 1), denoted as PI , we compute binary
cross-entropy loss for each bit of bx as

Lx =
1

dNI

∑
P∈PI

d∑
k=1

bx(k) log(b̂x(k))+

(1− bx(k)) log(1− b̂x(k)), (5)

where NI is the number of keypoints inside the RoI, b̂x(k)
is the network prediction for k-th bit of bx. We compute

the loss Ly for by in the same way as Lx.
Besides predicting the 2D projections as binary codes,

we also enforce the network to output object segmentation
masks. To do this, we apply a single CNN layer to the final
image feature map F

(d−d0)
I and obtain a 2×2d×2d output,

which serves as the full segmentation mask Mfull and the
visible one Mvis. We input the network predictions to the
sigmoid function and apply L1 loss as the mask loss Lmask.
Generating the masks can be regarded as an auxiliary task
to facilitate the learning of image features.

The overall loss function L is a combination of Lv , Lx,
Ly , and Lmask as

L = Lv + Lx + Ly + Lmask. (6)

Before training the whole network, we pretrain the layers
that generate bv and the first d0 bits of bx,by. This encour-
ages the backbone network to quickly adapt to the object
keypoints with smaller GPU memory usage, and makes the
initial localization to be good for local image feature fusion
in the refinement stages.

3.5. Inference

During inference, we first discard the keypoints with
bv = 0. Then we convert the binary codes to the cor-
responding cells in the final grid S (Eq. 1), and use the
2D coordinates of the cell centers as the keypoint projec-
tions. In this way, we establish dense 3D-2D correspon-
dences from the network outputs without time-consuming
computation operations, e.g., voting for the vector-field rep-
resentations [51]. Finally we use the RANSAC/PnP [32] or
Progressive-X [1] solvers to obtain the object pose from the
dense 3D-2D correspondences.

We empirically find that for textureless objects with se-
vere self-occlusions, discarding the correspondences out-
side Mvis can improve the pose estimation results. To quan-
tify the self-occlusions of a given object O, we uniformly
sample 2,562 camera viewpoints on a sphere, and use the
Hidden Point Removal (HPR) operator [27] to estimate the
visibility of point P ∈ O from each viewpoint. We then
calculate the proportion of the viewpoints for which P is
visible, denoted as V (P ). If 0.2 ≤ V (P ) < 0.4, then P
is considered to be easily self-occluded. Note we ignore
the points with V (P ) < 0.2, to make our estimation robust
to the classification error of the HPR operator. The overall
self-occlusion of the object O can be computed by

rso(O) =
1

|O|
∑
P∈O

1(0.2 ≤ V (P ) < 0.4), (7)

where |O| is the number of vertices of the object CAD
model, and 1(·) is the indicator function. If rso(O) ≥ 0.5,
i.e., over half part of O is easily to be self-occluded, then
we regard O as severely self-occluded.



4. Experiments
4.1. Experimental Setup

Implementation Details. Our method is implemented us-
ing PyTorch [49] and trained using the Adam optimizer [29]
with a batch size of 32. We pretrain our network for 50, 000
steps with learning rate of 2e-4. We use N = 512 key-
points, and utilize k = 20 nearest neighbors to construct
the k-NN graph G. For the binary code representation, we
set d = 6 and d0 = 3. We resize the input RoIs to 256×256,
and use HRNet [76] as our image feature backbone to ex-
tract 1024×8×8 feature map F

(0)
I . Then we apply L0 = 2

EdgeConv operations to get bv and the first d0 = 3 bits of
bx,by, and obtain the full binary codes after 3 refinement
stages with Lj = 3 (j = 1, 2, 3) EdgeConv operations.

Datasets. We conduct our experiments on three
commonly-used datasets for object pose estimation:
Linemod (LM) [17], Linemod-Occlusion (LM-O) [2], and
YCB-V [79]. LM consists of 13 sequences of real images
with ground truth poses for a single object with background
clutter and mild occlusion. Each sequence contains around
1, 200 images. Following [3], we utilize about 15% images
for training while keeping the rest for testing. We addi-
tionally use 1, 000 synthetic RGB images for each object
during training following [38, 75, 10]. LM-O consists of
1, 214 images from a sequence of LM [17], where ground
truth poses of eight objects with partial occlusion are
annotated for testing. YCB-V is composed of more than
110, 000 real images of 21 objects with severe occlusion
and clutter. Apart from the real training images, we also
utilize the physically-based rendered data following [19]
for training on LM-O and YCB-V.

Evaluation Metrics. We employ the common evalua-
tion metric ADD(-S) for object pose estimation. ADD(-S)
measures whether the average distance between the model
points transformed by the predicted pose and the ground
truth is less than 10% of the object’s diameter (0.1d). For
symmetric objects, ADD(-S) metric computes the deviation
to the closest model point. On YCB-V, we also compute
the AUC (area under curve) of ADD-S and ADD(-S) with a
maximum threshold of 10 cm [79]. On LM, we also report
the n◦, n cm metric, measuring the percentage of predicted
6D poses with rotation error below n◦ and translation error
below n cm. For symmetric objects n◦, n cm computes the
smallest error for all possible ground truth poses [37, 75].

4.2. Ablation Study on LINEMOD Dataset

We present ablation experiments on LM [17] in Table 1
to verify the effectiveness of each module. We also study
the number of keypoint N and the size of neighborhood k
in Supplementary. We train a single pose estimator for all
objects for 120k steps, with a fixed learning rate of 1e-4 for

Method
ADD(-S)

2◦2cm 5◦5cm
0.02d 0.05d 0.1d

GDR-Net [75] 35.5 76.3 93.7 62.1 N/A
SO-Pose [10] 45.9 83.1 96.0 76.9 98.5
EPro-PnP [7] 44.8 82.0 95.8 81.0 98.5

Ours (w/o GNN) 26.4 77.8 95.2 67.7 97.9
Ours (w/o Prog.) 14.1 56.9 85.8 42.3 94.1
Ours (w/o Mfull) 30.2 82.8 96.7 79.3 98.9
Ours (w/o Mvis) 34.1 82.8 96.6 79.1 98.9

Ours (ResNet34) 31.3 80.2 95.6 74.2 98.6
Ours (RANSAC/PnP) 31.1 81.4 96.6 78.4 98.9

CheckerPose (Ours) 35.7 84.5 97.1 79.7 98.9

Table 1: Ablation Study on the LM Dataset.

the first 100k steps and a smaller learning rate of 5e-5 for
the remaining steps. During inference, we utilize the detec-
tion results from Faster-RCNN [57] by [38]. We do not use
any segmentation masks to filter the correspondences for
fair comparison. Without specification, we use Progressive-
X [1] to compute pose from the dense correspondences.

Comparison with State of the Art. As shown in Ta-
ble 1, our method outperforms the state-of-the-art meth-
ods [75, 10, 7] w.r.t. ADD(-S) 0.05d, ADD(-S) 0.1d, and
5◦5cm, and achieves comparable results w.r.t. ADD(-S)
0.02d and 2◦2cm. The improvement of ADD(-S) 0.1d in-
dicates that our method can facilitate the estimation of hard
cases and serve as a good initialization for refinement meth-
ods [37, 26, 80]. Since the 2D coordinates of our esti-
mated correspondences are approximated by the cell centers
(Sec. 3.2), our pose estimation results in terms of ADD(-S)
0.02d may be further improved by increasing the grid reso-
lution.

Effectiveness of Graph Neural Networks. Our network
utilizes GNN layers, e.g., EdgeConv [77], to explicitly
model the interactions between different keypoints. We also
report the result of removing all GNN layers in Table 1.
Without GNN layers, the keypoints still interact indirectly
via local image feature fusion modules, since the keypoints
with close 2D locations share the similar local image fea-
tures. However, the performance of pose estimation de-
grades significantly, demonstrating that it is important to
directly model the keypoint interactions with GNN layers.

Effectiveness of Progressive Prediction. Progressively
generating the binary codes enforces our network to grad-
ually refine the localization in the iteratively subdivided
grids. It also enables image feature fusion based on the
intermediate estimations, which can provide crucial high-
resolution details for fine-grained localization. As shown
in Table 1, the accuracy decreases significantly without



Method PVNet [51] S. Stage [21] Hybrid [61] RePose [26] GDR-Net [75] SO-Pose [10] Zebra [64] Ours

ape 15.8 19.2 20.9 31.1 46.8 48.4 57.9 58.3
can 63.3 65.1 75.3 80.0 90.8 85.8 95.0 95.7
cat 16.7 18.9 24.9 25.6 40.5 32.7 60.6 62.3

driller 65.7 69.0 70.2 73.1 82.6 77.4 94.8 93.7
duck 25.2 25.3 27.9 43.0 46.9 48.9 64.5 69.9

eggbox* 50.2 52.0 52.4 51.7 54.2 52.4 70.9 70.0
glue* 49.6 51.4 53.8 54.3 75.8 78.3 88.7 86.4
holep. 36.1 45.6 54.2 53.6 60.1 75.3 83.0 83.8

mean 40.8 43.3 47.5 51.6 62.2 62.3 76.9 77.5

Table 2: Comparison with State-of-the-art Methods on the LM-O Dataset. We report the Average Recall (%) of ADD(-
S). (*) denotes symmetric objects. We highlight the best result in red color, and the second best result in blue color.

progressively generating the binary codes, which clearly
demonstrates the importance of progressive prediction.

Effectiveness of Object Segmentation Masks. Our net-
work outputs the full segmentation mask Mfull and the vis-
ible one Mvis as auxiliary tasks. As shown in Table 1, the
performance degrades without either Mfull or Mvis. The
ADD(-S) 0.02d metric drops significantly without Mfull, in-
dicating that predicting Mfull facilitates image feature ex-
traction for keypoint localization, since all the keypoints
should be located within Mfull. The degraded performance
without Mvis also implies that predicting Mvis provides im-
portant context information including occlusions.

Impact of Backbone Networks. We report the results of
our method with different backbone networks in Table 1.
After replacing HRNet [76] by ResNet34 [15], our method
still achieves comparable results with state of the art, which
demonstrates the efficacy of our method regardless of the
backbone networks.

Influence of PnP Solvers. We show the results with dif-
ferent PnP solvers during inference in Table 1. Since our
correspondences are established from the binary codes, a
small perturbation of our network prediction can result
in flipped bit values, which may correspond to dramati-
cally different locations in the input RoI. Compared with
RANSAC/PnP [32], Progressive-X [1] contains a spatial co-
herence filter to efficiently remove such outliers, and thus
achieves better performance w.r.t. to all the metrics, espe-
cially ADD(-S) 0.02d.

4.3. Comparison to State of the Art

In this section we present the quantitative results of our
method on LM-O and YCB-V datasets. We train a single
CheckerPose for each object for 380,000 steps with a fixed
learning rate of 1e-4. During inference, we utilize the de-
tections from FCOS [69] provided by CDPNv2 [38].

Experiments on the LM-O dataset. We report the re-
call of ADD(-S) metric for the LM-O dataset in Table 2.
Based on the criterion discussed in Sec. 3.5, we filter out
the correspondences outside the visible segmentation masks
Mvis for textureless objects with severe self-occlusions, in-
cluding can, cat, driller, and eggbox. Without the filtering
operation, the average recall of ADD(-S) of our method is
77.1, which surpasses previous methods. The detailed re-
sults of each object without filtering are provided in supple-
mentary material. The additional filtering operation further
improves the performance of our method. The intuition is
that it is infrequent to observe an easily self-occluded key-
point P in the training images. Besides, due to the lack of
texture, it is also hard to infer the location of P from other
keypoints with distinguishable features. Such objects may
require much more training steps to achieve stable estima-
tions for easily self-occluded keypoints. Simply discarding
correspondences outside Mvis reduces unstable localization
results when our network is trained for limited steps, and
enhances the robustness of pose estimation.

Experiments on the YCB-Video dataset. We report the
averaged metrics of 21 objects in Table 3, and provide de-
tailed results in the suppl.. Based on the criterion discussed
in Sec. 3.5, we use visible segmentation masks to filter cor-
respondences for foam brick. We also apply the filtering
operation to pudding box because it is severely occluded by
gelatin box, which is a distraction object with similar tex-
ture. As shown in Table 3, CheckerPose achieves the best
performance w.r.t. ADD(-S) and AUC of ADD(-S), and is
comparable with state of the art w.r.t. AUC of ADD-S.

4.4. Qualitative Results

In Figure 4, we provide localization results of eight key-
points for the occluded and flipped bowl. While our net-
work directly outputs the 2D locations, the results of other
dense methods [64, 75] are computed by projecting the key-
points using the estimated poses. Figure 4 (a) visualizes
the reprojections of ZebraPose [64], where the keypoints



Method ADD(-S) AUC AUC
ADD-S ADD(-S)

SegDriven [22] 39.0 – –
SingleStage [21] 53.9 – –
CosyPose [31] – 89.8 84.5
RePose [26] 62.1 88.5 82.0
GDR-Net [75] 60.1 91.6 84.4
SO-Pose [10] 56.8 90.9 83.9
ZebraPose [64] 80.5 90.1 85.3
DProST [47] 65.1 – 77.4
CheckerPose (Ours) 81.4 91.3 86.4

Table 3: Comparison on the YCB-Video Dataset. We re-
port the ADD(-S), and AUC of ADD-S and ADD(-S). Fol-
lowing [79], the symmetric metric is used for all objects in
ADD-S while only for symmetric objects in ADD(-S). We
highlight the best result in red color, and the second best re-
sult in blue color. “–” denotes unavailable results.

(a) ZebraPose [64] (b) GDR-Net [75]

(c) CheckerPose (Ours) (d) Ground Truth

Figure 4: Keypoint localization. (a) Keypoint locations
based on the predicted pose of ZebraPose [64]. (b) Key-
point locations based on the pose estimated by GDR-
Net [75]. (c) Keypoint locations output by our network. (d)
The ground truth keypoint locations. Considering the sym-
metry of the bowl, we use the equivalent rotations closest to
our prediction to project the keypoints in (a), (b), and (d).

concentrate on the visible pixels. Since ZebraPose gener-
ates pixel-wise 3D coordinates from the visible regions, it

predicts a drastically wrong pose for the severely occluded
bowl. As shown in Figure 4 (b), the reprojections of GDR-
Net [75] cover the region similar to the ground truth (Fig-
ure 4 (d)). However, the order of the blue keypoint and the
red one changes from clockwise to counterclockwise, indi-
cating the bowl is actually faced up. Since GDR-Net is an
end-to-end method, it may memorize poses that frequently
appear in the training samples. As shown in Figure 4 (c),
our network is capable of localizing the keypoints for the
upside-down object with severe occlusion. More qualitative
results can be found in the Supplementary Material.

4.5. Runtime Analysis

We test the running speed on the LM-O dataset. Given
a 640 × 480 RGB image, we evaluate the speed on a desk-
top with an Intel 3.30GHz CPU and an NVIDIA GeForce
GTX 1080 GPU (8G), which is reasonable in real-world
application. The FCOS detector [69] takes 87 ms for each
image. The runtime of establishing the dense 3D-2D corre-
spondences by our network is 78 ms. RANSAC/PnP [32]
takes only 1 ms to recover pose from the correspondences,
while Progressive-X [1] takes 32 ms. Under the same test-
ing environment, ZebraPose [64] requires 10ms for gener-
ating 3D-2D correspondences by CNN and around 350ms
to estimate pose using Progressive-X. The overall running
time of our method is greatly reduced, because we estab-
lish at most 512 candidate 3D-2D correspondences while
ZebraPose outputs 1282 candidates in the worst case.

5. Conclusion

In this work, we propose a novel way to establish dense
correspondences for object pose estimation, by progres-
sively localizing dense 3D keypoints in the input image.
With dense keypoints including occluded and self-occluded
ones, we comprehensively explore the available geometry
information and enhance the robustness of pose estimation
under severe occlusion. We adopt graph neural networks
to explicitly model the keypoint interactions, and design
a hierarchical binary code representation for the 2D loca-
tions. The experiments on LM, LM-O and YCB-V datasets
demonstrate that our method achieves state-of-the-art per-
formance of instance-level object pose estimation.

Acknowledgement. We thank all reviewers for valuable
comments and suggestions. The work was supported in part
by US National Science Foundation Grants 2006665 and
2128350, and by the Defense Advanced Research Projects
Agency (DARPA) under Agreement No. HR0011-22-9-
0077. This work is also supported in part by the SBU/BNL
Seed Grant Award. Any opinions, findings, and conclu-
sions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of funding agencies.



References
[1] Daniel Barath and Jiri Matas. Progressive-x: Efficient, any-

time, multi-model fitting algorithm. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3780–3788, 2019. 5, 6, 7, 8, 13

[2] Eric Brachmann, Alexander Krull, Frank Michel, Stefan
Gumhold, Jamie Shotton, and Carsten Rother. Learning 6d
object pose estimation using 3d object coordinates. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 536–551. Springer, 2014. 2, 6, 13, 14, 15

[3] Eric Brachmann, Frank Michel, Alexander Krull,
Michael Ying Yang, Stefan Gumhold, et al. Uncertainty-
driven 6d pose estimation of objects and scenes from a
single rgb image. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3364–3372, 2016. 6

[4] Dingding Cai, Janne Heikkilä, and Esa Rahtu. SC6D:
symmetry-agnostic and correspondence-free 6d object pose
estimation. In 2022 International Conference on 3D Vision
(3DV). IEEE, 2022. 15

[5] Pedro Castro and Tae-Kyun Kim. CRT-6D: fast 6d object
pose estimation with cascaded refinement transformers. In
Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), pages 5746–5755,
2023. 15

[6] Bo Chen, Alvaro Parra, Jiewei Cao, Nan Li, and Tat-Jun
Chin. End-to-end learnable geometric vision by backprop-
agating pnp optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8100–8109, 2020. 2

[7] Hansheng Chen, Pichao Wang, Fan Wang, Wei Tian, Lu
Xiong, and Hao Li. EPro-PnP: generalized end-to-end prob-
abilistic perspective-n-points for monocular object pose es-
timation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
2781–2790, 2022. 6

[8] Jintai Chen, Biwen Lei, Qingyu Song, Haochao Ying,
Danny Z Chen, and Jian Wu. A hierarchical graph network
for 3d object detection on point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 392–401, 2020. 2

[9] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, Linlin
Shen, and Ales Leonardis. FS-Net: fast shape-based network
for category-level 6d object pose estimation with decou-
pled rotation mechanism. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1581–1590, 2021. 2

[10] Yan Di, Fabian Manhardt, Gu Wang, Xiangyang Ji, Nassir
Navab, and Federico Tombari. SO-Pose: exploiting self-
occlusion for direct 6d pose estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 12396–12405, 2021. 1, 2, 3, 6, 7, 8

[11] Luis Ferraz, Xavier Binefa, and Francesc Moreno-Noguer.
Very fast solution to the pnp problem with algebraic outlier
rejection. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 501–
508, 2014. 2

[12] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and
Hang-Fei Cheng. Complete solution classification for the
perspective-three-point problem. IEEE transactions on
pattern analysis and machine intelligence, 25(8):930–943,
2003. 1

[13] Chunhui Gu and Xiaofeng Ren. Discriminative mixture-of-
templates for viewpoint classification. In Proceedings of Eu-
ropean Conference on Computer Vision (ECCV), pages 408–
421. Springer, 2010. 2

[14] Rasmus Laurvig Haugaard and Anders Glent Buch. Sur-
femb: Dense and continuous correspondence distributions
for object pose estimation with learnt surface embeddings.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6749–6758,
2022. 15

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 7

[16] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter
Sturm, Nassir Navab, Pascal Fua, and Vincent Lepetit. Gra-
dient response maps for real-time detection of textureless ob-
jects. IEEE transactions on pattern analysis and machine
intelligence, 34(5):876–888, 2011. 2

[17] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian
Conference on Computer Vision (ACCV), pages 548–562.
Springer, 2012. 2, 6, 13

[18] Tomas Hodan, Daniel Barath, and Jiri Matas. EPOS: estimat-
ing 6d pose of objects with symmetries. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11703–11712, 2020. 1

[19] Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann
Labbé, Eric Brachmann, Frank Michel, Carsten Rother, and
Jiřı́ Matas. BOP challenge 2020 on 6D object localization.
European Conference on Computer Vision Workshops (EC-
CVW), 2020. 6, 15

[20] Yinlin Hu, Pascal Fua, and Mathieu Salzmann. Perspective
flow aggregation for data-limited 6d object pose estimation.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 89–106. Springer, 2022. 15

[21] Yinlin Hu, Pascal Fua, Wei Wang, and Mathieu Salzmann.
Single-stage 6d object pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2930–2939, 2020. 1, 2, 7, 8, 16

[22] Yinlin Hu, Joachim Hugonot, Pascal Fua, and Mathieu Salz-
mann. Segmentation-driven 6d object pose estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 3385–3394,
2019. 1, 2, 4, 8, 16

[23] Yinlin Hu, Sebastien Speierer, Wenzel Jakob, Pascal Fua,
and Mathieu Salzmann. Wide-depth-range 6d object pose es-
timation in space. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 15870–15879, 2021. 2



[24] Lin Huang, Tomas Hodan, Lingni Ma, Linguang Zhang,
Luan Tran, Christopher Twigg, Po-Chen Wu, Junsong Yuan,
Cem Keskin, and Robert Wang. Neural correspondence field
for object pose estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 585–603.
Springer, 2022. 15

[25] Daniel P Huttenlocher, Gregory A. Klanderman, and
William J Rucklidge. Comparing images using the haus-
dorff distance. IEEE Transactions on pattern analysis and
machine intelligence, 15(9):850–863, 1993. 2

[26] Shun Iwase, Xingyu Liu, Rawal Khirodkar, Rio Yokota, and
Kris M Kitani. RePOSE: fast 6d object pose refinement via
deep texture rendering. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
3303–3312, 2021. 6, 7, 8, 16

[27] Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of
point sets. ACM Transactions On Graphics (TOG), 26(3):24,
2007. 5, 13

[28] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan
Ilic, and Nassir Navab. SSD-6D: making rgb-based 3d de-
tection and 6d pose estimation great again. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), pages 1521–1529, 2017. 2

[29] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 6

[30] Laurent Kneip, Hongdong Li, and Yongduek Seo. Upnp: An
optimal o (n) solution to the absolute pose problem with uni-
versal applicability. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 127–142. Springer,
2014. 2

[31] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. CosyPose: consistent multi-view multi-object 6d pose
estimation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 574–591. Springer, 2020. 8,
17

[32] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Epnp: An accurate o (n) solution to the pnp problem. Inter-
national journal of computer vision, 81(2):155, 2009. 2, 5,
7, 8, 13

[33] Guohao Li, Matthias Muller, Ali Thabet, and Bernard
Ghanem. DeepGCNs: can GCNs go as deep as CNNs? In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 9267–9276, 2019. 2

[34] Shichao Li, Zengqiang Yan, Hongyang Li, and Kwang-Ting
Cheng. Exploring intermediate representation for monocular
vehicle pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1873–1883, 2021. 1

[35] Xinyi Li and Haibin Ling. PoGO-Net: Pose graph optimiza-
tion with graph neural networks. In IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5875–5885,
2021. 2

[36] Xinyi Li and Haibin Ling. GTCaR: Graph transformer for
camera re-localization. In Proceedings of the European Con-
ference on Computer Vision (ECCV), volume 13670 of Lec-
ture Notes in Computer Science, pages 229–246. Springer,
2022. 2

[37] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.
DeepIM: deep iterative matching for 6d pose estimation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 683–698, 2018. 6

[38] Zhigang Li, Gu Wang, and Xiangyang Ji. CDPN:
coordinates-based disentangled pose network for real-time
rgb-based 6-dof object pose estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 7678–7687, 2019. 1, 2, 3, 6, 7

[39] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh
graphormer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 12939–
12948, 2021. 2

[40] Zhi-Hao Lin, Sheng-Yu Huang, and Yu-Chiang Frank Wang.
Convolution in the cloud: Learning deformable kernels in 3d
graph convolution networks for point cloud analysis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1800–1809, 2020. 2

[41] Lahav Lipson, Zachary Teed, Ankit Goyal, and Jia Deng.
Coupled iterative refinement for 6d multi-object pose estima-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 6728–
6737, 2022. 15

[42] Xingyu Liu, Ruida Zhang, Chenyangguang Zhang, Bowen
Fu, Jiwen Tang, Xiquan Liang, Jingyi Tang, Xiao-
tian Cheng, Yukang Zhang, Gu Wang, and Xiangyang
Ji. GDRNPP. https://github.com/shanice-l/
gdrnpp_bop2022, 2022. 15

[43] Fabian Manhardt, Wadim Kehl, and Adrien Gaidon. ROI-
10D: monocular lifting of 2d detection to 6d pose and metric
shape. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2069–
2078, 2019. 1

[44] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler.
Pose estimation for augmented reality: a hands-on survey.
IEEE transactions on visualization and computer graphics,
22(12):2633–2651, 2015. 1

[45] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2020. 16

[46] Markus Oberweger, Mahdi Rad, and Vincent Lepetit. Mak-
ing deep heatmaps robust to partial occlusions for 3d object
pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 119–134, 2018. 1, 2, 4

[47] Jaewoo Park and Nam Ik Cho. DProST: 6-dof object pose
estimation using space carving and dynamic projective spa-
tial transformer. In Proceedings of the European Conference
on Computer Vision (ECCV), 2022. 8, 16, 17

[48] Kiru Park, Timothy Patten, and Markus Vincze. Pix2Pose:
pixel-wise coordinate regression of objects for 6d pose es-
timation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7668–7677,
2019. 1, 2

[49] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

https://github.com/shanice-l/gdrnpp_bop2022
https://github.com/shanice-l/gdrnpp_bop2022


Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32:8026–
8037, 2019. 6

[50] Georgios Pavlakos, Xiaowei Zhou, Aaron Chan, Konstanti-
nos G Derpanis, and Kostas Daniilidis. 6-DoF object pose
from semantic keypoints. In 2017 IEEE international confer-
ence on robotics and automation (ICRA), pages 2011–2018.
IEEE, 2017. 2, 4

[51] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. PVNet: pixel-wise voting network for 6dof pose
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4561–4570, 2019. 1, 2, 4, 5, 7

[52] Mikael Persson and Klas Nordberg. Lambda twist: An ac-
curate fast robust perspective three point (p3p) solver. In
Proceedings of the European conference on computer vision
(ECCV), pages 318–332, 2018. 1

[53] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel
Urtasun. 3D graph neural networks for rgbd semantic seg-
mentation. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), pages 5199–5208, 2017. 2

[54] Yue Qian, Junhui Hou, Sam Kwong, and Ying He. PUGeo-
Net: a geometry-centric network for 3d point cloud upsam-
pling. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 752–769. Springer, 2020. 2

[55] Long Quan and Zhongdan Lan. Linear n-point camera pose
determination. IEEE Transactions on pattern analysis and
machine intelligence, 21(8):774–780, 1999. 1

[56] Mahdi Rad and Vincent Lepetit. BB8: a scalable, accurate,
robust to partial occlusion method for predicting the 3d poses
of challenging objects without using depth. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), pages 3828–3836, 2017. 1, 2

[57] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. Advances in neural information pro-
cessing systems, 28:91–99, 2015. 3, 6

[58] Mahdi Saleh, Shun-Cheng Wu, Luca Cosmo, Nassir Navab,
Benjamin Busam, and Federico Tombari. Bending graphs:
Hierarchical shape matching using gated optimal trans-
port. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11757–
11767, 2022. 2

[59] Weijing Shi and Raj Rajkumar. Point-GNN: graph neural
network for 3d object detection in a point cloud. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1711–1719, 2020. 2

[60] Martin Simonovsky and Nikos Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3693–3702,
2017. 2

[61] Chen Song, Jiaru Song, and Qixing Huang. HybridPose: 6d
object pose estimation under hybrid representations. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 431–440, 2020. 1, 7

[62] Alessandro Sperduti and Antonina Starita. Supervised neural
networks for the classification of structures. IEEE Transac-
tions on Neural Networks, 8(3):714–735, 1997. 2

[63] Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas.
Render for CNN: viewpoint estimation in images using cnns
trained with rendered 3d model views. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
pages 2686–2694, 2015. 2

[64] Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Rambach,
Nassir Navab, Benjamin Busam, Didier Stricker, and Fed-
erico Tombari. ZebraPose: coarse to fine surface encod-
ing for 6dof object pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6738–6748, 2022. 2, 3, 4, 7, 8,
15, 16, 17, 20

[65] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian
Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3d
orientation learning for 6d object detection from rgb images.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 699–715, 2018. 2

[66] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. Advances in Neural Information Pro-
cessing Systems, 2020. 16

[67] Fulin Tang, Yihong Wu, Xiaohui Hou, and Haibin Ling. 3d
mapping and 6d pose computation for real time augmented
reality on cylindrical objects. IEEE Transactions on Circuits
and Systems for Video Technology, 30(9):2887–2899, 2019.
1

[68] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time
seamless single shot 6d object pose prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 292–301, 2018. 1, 2

[69] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 9627–9636, 2019. 3, 7, 8

[70] Jonathan Tremblay, Thang To, Balakumar Sundaralingam,
Yu Xiang, Dieter Fox, and Stan Birchfield. Deep object pose
estimation for semantic robotic grasping of household ob-
jects. In Conference on Robot Learning, pages 306–316.
PMLR, 2018. 1

[71] Jonathan Tremblay, Stephen Tyree, Terry Mosier, and Stan
Birchfield. Indirect object-to-robot pose estimation from an
external monocular rgb camera. In 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 4227–4234. IEEE, 2020. 1

[72] Shubham Tulsiani and Jitendra Malik. Viewpoints and key-
points. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1510–1519,
2015. 2

[73] Steffen Urban, Jens Leitloff, and Stefan Hinz. Mlpnp - a real-
time maximum likelihood solution to the perspective-n-point
problem. arXiv preprint arXiv:1607.08112, 2016. 2

[74] Nitika Verma, Edmond Boyer, and Jakob Verbeek. FeaSt-
Net: feature-steered graph convolutions for 3d shape anal-



ysis. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2598–2606,
2018. 2

[75] Gu Wang, Fabian Manhardt, Federico Tombari, and Xi-
angyang Ji. GDR-Net: geometry-guided direct regression
network for monocular 6d object pose estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16611–16621, 2021.
1, 2, 3, 6, 7, 8, 15, 16, 17, 20

[76] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution repre-
sentation learning for visual recognition. IEEE transactions
on pattern analysis and machine intelligence, 43(10):3349–
3364, 2020. 6, 7

[77] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
On Graphics (TOG), 38(5):1–12, 2019. 2, 3, 4, 5, 6, 13

[78] Di Wu, Zhaoyong Zhuang, Canqun Xiang, Wenbin Zou,
and Xia Li. 6D-VNet: end-to-end 6-dof vehicle pose es-
timation from monocular RGB images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019. 1

[79] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. PoseCNN: a convolutional neural network for
6d object pose estimation in cluttered scenes. In Robotics:
Science and Systems, 2018. 2, 6, 8, 13, 14, 15, 16, 17

[80] Yan Xu, Kwan-Yee Lin, Guofeng Zhang, Xiaogang Wang,
and Hongsheng Li. RNNPose: recurrent 6-dof object pose
refinement with robust correspondence field estimation and
pose optimization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 14880–14890, 2022. 6

[81] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. DPOD:
6d pose object detector and refiner. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 1941–1950, 2019. 1, 2

[82] Shaobo Zhang, Wanqing Zhao, Ziyu Guan, Xianlin Peng,
and Jinye Peng. Keypoint-graph-driven learning framework
for object pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1065–1073, 2021. 2

[83] Guangyuan Zhou, Huiqun Wang, Jiaxin Chen, and Di
Huang. PR-GCN: a deep graph convolutional network with
point refinement for 6d pose estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 2793–2802, 2021. 2

[84] Menglong Zhu, Konstantinos G Derpanis, Yinfei Yang,
Samarth Brahmbhatt, Mabel Zhang, Cody Phillips, Matthieu
Lecce, and Kostas Daniilidis. Single image 3d object de-
tection and pose estimation for grasping. In 2014 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 3936–3943. IEEE, 2014. 1



6. Supplemental Material
6.1. Hyper-parameters in the Pose Solver

We use both RANSAC/PnP [32] and Progressive-X [1]
when evaluating the results on the LM dataset [17], and
we use Progressive-X for LM-O [2] and YCB-V [79]
datasets. For both pose solvers, we set the threshold of re-
projection error as 2 pixels. We run 150 iterations when
using RANSAC/PnP and run 400 iterations when using
Progressive-X.

6.2. Additional Ablation Experiments on
LINEMOD Dataset

Theoretically, increasing the number of keypoint N
leads to more candidate 3D-2D correspondences and en-
hances the robustness of pose estimation. In our current
implementation, we adopt k = 20 in EdgeConv follow-
ing [77], and N = 512 based on our available computation
resources. We also conduct ablation studies of N and k on
the LM dataset in Table 4, showing that larger N and k help
improve the performance.

N k
ADD(-S)

2◦2cm 5◦5cm
0.02d 0.05d 0.1d

128
10 29.4 81.3 96.4 75.6 98.8
15 29.2 81.0 96.1 74.8 98.6
20 29.8 82.0 96.5 77.6 98.7

256
10 36.0 84.2 96.8 79.1 98.8
15 32.0 83.4 96.8 78.1 98.8
20 33.6 82.9 96.4 75.8 98.8

512
10 30.4 82.0 96.6 76.3 98.7
15 29.9 82.8 96.3 76.4 98.5
20 35.7 84.5 97.1 79.7 98.9

Table 4: Ablation Study of N and k on the LM Dataset.

6.3. Filtering Operation on LM-O and YCB-V

As discussed in the main paper, we empirically find that
for a textureless object O with severe self-occlusions, fil-
tering out the correspondences outside the visible segmen-
tation masks Mvis can improve the pose estimation results.
We quantify the self-occlusions of O using rso(O). As a
common practice, the visibility of point P ∈ O from each
viewpoint can be determined by checking the intersections
between the camera rays and the object mesh. However,
this may produce undesired results for our task. For ex-
ample, the mesh of the bowl in the YCB-V dataset can be
treated as a half sphere with very small thickness. When
sampling the dense keypoints from the surface, we get key-
points from both outer side and inner side. For the key-
point on the inner side of the bowl, it is considered as easily
self-occluded when we use ray intersections to determine

Object rso filtering

ape 0.356 ✗
can 0.650 ✓
cat 0.584 ✓

driller 0.657 ✓
duck 0.483 ✗

eggbox 0.529 ✓
glue 0.362 ✗

holep. 0.354 ✗

Table 5: Quantitative measure rso of the self-occlusions
of the objects on LM-O [2]. Since the objects do not have
strong textures, for the objects with rso ≥ 0.5, we apply
the filtering operation during inference, i.e., discarding the
correspondences outside the visible segmentation masks.

the visibility. However, since the bowl is textureless and
the thickness of the mesh can be ignored, the keypoint is
equivalent to the nearest surface point on the outer side, and
should not be considered as easily self-occluded. Consider-
ing this issue and the slow computation speed, we instead
use Hidden Point Removal (HPR) operator [27] to estimate
the proportion V (P ) of the viewpoints for which P is visi-
ble. For a keypoint with high V (P ), it may be consistently
misclassified as invisible by the HPR operator, so we ignore
the points with V (P ) < 0.2 estimated by the HPR operator.

We report the value of rso(O) for each object O of the
LM-O dataset in Table 5. Since these objects do not have
strong textures, we apply the filtering operation during the
inference for the objects with rso(O) ≥ 0.5.

For the objects that requires filtering operation, we re-
port the ADD(-S) metric without filtering in Table 6. We
also report the results of using different segmentation masks
to filter the correspondences in Table 6. Without the filter-
ing operation, the ADD(-S) values decreases for all the ob-
jects. Since all the 2D projections should be located within
the full segmentation mask Mfull, using Mfull to filter the
correspondences aims to discard the wrong predictions out-
side the object area. However, it does not improve the final
estimations consistently, which indicates that we still need
to discard more unstable correspondences within the object
area.

We report the values of rso for the textureless objects
in the YCB-V dataset in Table 7. According to Table 7,
only one textureless object, i.e., 061 foam brick, requires
filtering operation due to severe self-occlusions.

We further report the ADD(-S) metric w.r.t. the filter-
ing operation for 061 foam brick in Table 8. The ADD(-S)
of 061 foam brick remains the same without filtering op-
eration or using Mfull rather than Mvis in the filtering op-
eration. This observation suggests that the localization of
the easily self-occluded regions may become stable after



Object w/o Filter w/ Filter (Mfull) w/ Filter (Mvis)

can 95.2 95.1 95.7
cat 62.0 61.3 62.3

driller 92.6 92.6 93.7
eggbox 68.8 69.6 70.0

Table 6: ADD(-S) metrics on LM-O [2] w.r.t. the filtering
operation. “w/o Filter” denotes using all predicted corre-
spondences to compute the pose. “w/ Filter (Mfull)” denotes
discarding the correspondences outside the full segmenta-
tion mask Mfull, while “w/ Filter (Mvis)” denotes discard-
ing the correspondences outside the full segmentation mask
Mvis.

Object rso filtering

011 banana 0.240 ✗
019 pitcher base 0.221 ✗

024 bowl 0.498 ✗
025 mug 0.108 ✗

036 wood block 0.438 ✗
037 scissors 0.365 ✗

051 large clamp 0.163 ✗
052 extra large clamp 0.138 ✗

061 foam brick 0.542 ✓

Table 7: Quantitative measure rso of the self-occlusions
of the textureless objects on YCB-V [79]. For the ob-
ject with rso ≥ 0.5, we apply the filtering operation during
inference, i.e., discarding the correspondences outside the
visible segmentation masks.

Object w/o Filter w/ Filter (Mfull) w/ Filter (Mvis)

008 pudding box 66.4 71.0 86.5
061 foam brick 87.2 87.2 87.2

Table 8: ADD(-S) metrics on YCB-V [79] w.r.t. the fil-
tering operation. “w/o Filter” denotes using all predicted
correspondences to compute the pose. “w/ Filter (Mfull)”
denotes discarding the correspondences outside the full seg-
mentation mask Mfull, while “w/ Filter (Mvis)” denotes dis-
carding the correspondences outside the full segmentation
mask Mvis.

380,000 training steps. We further investigate the results of
061 foam brick after different training steps in Table 9. Af-
ter 200,000 steps, the ADD(-S) without filtering is inferior
to the result of discarding correspondences outside Mvis.
This observation implies that the localization of the easily
self-occluded regions are unstable with fewer training steps.

Besides textureless objects with severe self-occlusions,
we also apply filtering operation on 008 pudding box

Steps w/o Filter w/ Filter (Mfull) w/ Filter (Mvis)

200k 86.1 85.4 86.8
380k 87.2 87.2 87.2

Table 9: ADD(-S) metrics of 061 foam brick with differ-
ent training steps. “w/o Filter” denotes using all predicted
correspondences to compute the pose. “w/ Filter (Mfull)”
denotes discarding the correspondences outside the full seg-
mentation mask Mfull, while “w/ Filter (Mvis)” denotes dis-
carding the correspondences outside the full segmentation
mask Mvis.

from the YCB-V dataset. As shown in Figure 5,
008 pudding box is severely occluded by 009 gelatin box.
We regard 009 gelatin box as a distraction object for the
keypoint localization task of 008 pudding box, since these
objects share similar appearances, especially the texts (i.e.,
“JELL-O”). Such severe occlusions by the same distrac-
tion object exist in all the test images of 008 pudding box,
and can be automatically detected by checking the object
detection results. Thus we discard the correspondences out-
side Mvis to remove the unstable localization results due to
the occlusions by the distraction object. We also report the
ADD(-S) metric without filtering and using Mfull in filter-
ing in Table 8. Using either Mfull or Mvis to filter the corre-
spondences improve the pose estimation results compared
with using all predicted correspondences. This indicates
that the filtering operation can remove extreme outliers that
are far from 008 pudding box to improve the pose estima-
tion. Using Mvis in the filtering operations obtains better
results than Mfull, which demonstrates that the localization
results of the keypoints occluded by the distraction object
are not accurate enough for recovering the pose.

6.4. Evaluation of 2D-3D Correspondences

The evaluation results in the main paper focus on the fi-
nal estimated poses. We additionally evaluate the quality
of the established dense correspondences before RANSAC.
Specifically, for each test sample, we reproject the 3D key-
points by the ground truth pose and compute the mean dis-
tance between the reprojection results and predicted 2D lo-
cations. For symmetric objects, we use the equivalent rota-
tion closest to our final estimated pose. To obtain the inlier
ratio of the estimated correspondences, we regard a key-
point as an inlier if its reprojection error is less than 5 pix-
els. We compute the average reprojection error and inlier
ratio for each object and report the average values over the
whole dataset in Table 10.

6.5. BOP Results on LM-O and YCB-V

We report the performance of our method on LM-O and
YCB-Video using the evaluation metrics from BOP chal-



Figure 5: Example of test images for 008 pudding box
from the YCB-V dataset. We visualize the zoomed-in
RoI based on the detection results. For all test images,
008 pudding box (the brown box) is severely occluded by
009 gelatin box (the red box).

Dataset LM LM-O YCB-V

reprojection error (pixel) 3.4 14.4 10.9
inlier ratio (%) 88.4 67.8 39.6

Table 10: Evaluation results of predicted dense corre-
spondences.

lenge [19] in Table 11 and Table 12, respectively. We
mainly select baselines from officially published work. We
also include the results of GDRNPP [42] for reference,
which improves upon GDR-Net [75] with implementation
skills including stronger domain randomization, more pow-
erful detectors, etc., to compensate for the domain gap be-
tween training and test images. Without these implemen-
tation skills, our method still achieves comparable perfor-
mance with the state-of-the-art methods, including the re-
finement based method [41].

6.6. Detailed Results of YCB-V

We report the detailed evaluation metrics of each ob-
ject on YCB-V dataset [79] in Table 13 and Table 14. Our
method outperforms previous methods w.r.t. ADD(-S) and
AUC of ADD(-S), and achieves comparable performance
with state of the art w.r.t. AUC of ADD-S.

6.7. Qualitative Results

We provide additional qualitative results for LM-O [2]
and YCB-V [79] in Figure 6 and Figure 7, respectively.
We render the 3D CAD model based on the predictions of
CheckerPose, and highlight the contour in green. We also
highlight the ground truth contour in blue. For better visu-
alization, we crop the images and we also show the original

Method ARMSPD ARMSSD ARVSD AR

SurfEmb [14] 85.1 64.0 49.7 66.3
Coupled [41] 83.1 63.3 50.1 65.5

Zebra [64] 88.0 72.1 55.2 71.8
NCF [24] – – – 63.2
PFA [20] 83.7 66.1 52.3 67.4

CRT-6D [5] 83.7 64.0 50.4 66.0
GDRNPP [42] 88.7 70.1 54.9 71.3

Ours 87.3 72.3 53.7 71.1

Table 11: Results on LM-O dataset under BOP
setup [19]. The results of Coupled [41] and NCF [24]
are obtained from the original paper, and the results of
other methods are obtained from https://bop.felk.
cvut.cz/leaderboards/. We highlight the best re-
sult in red color, and the second best result in blue color.
“–” denotes unavailable results.

Method ARMSPD ARMSSD ARVSD AR

SurfEmb [14] 77.3 62.0 54.8 64.7
Coupled [41] 85.2 83.5 78.3 82.4

Zebra [64] 86.4 83.0 75.1 81.5
NCF [24] – – – 77.5
PFA [20] 84.9 81.4 75.8 80.7
SC6D [4] 80.4 79.6 69.5 76.5

CRT-6D [5] 77.4 77.6 70.6 75.2
GDRNPP [42] 86.9 84.6 76.0 82.5

Ours 85.3 84.4 70.7 80.1

Table 12: Results on YCB-Video dataset under BOP
setup [19]. The results of Coupled [41] and NCF [24]
are obtained from the original paper, and the results of
other methods are obtained from https://bop.felk.
cvut.cz/leaderboards/. We highlight the best re-
sult in red color, and the second best result in blue color.
“–” denotes unavailable results.

input image on the left for LM-O and YCB-V.
Furthermore, we provide more keypoint localization re-

sults of duck, bowl, and banana in Figure 8. For better vi-
sualization we only plot eight keypoints that are evenly dis-
tributed over the object surface. While our network directly
outputs the 2D locations, the results of other dense meth-
ods [64, 75] are computed by projecting the keypoints using
the estimated poses. Considering the symmetry of the bowl,
we use the equivalent rotations closest to our prediction to
project the keypoints of bowl.

6.8. Failure Cases and Future Work

We visualize typical failure cases in Figure 9. As shown

https://bop.felk.cvut.cz/leaderboards/
https://bop.felk.cvut.cz/leaderboards/
https://bop.felk.cvut.cz/leaderboards/
https://bop.felk.cvut.cz/leaderboards/


Method SegDriven[22] S.Stage[21] RePose [26] GDR [75] Zebra [64] DProST [47] Ours

002 master chef can 33.0 - - 41.5 62.6 - 45.9
003 cracker box 44.6 - - 83.2 98.5 - 94.2
004 sugar box 75.6 - - 91.5 96.3 - 98.3

005 tomato soup can 40.8 - - 65.9 80.5 - 83.2
006 mustard bottle 70.6 - - 90.2 100.0 - 99.2
007 tuna fish can 18.1 - - 44.2 70.5 - 88.9
008 pudding box 12.2 - - 2.8 99.5 - 86.5
009 gelatin box 59.4 - - 61.7 97.2 - 86.0

010 potted meat can 33.3 - - 64.9 76.9 - 70.0
011 banana 16.6 - - 64.1 71.2 - 96.0

019 pitcher base 90.0 - - 99.0 100.0 - 100.0
021 bleach cleanser 70.9 - - 73.8 75.9 - 89.8

024 bowl* 30.5 - - 37.7 18.5 - 68.0
025 mug 40.7 - - 61.5 77.5 - 89.0

035 power drill 63.5 - - 78.5 97.4 - 95.9
036 wood block* 27.7 - - 59.5 87.6 - 58.7

037 scissors 17.1 - - 3.9 71.8 - 62.4
040 large marker 4.8 - - 7.4 23.3 - 18.8
051 large clamp* 25.6 - - 69.8 87.6 - 95.4

052 extra large clamp* 8.8 - - 90.0 98.0 - 95.6
061 foam brick* 34.7 - - 71.9 99.3 - 87.2

MEAN 39.0 53.9 62.1 60.1 80.5 65.1 81.4

Table 13: Detailed results on YCB-V [79] w.r.t. ADD(-S). (*) denotes symmetric objects and “-” denotes unavailable results.

in Figure 9 (a) and (b), the textureless object eggbox from
LM-O dataset is severely occluded by a toy car, and a dis-
traction object with similar color also partially appears in
the input RoI. As a result, the estimated 2D projections are
shifted towards the distraction object. We also present a
failure case of objects with textures in Figure 9 (c) and (d).
The object in interest is 002 master chef can from YCB-V
dataset, which is geometrically symmetric. Though the tex-
ture is almost symmetric as well, the barcode only appears
on one side of the object, which causes the asymmetry. For
the given input RoI, the keypoints are localized in the oppo-
site directions, w.r.t. the central axis.

To improve the localization results, one future direc-
tion is the selection of 3D keypoints. Since we adopt
farthest point sampling algorithm to obtain evenly dis-
tributed keypoints, we ignore other factors to make the
keypoints more representative. For example, the issue of
002 master chef can may be solved by sampling more key-
points in the barcode area. Besides, no positional encod-
ing [45, 66] is leveraged in graph feature aggregation and
image feature fusion operations. Such encoding can pro-
vide additional cues for textureless regions. In future, we
will explore the positional encoding to enhance the keypoint
localization process.



Method CosyPose [31] GDR-Net[75] ZebraPose[64] DProST [47] Ours

Metric AUC of AUC of AUC of AUC of AUC of AUC of AUC of AUC of AUC of
ADD-S ADD(-S) ADD-S ADD(-S) ADD-S ADD(-S) ADD(-S) ADD-S ADD(-S)

002 master chef can - - 96.3 65.2 93.7 75.4 - 87.5 67.7
003 cracker box - - 97.0 88.8 93.0 87.8 - 93.2 86.7
004 sugar box - - 98.9 95.0 95.1 90.9 - 95.9 91.7

005 tomato soup can - - 96.5 91.9 94.4 90.1 - 94.0 89.9
006 mustard bottle - - 100.0 92.8 96.0 92.6 - 95.7 90.9
007 tuna fish can - - 99.4 94.2 96.9 92.6 - 97.5 94.4
008 pudding box - - 64.6 44.7 97.2 95.3 - 94.9 91.5
009 gelatin box - - 97.1 92.5 96.8 94.8 - 96.1 93.4

010 potted meat can - - 86.0 80.2 91.7 83.6 - 86.4 80.4
011 banana - - 96.3 85.8 92.6 84.6 - 95.7 90.1

019 pitcher base - - 99.9 98.5 96.4 93.4 - 95.8 91.9
021 bleach cleanser - - 94.2 84.3 89.5 80.0 - 90.6 83.2

024 bowl* - - 85.7 85.7 37.1 37.1 - 82.5 82.5
025 mug - - 99.6 94.0 96.1 90.8 - 96.9 92.7

035 power drill - - 97.5 90.1 95.0 89.7 - 94.7 88.8
036 wood block* - - 82.5 82.5 84.5 84.5 - 68.3 68.3

037 scissors - - 63.8 49.5 92.5 84.5 - 91.7 81.6
040 large marker - - 88.0 76.1 80.4 69.5 - 83.3 72.3
051 large clamp* - - 89.3 89.3 85.6 85.6 - 90.0 90.0

052 extra large clamp* - - 93.5 93.5 92.5 92.5 - 91.6 91.6
061 foam brick* - - 96.9 96.9 95.3 95.3 - 94.1 94.1

MEAN 89.8 84.5 91.6 84.3 90.1 85.3 77.4 91.3 86.4

Table 14: Detailed results on YCB-V [79] w.r.t. AUC of ADD-S and ADD(-S). As in [79], symmetric metric is used for all
objects in ADD-S while only for symmetric objects in ADD(-S). (*) denotes symmetric objects.



Figure 6: Qualitative results on the LM-O dataset. For each image on the left, we visualize the 6D pose by rendering the
3D CAD models and highlighting the contours on the right. Blue color denotes ground truth and green color denotes the
prediction from CheckerPose.



Figure 7: Qualitative results on the YCB-V dataset. For each image on the left, we visualize the 6D pose by rendering
the 3D CAD models and highlighting the contours on the right. Blue color denotes ground truth and green color denotes the
prediction from CheckerPose.



Figure 8: Visualization of keypoint localization. Each column visualizes the keypoint location results of ZebraPose [64],
GDR-Net [75], our method, and ground truth. While our network directly outputs the 2D locations, the results of other dense
methods [64, 75] are computed by projecting the keypoints using the estimated poses.

(a) Ground Truth (b) Prediction (c) Ground Truth (d) Prediction

Figure 9: Failure cases. We provide the localization results of eight keypoints that are inliers of the estimated poses.


