
Linear-Covariance Loss for End-to-End Learning of 6D Pose Estimation

Fulin Liu
Beihang University

liufulin@buaa.edu.cn

Yinlin Hu
MagicLeap

yhu@magicleap.com

Mathieu Salzmann
EPFL, ClearSpace

mathieu.salzmann@epfl.ch

Abstract

Most modern image-based 6D object pose estimation
methods learn to predict 2D-3D correspondences, from
which the pose can be obtained using a PnP solver. Because
of the non-differentiable nature of common PnP solvers,
these methods are supervised via the individual correspon-
dences. To address this, several methods have designed
differentiable PnP strategies, thus imposing supervision on
the pose obtained after the PnP step. Here, we argue that
this conflicts with the averaging nature of the PnP problem,
leading to gradients that may encourage the network to de-
grade the accuracy of individual correspondences. To ad-
dress this, we derive a loss function that exploits the ground
truth pose before solving the PnP problem. Specifically, we
linearize the PnP solver around the ground-truth pose and
compute the covariance of the resulting pose distribution.
We then define our loss based on the diagonal covariance
elements, which entails considering the final pose estimate
yet not suffering from the PnP averaging issue. Our ex-
periments show that our loss consistently improves the pose
estimation accuracy for both dense and sparse correspon-
dence based methods, achieving state-of-the-art results on
both Linemod-Occluded and YCB-Video.

1. Introduction
Estimating the 6D pose of 3D objects from monocular

images is a core computer vision task, with many real world
applications, such as robotics manipulation [53, 54], au-
tonomous driving [9, 48] and augmented reality [10, 32].
Although this task can be facilitated by the use of RGBD
input, depth sensors are not ubiquitous, and thus 6D ob-
ject pose estimation from RGB images remains an active
research area.

With the development of deep neural networks (DNNs),
early methods [1, 14, 26, 49] formulated pose estima-
tion as a regression problem, directly mapping the in-
put image to the 6D object pose. More recently, most
works [5, 21, 23, 33, 35, 38, 39, 41, 42, 43, 44] draw inspi-
ration from geometry and seek to predict 2D-3D correspon-

Image Noisy 2D-3D matching Posterior
distribution

Residual variances of
correspondences

Solution
distribution

loss

pose

p g.t.est.

DNN

Ground truth
pose (g.t.)

PnP

Linearized
PnP

p
loss

g.t.

pose

Figure 1. Difference between other differentiable PnP losses
and our proposed loss. Other methods (first row) first solve for
the object pose from noisy correspondences, and then compute the
loss based on the resulting pose and the ground truth. By con-
trast, we (second row) utilize the ground-truth pose to estimate
the residual variance of the correspondences and compute the co-
variance of the pose distribution. We define our loss based on the
diagonal elements of this covariance.

dences, from which the 6D pose can be obtained by solving
the Perspective-n-Points (PnP) problem. While effective,
these methods supervise the training process with the indi-
vidual correspondences, and not with the ground-truth pose
itself, as standard PnP solvers are not differentiable.

To enable end-to-end training, several attempts have
been made to incorporate the PnP solver as a differentiable
network layer [3, 4, 6]. While these methods make it possi-
ble to employ pose-driven loss functions to train the DNN,
they only leverage the optimal pose as supervision, thus not
imposing constraints on other pose candidates. In [7], this
was addressed by deriving a loss function based on the pos-
terior pose distribution, encouraging a larger posterior for
the ground truth and smaller posteriors for the other poses.

Nevertheless, to the best of our knowledge, all of these
differentiable PnP layers have a common property: They
first solve the PnP problem to obtain either the pose [3, 4, 6]
or the posterior pose distribution [7], and then compute the
error to be backpropagated based on a dedicated loss func-

ar
X

iv
:2

30
3.

11
51

6v
2

 [
cs

.C
V

]
 8

 O
ct

 2
02

3

ො𝑎1 𝑎 ො𝑎2ത𝑎

averaging

−
𝜕

𝜕ത𝑎
−

𝜕

𝜕 ො𝑎2
−

𝜕

𝜕 ො𝑎1

Figure 2. Gradients after averaging. In this toy example, the
gradient will drive â2 away from the true a value, although ā is
driven closer to a.

tion and the ground-truth pose. That is, they introduce the
ground-truth information only after the pose has been com-
puted. While this may seem a natural strategy when incor-
porating a differentiable layer, we argue that this conflicts
with the averaging nature of the PnP problem, which aggre-
gates multiple noisy measurements into a single estimate.

To illustrate this, let us consider a simpler problem with
two noisy measurements, â1 and â2, of a value a, and seek
to minimize the distance between the average value ā =
(â1 + â2)/2 and a, i.e., |ā− a|. As â1 and â2 contribute to
the loss in the same manner, they are updated with the same
gradient, irrespectively of their individual error w.r.t. a. For
example, as depicted in Fig. 2, if â1 and â2 are on either side
of a, the gradient will drive one of these estimates further
from the true a value, i.e., degrade the individual prediction
quality of this estimate.

In the case of PnP, 4 2D-3D correspondences are in gen-
eral sufficient to obtain a unique pose [28]. If more than
4 correspondences are provided, the PnP solver performs a
form of “averaging”, and thus may yield a similar effect as
in the previous toy example: It may encourage a decrease
in accuracy of some of the correspondences, thus essentially
providing confusing signal in the network training process.
While this can be alleviated by using the pose-driven loss
in conjunction with correspondence-level supervision, this
strategy circumvents the problem instead of addressing it.

By contrast, in this paper, we introduce an approach to
explicitly tackle the gradient issue arising from the averag-
ing process of the PnP problem. To this end, we leverage the
covariance of the pose distribution computed by exploiting
the ground-truth pose before solving for the pose, as illus-
trated by Fig. 1. Given noisy 2D-3D correspondences as
input to the PnP solver, we consider the distribution of PnP-
computed poses around the ground-truth one. We then ap-
proximate the covariance of this distribution by linearizing
the PnP solver around the ground truth. This lets us de-
sign a loss function that minimizes the diagonal covariance
elements, which entails minimizing the 2D-3D correspon-
dence residuals while nonetheless considering the pose esti-
mated via PnP. Our formalism also applies to the weighted
PnP scenario, allowing us to compute weights for the in-
dividual correspondences so as to emphasize the ones that
benefit the pose estimate.

Our experiments on several datasets and using both

sparse and dense correspondence based methods evidence
the benefits of our approach. In particular, applying our
loss to the state-of-the-art ZebraPose [43], lets us achieve
state-of-the-art performance on both the LM-O and YCB-
V datasets. Our code is available at https://github.
com/fulliu/lc.

2. Related Work
In this section, we focus on the geometry-driven meth-

ods, which are the most relevant to our core contributions.
Geometry-driven methods solve the pose estimation task
by first extracting 2D-3D correspondences from RGB im-
ages, and then computing the 6D pose using a PnP solver.
They can be roughly categorized into sparse keypoints-
based methods and dense prediction ones.

Sparse Correspondences based Estimation. Sparse
keypoints-based methods predict the 2D projected locations
of predefined 3D keypoints. Standard 3D keypoint choices
include the object centroid, the corners of the object bound-
ing box, semantic keypoints, or keypoints sampled from
the object model, e.g., via the farthest point sampling algo-
rithm [41]. Specifically, BB8 [42] predicts the image loca-
tions of the 8 corners of the object bounding box; Bugra et
al. [44] add the centroid of the object 3D model to the corre-
spondence list; Pavlakos et al. [39] use heatmaps to predict
the 2D locations of semantic keypoints. A voting scheme is
also utilized to aggregate multiple predictions for the same
2D point so as to improve robustness to partial occlusions.
Oberweger et al. [35] combine different heatmap predic-
tions generated from different image patches; Hu et al. [23]
aggregate the 2D keypoint predictions from all pixels be-
longing to the given target; Similarly, PVNet [41] regresses
the vector-field pointing from each object pixel to the 2D
locations. Chen et al. [5] combine heatmap-based keypoint
predictions at different scales and use occlude-and-blackout
data augmentation to boost occlusion robustness. All of
these methods use a traditional PnP solver as second stage,
with the exception of Hu et al. [22] that replaces the PnP
solver with an MLP, enabling end-to-end training of the
whole pipeline.

Dense Correspondences based Estimation. Methods
based on dense correspondences predict pixel-wise 3D ob-
ject coordinates inside the object instance mask. iPose [21]
achieves this by first cropping the image patch contain-
ing the target based on the instance mask; Pix2Pose [38]
uses the 2D image bounding box from a detector to crop
the object, and then regress both the 3D coordinates and
their errors, using generative adversarial training for oc-
clusion robustness. Similarly to the sparse methods, the
PnP solver can be replaced by an MLP. CDPN [30] uses
an MLP to regress the object translation but a PnP solver
to compute the rotation. When an MLP is used, the cor-
respondences are not restricted to 2D-3D points. GDR-

https://github.com/fulliu/lc
https://github.com/fulliu/lc

net [46] additionally feeds surface region attention maps
into an MLP-based Patch-PnP module. Based on GDR-
Net, SO-Pose [12] exploits a self-occlusion map, replacing
the surface region attention maps as another input modality
to exploit object self-occlusions in pose estimation. While
all previous works directly regress the 3D object coordi-
nates, DPOD [51] regresses a dense UV texture map, the
UV values are further mapped to predefined 3D coordinates.
EPOS [19] divides object surface into fragments and pre-
dicts both fragments and local coordinates relative to the
fragments. ZebraPose [43] proposes a hierarchical binary
vertex encoding defined by grouping surface vertices. A
segmentation network is employed to predict such codes in
a coarse-to-fine manner. 2D-3D correspondences are thus
extracted by predicting pixel-wise codes inside the object
mask and mapping the codes to 3D coordinates.

End-to-End Learning with PnP Solvers. The PnP
solver is typically treated as a non-differentiable layer, mak-
ing it impossible to impose loss functions directly on the
pose. Instead, surrogate loss functions are used in the
first stage, encouraging the network to generate correct 2D-
3D correspondences, but discarding information about the
global object structure and the subsequent PnP step. Never-
theless, several attempts at differentiating through the PnP
solver have been made. To this end, Brachmann et al.
[3] turn to numerical central differences, which introduce
a computational burden. In their subsequent work [4], the
authors instead rely on approximations from the last step of
the Gauss-Newton iterations. MLP-based solvers [12, 30,
22, 46], where target pose is regressed from input geometry
features are also deployed. Although these methods provide
more flexibility on input modalities, it is hard to further im-
prove their accuracy because of the lack of precise geometry
model. Chen et al. [6] observe that the gradient of the op-
timal pose can be calculated by applying the implicit func-
tion theorem [27] around the optimal solution. By contrast,
EPro-PnP [7] relies on a loss function based on the whole
posterior pose distribution instead of only its maximum, i.e.,
the true pose. However, as discussed in Section 1, the aver-
aging nature of PnP solvers makes loss functions based on
the PnP solution suboptimal, as they will lead to gradients
that degrade the accuracy of some of the 2D-3D correspon-
dences. This is what we address in this paper.

3. Method

3.1. Overview

Let us now describe our method. To this end, we start
with a general geometry-driven approach to 6D object pose
estimation. Given a single RGB image, the first stage of
geometry-driven 6D pose estimation pipelines aims to pre-
dict N noisy 2D-3D correspondences, potentially with as-

sociated weights. These can be expressed as

x =
[
xT
1 xT

2 · · · xT
N

]T ∈ R2N , (1)

z =
[
zT
1 zT

2 · · · zT
N

]T ∈ R3N , (2)

w =
[
wT

1 wT
2 · · · wT

N

]T ∈ R2N , (3)

where {xi, zi,wi} encodes the i-th correspondence with
weight. Specifically, zi is the 3D object point, xi is its 2D
projection, and wi is the associated weight. A PnP solver,
compactly denoted by g(x, z,w), can then be thought of
as producing a maximum likelihood estimate of the pose y,
relying on the sum of the squared reprojection errors as a
negative log likelihood (NLL). That is, we can write

g(x, z,w) = argmin
y

1

2

N∑
i

∥wi ◦ ri∥2 , (4)

where
ri = xi − π(zi,y) (5)

is the reprojection residual for the i-th correspondence given
pose y, π(zi,y) is the perspective projection involving the
camera intrinsics, and ◦ denotes the element-wise product.

If more than 4 correspondences are supplied, the PnP
problem is over-determined, and the optimal solution can
be thought of as a form of “weighted average” of the candi-
date poses obtained from all possible minimal correspon-
dence sets. When averaging is involved, penalizing the
difference between the obtained pose and the ground truth
does not guarantee to yield gradient directions that improve
all the correspondences. In fact, Chen et al. [6] illustrated
cases where the final pose has successfully converged to the
ground truth while the correspondences had not.

To overcome this, we propose to introduce the ground
truth before solving the PnP problem and estimate the so-
lution distribution around the ground-truth pose. This lets
us build a loss function on top of this distribution, specifi-
cally, based on the distribution covariance. We discuss this
in detail below.

3.2. Covariance of the Pose Distribution

Linear Approximation of the PnP Solver. Let
{x, z,w} denotes a set of noisy correspondences with
weights, and ygt be the ground-truth pose. Then, follow-
ing a first-order Taylor expansion, the solution y obtained
by a PnP solver g(x, z,w) can be approximated as

y = ygt +A(z,w) · rgt , (6)

where rgt ∈ R2N×1 is the residual vector given by rgt =
x − xp, with xp,i = π(zi,ygt). A(z,w) encodes the gra-
dient of pose y w.r.t. the perfect 2D locations xp, i.e.,

A(z,w) =
∂y

∂x
=

∂g(x, z,w)

∂x

∣∣∣∣
x=xp

. (7)

which can be computed following the implicit function the-
orem [6, 27].

Pose Distribution and Covariance. Looking at Eq. 6
reveals that, in our linearized model, the pose estimate is
computed from a linear combination of the residuals in rgt.
Let M ∈ R2N×2N be the covariance matrix of the residuals.
Then, the pose covariance matrix C is given by

C = A(z,w) ·M ·A(z,w)T , (8)

and its expected value is ygt.
This formalism still requires us to define the residuals

covariance M . To this end, we assume independence of the
measurements, and express M as the diagonal matrix

M = diag{rgt ◦ rgt}. (9)

During the calculation of the coefficient matrix A(z,w),
both the object 3D structure and the properties of the PnP
solver are exploited. Furthermore, A(z,w) is evaluated
with perfect correspondences at the ground-truth pose ygt,
eliminating the need to solve the PnP problem, since ygt is
the solution. This makes the covariance very fast to evalu-
ate. It is worth noting that 3D coordinates vector z is treated
as a constant during the calculation of the coefficient matrix
A(z,w), even if z is the output of the DNN’s first stage, as
is the case with dense prediction frameworks. This means
that no gradient will be propagated from A to z.

3.3. Linear-Covariance Loss

Pose Representation. Different representations of the
6D pose have been proposed in the past [15, 29, 31, 37, 52].
The mathematical form of the pose covariance matrix in
Eq. 8 is valid for any such representation. Nevertheless, to
simplify the presentation of our loss function, we now dis-
cuss the representation that will be used in our experiments.

Specifically, we advocate for the use of a representa-
tion that reflects the evaluation metric of the target task. In
particular, considering robotics applications where 3D error
matters, we represent the pose with the transformed 3D co-
ordinates of the object bounding box corners. That is, we
write

y =
[
T (b1;R, t)T · · · T (b8;R, t)T

]T ∈ R24 , (10)

where bi is a 3D bounding box corner, and T (·;R, t) is
rigid transformation performed with a pose encoded with a
rotation matrix R and a translation vector t, as would be
output by a PnP solver.

Covariance Loss. Given the covariance matrix C ∈
R24×24, a natural choice of loss function is trace(C), i.e.,
the sum of the diagonal covariance elements. This is be-
cause each diagonal element of the covariance matrix en-
codes the square error of the corresponding pose parame-
ter, i.e., the square of its difference w.r.t. the ground-truth

value. Such a square error, however, is sensitive to outliers,
and does not reflect the nature of our pose representation,
i.e., the fact that it contains 8 3D point coordinates and not
24 independent values.

Taking this into account, we therefore define our covari-
ance loss as

Ecov(w, rgt) =
1

8

8∑
i=1

√√√√ 3i∑
j=3i−2

Cjj , (11)

which we express as a function of w and rgt to indicate
that the gradient is computed w.r.t. only w and rgt, both of
which depend on the network parameters, while all other
quantities involved are treated as constants during back-
propagation.

Weight-related Losses. Minimizing only the loss
function of Eq. 11 does not sufficiently constrain the
weights w, as for example, scaling them does not affect the
solution of Eq. 4. Recall that, in linearly weighted least
square problems, the weights are typically taken to be in-
versely proportional to the residual errors. Therefore, we
propose to treat the weights as priors on the reprojection er-
rors, and define a loss based on the covariance Cprior of the
pose prior.

One way to compute Cprior would consist of re-defining
the residuals as the inverse of the weights and reusing Eqs. 9
and 8. Instead, we approximate Cprior as the inverse Hes-
sian H−1 of the NLL in Eq. 4 at ygt [40], i.e.,

Cprior = H(ygt)
−1. (12)

This formulation is more accurate than using the inverse
weights and more efficient since H(ygt)

−1 is already eval-
uated when linearizing the PnP solver. We then define a
prior loss as

Eprior(w) =
1

8

8∑
i=1

√√√√ 3i∑
j=3i−2

Cprior,jj . (13)

We further seek to supervise the weights to encourage
them to benefit the final pose estimate obtained by the PnP
solver. To achieve this, we rely on our linearized PnP solver
and compute an error vector

elinear(w) = y − ygt = A(z,w) · rgt ∈ RK . (14)

We then write a corresponding linear loss as

Elinear(w) =
1

8

8∑
i=1

√√√√ 3i∑
j=3i−2

e2linear,j . (15)

Note that the losses of Eqs. 13 and 15 are considered to
be functions of w only, i.e., with the residuals rgt detached
from gradient computation.

pool, linear, exp

softmax

scale

co
nv

conv ……

dense xyz sparse heatmaps dense bitmaps

dense weights

encoder-decoder
(GDR-Net or

ZebraPose)

Figure 3. Overall network structure. Our experiments share a
common pipeline, with differences in the detailed network struc-
tures and parameters. We also regress dense visibility masks in the
dense correspondence cases, which is omitted here for simplicity.

Linear-Covariance Loss. We write the final Linear-
Covariance (LC) loss following a Laplace NLL formalism.
That is, we exploit the Laplace NLL loss, originating from
the Laplace distribution and expressed as

Lnll = log(b) +
|x− u|

b
, (16)

where |x− u| is the error of x, and b is a scale parame-
ter acting as a prior prediction of the error. The Laplace
NLL loss encourages a small error and a scale parameter
equal to the error. In our context, it translates to the linear-
covariance loss

LLC = log(Eprior) + 0.5 · Ecov + Elinear

Eprior
. (17)

Ultimately, this loss seeks to minimize the sum of the co-
variance error and linear error, while encouraging the prior
error to reflect this sum.

4. Experiments
We employ our linear-covariance loss in both dense and

sparse correspondence-based methods. To this end, we
use GDR-Net [46] as a first dense correspondence base-
line, from which we build a competitive sparse correspon-
dence baseline by replacing the GDR-Net output with 2D
keypoint heatmaps. Furthermore, we exploit our linear-
covariance loss in the ZebraPose [43] framework, allowing
us to achieve state-of-the-art performance.

4.1. Network Structure

As illustrated by Fig. 3, the networks used in our ex-
periments, whether based on GDR-Net or ZebraPose, take
as input a cropped image region within a detected target
bounding box. An encoder-decoder network is used to ex-
tract geometry feature maps from this input patch. The spe-
cific network structures follow those of the baseline meth-
ods. We use the same structure as EPro-PnP [7] for dense

p: 0.2, 0.8, 0.8

vertex table
c: 0, 1, 1 𝑥!

𝑦!
𝑧!

p: 0.8, 0.4, 0.2
g.t.: 1, 1, 1

w: 4, 2, 1

𝑥",!
5.8

p: 0.1, 0.8, 0.1
g.t.: 0, 1, 0

w: 4, 2, 1

𝑦",!
2.1

Bit 2 Bit 1 Bit 0

object mask

RGB patch

xyz map

(a) Global vertex encoding

(b) Coordinate wise encoding - x direction

(c) Coordinate wise encoding – y direction

Bit 0Bit 1Bit 2

Figure 4. Binary vertex encoding schemes. (a) Global vertex en-
coding. Vertex codes are used as indices of the vertex table for
coordinates lookup. (b) Coordinate wise encoding. Treating the
vertex codes as normalized object coordinates, we keep the proba-
bility of the most significant mispredicted bit un-rounded and cor-
rect other bits before weighted summation. (c) If all predictions
are correct, the least significant bit is kept un-rounded. In this fig-
ure, “p” is short for “probability”, “c” is “code”, “w” is “weight”,
and “g.t.” is “ground-truth”. We omit the z direction for simplicity.

weights regression, obtaining the weights using a scaled
spatial Softmax. For methods whose loss functions cannot
fully supervise the weights, we remove the scale branch,
using the output of the Softmax as weights, which further
constrains the weights to sum up to 1. For dense correspon-
dence methods, the dense xyz or dense bitmaps are used
for correspondence extraction with weights from the dense
weights channel. The visibility mask channel is employed
for correspondence selection. For sparse correspondence
methods, we only keep sparse heatmaps, each of which cor-
responds to a specific 2D keypoint. As the network acts on
detected target image patches, we use the same setting of
GDR-Net and Zebrapose, which is mainly based on Faster
R-CNN [17] and FCOS [45].

4.2. Implementation Details

Correspondence Extraction. With GDR-Net, dense
correspondences can be directly obtained from the 3D co-
ordinates and associated weights output by the network.
When weights are not available, the correspondences are se-
lected based on the visibility mask. In the sparse case, key-
point locations and their standard deviations are estimated
from the heatmaps with a DSNT [34] layer. We use the
inverse of the standard deviations of the 2D keypoint pre-
dictions as weights.

Coordinate-wise Binary Encoding. As illustrated in
Fig. 4 (a), the original ZebraPose recursively subdivides the
object surface N times in a coarse-to-fine manner, generat-
ing N binary bitmaps. For any target pixel, a binary code
of length N is obtained by concatenating the binary predic-

tion in each bitmap. The vertex 3D coordinates are then
retrieved by indexing a predefined vertex table with the bi-
nary codes.

As the lookup operation is not differentiable. We in-
stead assign a code for each component of the vertex 3D
coordinates, the code is directly treated as normalized co-
ordinate of the component. Specifically, a coordinate c ∈
{x, y, z} in the range [cmin, cmax] is normalized to cn in
[0, 2Mc − 1], i.e., to the representable range of Mc bit in-
tegers, via a linear transform. The binary representation of
integer round(cn) is directly used as the binary encoding
of c. As a result, a single vertex is expressed with 3 binary
codes, with no lookup operation involved.

To recover the normalized coordinates with available
ground-truth, as illustrated by Fig. 4 (b), instead of directly
computing the weighted sum of predicted bits based on their
significance, we first check their correctness and find the
most significant mispredicted bit. This bit is substituted
with the predicted unrounded probability. All other mispre-
dicted bits are corrected before weighted summation, since
their errors are negligible compared to the most significant
erroneous bit. If all bits are correct or no ground truth avail-
able, the probability of the least significant bit is kept un-
rounded. In this way, the coordinates are differentiable, at
the cost of more bits to predict, and the benefits of binary
prediction are preserved.

Training Details. Following the baselines’ strategy,
we train a separate model from an ImageNet-pretrained
backbone for each object with same optimizer, scheduler,
and training epoch or step count as the baseline methods for
fair comparison. The original loss functions for correspon-
dence learning are kept. Specifically, GDR-Net [46] penal-
izes the L1 difference between a regressed normalized 3D
coordinate map M̂XY Z and the ground truth MXY Z within
the visible region Mvis. We use the binary cross entropy
loss to train the visible region estimate M̂vis and use M̂vis

for correspondence extraction if no weights are available.
The full loss for the GDR-Net baseline is

LGDR−base =∥(M̂XY Z −MXY Z)⊙Mvis∥1
+ αGDR ·BCE(M̂vis,Mvis) ,

(18)

with αGDR = 0.25 and ⊙ denoting the element-wise prod-
uct. For ZebraPose [43], the original losses for mask pre-
diction and binary code learning are both kept, giving

LZebra−base = Lmask + αZebra · Lhier , (19)

in which Lmask is the L1 loss for object mask prediction,
Lhier is a hierarchical loss for binary code learning and
αZebra = 3. The full loss when our LC loss is applied
then is

Li−full = Li−base+βi ·LLC , i ∈ {GDR,Zebra}. (20)

For the experiments in Sec. 4.4, we use βGDR = 0.02 and
βZebra = 0.03.

The pose loss is fully applied shortly after training be-
gins since the network generates random correspondences
at the very start. As matrix inversion is involved during lin-
earization, the loss may generate large gradients in corner
cases. We implement a gradient clipper which tracks the
magnitude of the gradients and clip overly large ones. For
outlier robustness, we employ the Huber function [24] adap-
tively when evaluating the squared residuals in Eq. 9 and the
squared weights involved in the linearization process.

Efficient Loss Computation. For efficiency, we com-
pute the covariance matrix in the most compact 6D repre-
sentation and transform it to our target representation. For a
specific pose representation yK with K components, which
is transformed from its 6D version y6 as yK = f(y6), we
calculate the Jacobian matrix J of f w.r.t. y6. Given the
covariance matrix C6×6 of y6, the covariance of yK can
be calculated as CK×K = J · C6×6 · JT ; only its diago-
nal elements are evaluated to compute the loss. Given N
correspondences, the complexity of our loss can be reduced
from O(K2N)+O(K3) to O(62N)+O(63)+O(K). On
a single NVIDIA A100 GPU, with the LC loss, the GDR-
Net based network takes around 3 hours on LM-O and 1
hour on YCB-V for a single object, and the ZebraPose based
network takes around 24 hours for a single object on both
datasets.

4.3. Datasets and Metrics

Datasets. We evaluate our approach on the widely
used Linemod-Occluded (LM-O) [2] and YCB-Video
(YCB-V) [49] datasets. LM-O is an extension of the
Linemod (LM) [18] dataset. It has a total of 1214 images
annotated for 8 objects under severe occlusion and is only
used for testing. About 1.2k images for each object from
the LM dataset are used as real training images. YCB-V
is a large challenging video dataset containing about 133k
images with strong occlusions and clutter. It contains 21
objects, some of which are symmetric or texture-less. We
also adopt the publicly available physically-based rendering
(pbr) [11] images for training.

Metrics. We employ the widely used ADD(-S) [18]
score to compare with other methods. Under this metric,
a pose is correct if the average distance between the ob-
ject vertices transformed by the predicted pose and by the
ground-truth pose is lower than a threshold. ADD-S is used
for symmetry objects, replacing the average distance by the
average nearest distance. The ADD(-S) score is computed
with the threshold corresponding to 10% of the object diam-
eter. For the YCB-V dataset, we also report the AUC (area
under the curve) of the ADD(-S), varying the threshold up
to a maximum of 10 cm.

As the ADD(-S) metric is defined in 3D space, in our

Method Training Data ADD(-S)
RePOSE [25] real+syn 51.6
RNNPose [50] real+syn 60.65
SO-Pose [12] real+pbr 62.3
DProST [36] real+pbr 62.6

GDR-Net [46] real+pbr 62.2
ZebraPose [43] real+pbr 76.9
GDR-Net-LC real+pbr 66.48
ZebraPose-LC real+pbr 78.06

Table 1. Comparison with the state of the art on LM-O. The
“LC” postfix indicates the LC loss is applied.

Method ADD(-S)
AUC of
ADD-S

AUC of
ADD(-S)

RePose [25] 62.1 88.5 82.0
RNNPose [50] 66.4 - 83.1
SO-Pose [12] 56.8 *90.9 *83.9
DProST [36] 65.1 - 77.4

GDR-Net [46] 60.1 *91.6 *84.4
ZebraPose [43] 80.5 90.1 85.3
GDR-Net-LC 70.6 89.8, *94.1 84.0, *88.8
ZebraPose-LC 82.4 90.8, *95.0 86.1, *90.8

Table 2. Comparison with the state of the art on YCB-V. * in-
dicates that the AUC is calculated with 11-points interpolation.

Method ADD(-S) Correctness Runtime
BPnP [6] 64.1 53.9 ∼ 30 ms

EPro-PnP [7] 64.5 59.3 ∼ 80 ms
Ours 66.5 99.9 ∼ 15 ms

Table 3. Comparison between PnP layers on LM-O.

ablations, we also report the Average Recall of Maximum
Symmetry-Aware Projection Distance (MSPD) ARMSPD,
a metric from the BOP benchmark [20] based on 2D repro-
jection errors.

4.4. Comparison with the State of the Art

In this section, we compare the performance obtained
when applying our loss to GDR-Net [46] and Zerbra-
Pose [43] with other start-of-the-art methods. We also com-
pare our loss function with the state-of-the-art differentiable
PnP methods, namely, BPnP [6] and EPro-PnP [7].

Results on LM-O. We report the ADD(-S) score on
LM-O in Tab. 1. Applying the LC loss on GDR-Net sur-
passes most methods, and we achieve state-of-the-art per-
formance when applying it to ZebraPose.

Results on YCB-V. As summarized in Tab. 2, apply-
ing the LC loss on GDR-Net produces results second only to
ZebraPose. Furthermore, we achieve state-of-the-art perfor-
mance when the LC loss is applied to ZebraPose. We imple-

Ground truth Ours EPro-PnP BPnP

(a) (b) (c) (d)

Figure 5. Visualization of different PnP layers. In the first col-
umn, we show the input image patch in the first row and the
ground-truth object coordinates in the second row. The remaining
images in the first row visualize the normalized weight maps for
different methods. The remaining images in the second row visu-
alize the predicted object coordinates corresponding to the weights
in the first row.

ment a symmetry-aware training scheme which selects the
ground-truth pose on the fly based on the average distance
between the predicted 3D coordinates at randomly selected
2D locations and possible 3D coordinates at the same loca-
tions under the symmetric ground-truth pose. This scheme
is only applied to the GDR-Net-based experiments on YCB-
V, including the baseline and the model with our LC loss for
fair comparison.

Comparison with Differentiable PnP layers. As
summarized in Tab. 3, we carry out experiments on LM-
O with the GDR-Net baseline, and compare the methods
based on several metrics including the ADD(-S) score, the
gradient correctness and the runtime per training step, the
correctness and runtime are evaluated at the end of training.
Note that BPnP [6] does not fully constrain the weights,
thus we remove the scale branch as stated in Sec. 4.1. Our
method yields the best ADD(-S) score on LM-O. More
importantly, it generates a much larger percentage of cor-
rect gradients. A 3D point is considered to have correct
gradients if moving in the negative gradient direction leads
to a smaller 2D reprojection error. A pose loss yielding a
higher gradient correctness provides more consistent super-
vision signals. The consistency is reflected by the dilated
weight and coordinate maps shown in Fig. 5, in particular
by looking at pixels outside of but close to the actual ob-
ject region. Such pixels receive supervision only from the
pose loss and thus indicate the differences between the dif-
ferent pose losses. Higher correctness helps the network
to predict correct correspondences for such pixels. This
virtually expands the target object size in 3D object space
and in 2D image space, which facilitates better pose esti-
mates. The LC loss yields 99.9% gradient correctness, gen-
erating the most dilated maps. By contrast, the other losses
have weaker consistency and thus tend to predict less accu-

rate correspondences in these regions. Finally, as shown in
Tab. 3, our LC loss yields the fastest runtime, evaluated on
an NVIDIA A100 GPU with a batch size of 32. This is due
to our linearization of the PnP solver, removing the need for
an iterative solution.

4.5. Ablation Study on LM-O

We evaluate the influence of each component of our
LC loss by applying it to the dense correspondence-based
GDR-Net and to the sparse correspondence-based one on
the LM-O dataset. The results are summarized in Tab. 4
and Tab. 5.

Effectiveness of the Pose Representation. We vali-
date the ability of the LC loss at integrating different ap-
plication preferences by switching to a pose representation
defined in the 2D image space. Similarly to the 3D case, a
pose representation y2D ∈ R16 can be defined as the pro-
jected 2D coordinates of the 8 object bounding box corners.
Switching from the LC loss in 3D space to its 2D space
counterpart (B0 vs. B1) causes a slight ADD(-S) drop. We
further compare the MSPD scores between these two ver-
sions. The network trained with 2D space LC loss yields
an ARMSPD score of 84.14, better than the 83.98 of the
3D case. This validates the effectiveness of using a metric
aware pose representation for different applications.

Effectiveness of the Covariance Loss. The covari-
ance loss is designed for both correspondence learning
and weight learning. It aims to minimize the residuals of
the correspondences, and encourages the weights to be in-
versely proportional to the residuals. We investigate its
effectiveness by detaching, in turn, the residuals rgt and
weights w from the covariance loss. When the residuals
are detached (B0 vs. C0), the only loss for correspondence
learning is the original surrogate loss, which lacks super-
vision on the background pixels. Thus the learned weights
and coordinates are restricted to the visible part of the target.
When the weights are detached (B0 vs. C1), the network
yields over-concentrated weights lying outside of the object
region. This is evidenced by Fig. 6 (b); although the net-
work learns these emphasized correspondences correctly, its
performance still degrades compared to our approach. If the
covariance loss is entirely removed (B0 vs. C2), the pipeline
suffers from a large performance drop.

Effectiveness of the Linear Loss. The linear loss is
a linear approximation of the actual pose error. As it acts
on the weights, it seeks to emphasizes the correspondences
that are more beneficial for the pose. As shown in Tab. 4, af-
ter removing Elinear from the LC loss, the ADD(-S) score
drops slightly (B0 vs. C3). However, this makes a signifi-
cant difference on the learned coordinate and weight maps;
as illustrated in Fig. 6 (c), when trained without linear loss,
the network tends to confidently extrapolate the 3D coordi-
nates to pixels far away from the target region or occluded.

Ablation C0 Ablation C1 Ablation C3 Ablation C4

(a) (b) (c) (d)

Figure 6. Visualizations for our different ablations. We show the
visualizations of the same input patch as in Fig. 5. The first row
visualizes the normalized weight maps for different settings. The
second row shows the predicted object coordinates corresponding
to the weights.

Row Method ADD(-S)
A0 GDR-Net baseline 59.29
A1 GDR-Net [46] 62.2
B0 A0 + 3D LC loss 66.48
B1 A0 + 2D LC loss 65.99
C0 B0 + detach residual from Ecov 61.03
C1 B0 + detach weights from Ecov 65.23
C2 B0 + remove Ecov 45.61
C3 B0 + remove Elinear 65.82
C4 B0 + remove Eprior 60.69

Table 4. Ablation study of the dense correspondence-based
method on LM-O. Block A: Comparison of the baseline method
and the original method. Block B: Comparison between losses
derived from different pose representations. Block C: Ablations
of each component of the linear-covariance loss on the dense
correspondence-based baseline.

Such extrapolated coordinates are unreliable compared to
correspondences near or inside object region, and thus they
are suppressed by the linear loss.

Effectiveness of the Prior Loss. Together with the
other loss terms, the prior loss fully constrains the weights,
and allows for fine-grained weights learning. When the
prior loss is removed (B0 vs. C4), we also remove the scale
branch as stated in Sec. 4.1. As illustrated by Fig. 6 (d), the
network also learns concentrated weights but with a larger
performance drop.

Effectiveness with a Sparse Correspondence-based
Method. In the dense case, the weights serve as both at-
tention mechanism, emphasizing some important or stable
points during training, and indicators for well learned cor-
respondences during testing. The sparsity in sparse corre-
spondence methods limits the attention feature. The loss
function in sparse cases mostly encourages the network to
predict better weights. Our sparse baseline is trained with

Row Training Loss Solver ADD(-S)
0 MLE PnP RANSAC 57.89
1 MLE PnP weighted 59.90
2 MLE + LC loss PnP RANSAC 57.74
3 MLE + LC loss PnP weighted 61.08

Table 5. Ablation for the sparse correspondence-based method
on the LM-O dataset.

dist.\ rep. ours-3D quater. axis-ang. two-col. [52]
Laplace 66.48 66.72 65.85 66.39

Gaussian 61.90 60.72 59.79 60.37

Table 6. Results on different pose representations and NLL dis-
tributions in ADD(-S) score.

a Laplace MLE loss, similar to the Gaussian MLE loss
in [33]. The predicted standard deviations are encouraged
to capture point location errors, and their inverse are sub-
sequently used as weights in the PnP solver. As shown
in Tab. 5, applying our loss in this scenario also brings a
performance gain. As the networks yield very close per-
formance when not using weights (Row 0 vs. Row 2), this
gain comes mostly from better weights learning. Note that
the PnP RANSAC solver does not use weights but uses
RANSAC [16] to evict outliers, thus reflecting only the
quality of 2D point locations. The PnP weighted solver
iteratively solves Eq. 4 using the PnP RANSAC’s solu-
tion as starting point, which effectively relies on predicted
weights to evict outliers, reflecting the quality of the pre-
dicted weights.

Experiments on other pose representations and other
NLL formulations. We also carried out experiments
on losses based on quaternions, axis-angles and two-
column [52] pose representations on LM-O. For the Laplace
NLL formulation, we used the sum of the square roots of
the covariance diagonal for {Ecov, Eprior} and the sum of
the absolute values of the approximate error for Elinear. To
further validate the distribution from which the NLL loss
originates, we switched from Laplace to Gaussian, using the
trace of the covariance and the sum of the squared errors to
build the losses. As shown in Tab. 6, the performance is ro-
bust to the pose representation. However, the Laplace NLL
losses yield much better results than their Gaussian coun-
terparts.

5. Conclusion
In this work, we have proposed a linear-covariance loss

for end-to-end weights and correspondence learning of two
stage geometry-based 6D pose estimation networks. This
new loss function addresses the problem originating from
the averaging nature of PnP solvers, resulting in gradients
that may seek to degrade the accuracy of some correspon-

dences. At the heart of our loss is the idea of introduc-
ing ground-truth information by linearizing the PnP solver
around the ground truth before the pose is actually solved,
and building the loss function for correspondence learning
on the covariance of the pose distribution. Our extensive ex-
periments have validated the effectiveness of our LC loss on
both sparse and dense correspondence-based methods and
on two standard benchmarks.

Nevertheless, the LC loss cannot learn correspondences
from scratch, and a surrogate loss function to supervise the
correspondences remains necessary for providing the LC
loss with an initial object 3D structure. In the future, we
will seek to apply our loss function to category-level object
pose estimation [8, 13, 47], where precise object structure
is not available.
Acknowledgement. This work was supported in part by
China Scholarship Council (CSC) Grant 202006020218,
and in part by the National Natural Science Foundation of
China (NSFC) under Grant 52127809 and Grant 51625501.

6. Supplementary
6.1. Linearization of PnP Solver

Implicit Function Theorem. The implicit function theo-
rem (IFT) [27] states the following:

Given f : Rn+m → Rm a continuously differentiable
function with input (a, b) ∈ Rn × Rm, if a point (a∗, b∗)
satisfies

f(a∗, b∗) = 0 , (21)

and the Jacobian matrix ∂f
∂b (a

∗, b∗) is invertible, then
there exists a unique continuously differentiable function
g(a) : Rn → Rm such that

b∗ = g(a∗) , (22)

and
f(a∗, g(a∗)) = 0 . (23)

The Jacobian matrix ∂g
∂a (a

∗) is given by

∂g

∂a
(a∗) = −

[
∂f

∂b
(a∗, b∗)

]−1

· ∂f
∂a

(a∗, b∗) . (24)

PnP Linearization. Following the same notation as in the
main paper, the PnP solver computes the function

g(x, z,w) = argmin
y

1

2

N∑
i

∥wi ◦ ri∥2 , (25)

where xi is the i-th image 2D point, zi is the i-th 3D point,
wi is the corresponding weight, and

ri = xi − π(zi,y) (26)

is the reprojection residual for the i-th correspondence given
pose y.

Eq. 25 implies that the solution y∗ is the stationary point
of the negative log likelihood (NLL) function

nll(y) =
1

2

N∑
i

∥wi ◦ ri∥2 . (27)

Since y∗ is the stationary point of the NLL function, the
first order derivative of the NLL w.r.t. y∗ should be zero,
i.e.,

∂nll(y)

∂y

∣∣∣∣
y=y∗

= 0 . (28)

Eqs. 21, 22 and 23 in the PnP case can subsequently be
specialized as

f(x,y, z,w)|y=y∗ =
∂nll(y)

∂y

∣∣∣∣
y=y∗

= 0 , (29)

y∗ = g(x, z,w) , (30)

and
f(x, g(x, z,w), z,w)|y=y∗ = 0 . (31)

According to Eq. 24, the gradient of the pose y w.r.t. the
2D locations x at y∗ is

∂y

∂x

∣∣∣∣
y∗

=
∂g(x, z,w)

∂x

∣∣∣∣
y∗

,

= −

[[
∂2nll(y)

∂y2

]−1

· ∂
2nll(y)

∂y∂x

]∣∣∣∣∣
y∗

,

= −H−1 · ∂
2nll(y)

∂y∂x

∣∣∣∣
y∗

,

(32)

with nll(y) defined by Eq. 27.
Given the noisy correspondences {x, z,w}, we com-

pute the perfect correspondences {xp, z,w} with xp,i =
π(zi,ygt) under the ground-truth pose ygt. We then lin-
earize the PnP solver around {xp, z,w} and ygt using the
first-order Taylor expansion as

y = ygt +A(z,w) · rgt , (33)

with
rgt = x− xgt (34)

being the residual vector at ygt, and

A(z,w) = −H−1 · ∂
2nll(y)

∂y∂x

∣∣∣∣
y=ygt,x=xp

. (35)

The Hessian H of the NLL function is also used to compute
the prior loss, as stated in Sec. 3.3 in the main paper.

0 30k 60k 90k
Training Steps

53

59

80

100

C
or

re
ct

ne
ss

 (%
)

Ours
EPro-PnP
BPnP

Figure 7. Correctness curves of the PnP layers. A 3D point is
considered to have a correct gradient if moving in the negative
gradient direction leads to a smaller 2D reprojection error. The
LC loss yields almost 100% correctness. The correctness of EPro-
PnP drops slowly, and ending with about 59% correctness. BPnP
drops quickly when training begins, and ends with about 53% cor-
rectness. The dark curves are smoothed versions of the light ones.

Row Method ADD(-S)
A0 ZebraPose [43] 76.91
A1 ZebraPose baseline 75.19
A2 A1 + LC loss 78.06

Table 7. Results of the ZebraPose [43] based experiments on
the LM-O dataset.

6.2. Detailed Results on Gradient Correctness

We further provide the whole correctness curves to show
how the correctness evolves as training progresses.

As illustrated in Fig. 7, at the very beginning, when the
correspondences have large errors, both EPro-PnP [7] and
BPnP [6] have good correctness. However, their correct-
ness drops when the training proceeds. Since the linear-
covariance loss is designed to address this problem, it al-
ways maintains a correctness close to 100%.

6.3. Details on ZebraPose-based Experiments

Implementation Details. Our coordinate-wise encoding
scheme assigns 3 binary codes to a vertex, eliminating the
look up operation. To reduce the number of binary bits for
prediction, we rotate some of the objects to minimize their
span along the x, y, z directions. We use 7 bits to repre-
sent the coordinate component with the largest span, and
calculate the binary count of the other components based
on their relative span w.r.t. largest one. Specifically, given
the sizes si, i ∈ {x, y, z}, of an object and their maxi-
mum s, the bit count of each component is calculated as
ni = round(n+ log2(si/s)), where n = 7 is the maximum
bit count per component. This is to reduce the unpredictable
bits for flat-shaped objects such as scissors.

(b) (e)(a) (c) (d)

Figure 8. Visualizations for the ZebraPose-based model. (a) Vi-
sualizations of the input image patch, decoded object coordinates
and the predicted weight map. (b)-(e) Visualizations of the pre-
dicted masks of coordinate components with the most significant
bit at the left and the x component at the top. The pixels predicted
as background are masked out for clarity.

Results. As shown in Tab. 7, after switching from the
global vertex encoding to our coordinate-wise encoding
(A0 vs. A1), the performance drops by about 1.7 points.
When the LC loss is applied, the performance drop is com-
pensated, surpassing the original ZebraPose [43].
Visualizations. As illustrated by Fig. 8, the learned weight
map successfully captures the error distribution of the pre-
dicted 3D coordinates in a geometry-aware manner, gen-
erating low weights for code transition regions and high
weights for object endpoint regions.

6.4. Detailed Results on LM-O and YCB-V

For the LM-O dataset, we provide the detailed compari-
son of ADD(-S) scores with state-of-the-art methods, when
the linear-covariance (LC) loss is applied to GDR-Net and
ZebraPose on LM-O in Tab. 9.

For the YCB-V dataset, we provide the detailed compar-
ison of ADD(-S) scores (Tab. 8) and AUC scores (Tab. 10)
between the baseline methods and the versions where the
LC loss is applied.

References
[1] Gideon Billings and Matthew Johnson-Roberson. Silhonet:

An rgb method for 6d object pose estimation. IEEE Robotics
and Automation Letters, 4(4):3727–3734, 2019. 1

[2] Eric Brachmann, Alexander Krull, Frank Michel, Stefan
Gumhold, Jamie Shotton, and Carsten Rother. Learning 6d
object pose estimation using 3d object coordinates. In David
Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, ed-
itors, Computer Vision – ECCV 2014, pages 536–551, Cham,
2014. Springer International Publishing. 6

[3] Eric Brachmann, Alexander Krull, Sebastian Nowozin,
Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten

Object [46] [43] [46]-LC [43]-LC
002 master chef can 41.5 62.6 38.7 51.6
003 cracker box 83.2 98.5 96.2 99.7
004 sugar box 91.5 96.3 98.1 99.4
005 tomato soup can 65.9 80.5 77.6 79.6
006 mustard bottle 90.2 100 77.0 99.7
007 tuna fish can 44.2 70.5 63.2 86.1
008 pudding box 2.8 99.5 81.3 99.1
009 gelatin box 61.7 97.2 81.8 94.9
010 potted meat can 64.9 76.9 68.1 73.9
011 banana 64.1 71.2 71.0 95.8
019 pitcher base 99.0 100 100 100
021 bleach cleanser 73.8 75.9 69.9 85.6
024 bowl* 37.7 18.5 44.1 35.2
025 mug 61.5 77.5 46.2 88.7
035 power drill 78.5 97.4 99.7 99.2
036 wood block* 59.5 87.6 91.7 82.6
037 scissors 3.9 71.8 14.9 56.9
040 large marker 7.4 23.3 29.3 27.8
051 large clamp* 69.8 87.6 80.5 84.4
052 extra large clamp* 90.0 98.0 95.5 99.1
061 foam brick* 71.9 99.3 57.6 91.3
mean 60.1 80.5 70.6 82.4

Table 8. Detailed ADD(-S) scores on YCB-V. We report the
scores of the original baseline methods, GDR-Net [46] and Ze-
braPose [43], and also the scores after applying our LC loss, re-
spectively (denoted by “-LC”). (*) denotes symmetric objects on
which the ADD-S score is reported.

Rother. Dsac - differentiable ransac for camera localization.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017. 1, 3

[4] Eric Brachmann and Carsten Rother. Learning less is more
- 6d camera localization via 3d surface regression. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 1, 3

[5] Bo Chen, Tat-Jun Chin, and Marius Klimavicius. Occlusion-
robust object pose estimation with holistic representation. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision (WACV), pages 2929–2939, Jan-
uary 2022. 1, 2

[6] Bo Chen, Alvaro Parra, Jiewei Cao, Nan Li, and Tat-Jun
Chin. End-to-end learnable geometric vision by backprop-
agating pnp optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 1, 3, 4, 7, 10

[7] Hansheng Chen, Pichao Wang, Fan Wang, Wei Tian, Lu
Xiong, and Hao Li. Epro-pnp: Generalized end-to-end prob-
abilistic perspective-n-points for monocular object pose es-
timation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
2781–2790, June 2022. 1, 3, 5, 7, 10

[8] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, Linlin
Shen, and Ales Leonardis. Fs-net: Fast shape-based network
for category-level 6d object pose estimation with decou-
pled rotation mechanism. In Proceedings of the IEEE/CVF

Method
RePOSE

[25]
RNNPose

[50]
SO-Pose

[12]
DProST

[36]
GDR-Net

[46]
ZebraPose

[43] GDR-LC Zebra-LC

ape 31.1 37.18 48.4 51.4 46.8 57.9 44.44 61.57
can 80.0 88.07 85.8 78.7 90.8 95.0 89.06 97.35
cat 25.6 29.15 32.7 48.1 40.5 60.6 49.87 64.49

driller 73.1 88.14 77.4 77.4 82.6 94.8 87.81 94.65
duck 43.0 49.17 48.9 45.4 46.9 64.5 56.08 66.82

eggbox* 51.7 66.98 52.4 55.3 54.2 70.9 62.81 71.77
glue* 54.3 63.79 78.3 76.9 75.8 88.7 68.88 86.35

holepuncher 53.6 62.76 75.3 67.4 60.1 83.0 72.89 81.49
mean 51.6 60.65 62.3 62.6 62.2 76.9 66.48 78.06

Table 9. Comparison with the state of the art on LM-O. (*) denotes symmetric objects on which the ADD-S score is reported. “GDR-
LC” denotes the LC loss with the GDR-Net [46] baseline, “Zebra-LC” denotes the LC loss with the ZebraPose [43] baseline.

Method GDR-Net [46] ZebraPose [43] GDR-Net-LC ZebraPose-LC

Metric
AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

002 master chef can *96.3 *65.2 93.7 75.4 85.6, *90.1 57.5, *61.6 88.4 66.9
003 cracker box *97.0 *88.8 93.0 87.8 93.1, *98.1 86.8, *91.6 93.7 88.3
004 sugar box *98.9 *95.0 95.1 90.9 95.9, *99.8 92.3, *97.4 94.7 90.3
005 tomato soup can *96.5 *91.9 94.4 90.1 92.8, *96.2 88.2, *93.0 93.4 89.2
006 mustard bottle *100 *92.8 96.0 92.6 94.1, *97.6 88.2, *93.1 95.1 90.9
007 tuna fish can *99.4 *94.2 96.9 92.6 96.2, *99.9 92.1, *96.9 97.2 94.1
008 pudding box *64.6 *44.7 97.2 95.3 94.4, *99.1 90.4, *95.3 96.7 94.7
009 gelatin box *97.1 *92.5 96.8 94.8 95.1, *99.9 91.7, *96.8 96.7 94.6
010 potted meat can *86.0 *80.2 91.7 83.6 85.8, *89.0 79.6, *83.8 91.3 82.5
011 banana *96.3 *85.8 92.6 84.6 92.2, *97.6 83.2, *88.0 95.3 90.1
019 pitcher base *99.9 *98.5 96.4 93.4 96.6, *100 93.5, *98.4 96.4 93.2
021 bleach cleanser *94.2 *84.3 89.5 80.0 86.3, *91.2 77.0, *82.0 90.5 82.3
024 bowl* *85.7 *85.7 37.1 37.1 83.1, *88.6 83.1, *88.6 63.9 63.9
025 mug *99.6 *94.0 96.1 90.8 92.7, *96.5 83.9, *88.9 96.5 92.3
035 power drill *97.5 *90.1 95.0 89.7 96.1, *99.9 92.6, *97.9 95.4 90.8
036 wood block* *82.5 *82.5 84.5 84.5 87.1, *92.2 87.1, *92.2 81.2 81.2
037 scissors *63.8 *49.5 92.5 84.5 75.8, *80.4 63.5, *67.8 88.3 79.0
040 large marker *88.0 *76.1 80.4 69.5 77.5, *81.8 68.8, *73.5 77.6 68.5
051 large clamp* *89.3 *89.3 85.6 85.6 83.1, *87.9 83.1, *87.9 86.8 86.8
052 extra large clamp* *93.5 *93.5 92.5 92.5 91.4, *95.8 91.4, *95.8 94.6 94.6
061 foam brick* *96.9 *96.9 95.3 95.3 90.0, *94.6 90.0, *94.6 93.2 93.2
mean *91.6 *84.4 90.1 85.3 89.8, *94.1 84.0, *88.8 90.8 86.1

Table 10. Detailed AUC scores on YCB-V. We report the scores of the original baseline methods and the scores after the LC loss is applied.
“GDR-Net-LC” denotes the LC loss with the GDR-Net [46] baseline, “ZebraPose-LC” denotes the LC loss with the ZebraPose [43]
baseline. A (*) after the object name denotes the symmetric objects on which the ADD-S score is reported. A (*) before the AUC score
indicates that the AUC is computed with 11-points interpolation.

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1581–1590, June 2021. 9

[9] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017. 1

[10] Alberto Crivellaro, Mahdi Rad, Yannick Verdie, Kwang Moo
Yi, Pascal Fua, and Vincent Lepetit. Robust 3d object

tracking from monocular images using stable parts. IEEE
transactions on pattern analysis and machine intelligence,
40(6):1465–1479, 2017. 1

[11] Maximilian Denninger, Dominik Winkelbauer, Martin Sun-
dermeyer, Wout Boerdijk, Markus Knauer, Klaus H. Strobl,
Matthias Humt, and Rudolph Triebel. Blenderproc2: A
procedural pipeline for photorealistic rendering. Journal of
Open Source Software, 8(82):4901, 2023. 6

[12] Yan Di, Fabian Manhardt, Gu Wang, Xiangyang Ji, Nassir
Navab, and Federico Tombari. So-pose: Exploiting self-
occlusion for direct 6d pose estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 12396–12405, October 2021. 3, 7, 12

[13] Yan Di, Ruida Zhang, Zhiqiang Lou, Fabian Manhardt, Xi-
angyang Ji, Nassir Navab, and Federico Tombari. Gpv-pose:
Category-level object pose estimation via geometry-guided
point-wise voting. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 6781–6791, June 2022. 9

[14] Thanh-Toan Do, Ming Cai, Trung Pham, and Ian Reid.
Deep-6dpose: Recovering 6d object pose from a single rgb
image, 2018. 1

[15] Thanh-Toan Do, Trung T. Pham, Mingpeng Cai, and Ian D.
Reid. Lienet: Real-time monocular object instance 6d pose
estimation. In British Machine Vision Conference, 2018. 4

[16] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 9

[17] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), December
2015. 5

[18] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian
conference on computer vision, pages 548–562. Springer,
2012. 6

[19] Tomas Hodan, Daniel Barath, and Jiri Matas. Epos: Estimat-
ing 6d pose of objects with symmetries. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 3

[20] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl,
Anders GlentBuch, Dirk Kraft, Bertram Drost, Joel Vidal,
Stephan Ihrke, Xenophon Zabulis, Caner Sahin, Fabian Man-
hardt, Federico Tombari, Tae-Kyun Kim, Jiri Matas, and
Carsten Rother. Bop: Benchmark for 6d object pose estima-
tion. In Proceedings of the European Conference on Com-
puter Vision (ECCV), September 2018. 7

[21] Omid Hosseini Jafari, Siva Karthik Mustikovela, Karl
Pertsch, Eric Brachmann, and Carsten Rother. ipose:
Instance-aware 6d pose estimation of partly occluded ob-
jects. In C. V. Jawahar, Hongdong Li, Greg Mori, and Kon-
rad Schindler, editors, Computer Vision – ACCV 2018, pages
477–492, Cham, 2019. Springer International Publishing. 1,
2

[22] Yinlin Hu, Pascal Fua, Wei Wang, and Mathieu Salzmann.
Single-stage 6d object pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 2, 3

[23] Yinlin Hu, Joachim Hugonot, Pascal Fua, and Mathieu Salz-
mann. Segmentation-driven 6d object pose estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2019. 1, 2

[24] Peter J. Huber. Robust Estimation of a Location Parameter.
The Annals of Mathematical Statistics, 35(1):73 – 101, 1964.
6

[25] Shun Iwase, Xingyu Liu, Rawal Khirodkar, Rio Yokota, and
Kris M. Kitani. Repose: Fast 6d object pose refinement via
deep texture rendering. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
3303–3312, October 2021. 7, 12

[26] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan
Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d de-
tection and 6d pose estimation great again. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), Oct 2017. 1

[27] Steven George Krantz and Harold R Parks. The implicit func-
tion theorem: history, theory, and applications. Springer Sci-
ence & Business Media, 2002. 3, 4, 9

[28] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Ep n p: An accurate o (n) solution to the p n p problem.
International journal of computer vision, 81:155–166, 2009.
2

[29] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.
Deepim: Deep iterative matching for 6d pose estimation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), September 2018. 4

[30] Zhigang Li, Gu Wang, and Xiangyang Ji. Cdpn:
Coordinates-based disentangled pose network for real-time
rgb-based 6-dof object pose estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019. 2, 3

[31] Fabian Manhardt, Wadim Kehl, Nassir Navab, and Federico
Tombari. Deep model-based 6d pose refinement in rgb. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), September 2018. 4

[32] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler.
Pose estimation for augmented reality: a hands-on survey.
IEEE transactions on visualization and computer graphics,
22(12):2633–2651, 2015. 1

[33] Nathaniel Merrill, Yuliang Guo, Xingxing Zuo, Xinyu
Huang, Stefan Leutenegger, Xi Peng, Liu Ren, and Guo-
quan Huang. Symmetry and uncertainty-aware object slam
for 6dof object pose estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14901–14910, June 2022. 1, 9

[34] Aiden Nibali, Zhen He, Stuart Morgan, and Luke Prender-
gast. Numerical coordinate regression with convolutional
neural networks. arXiv preprint arXiv:1801.07372, 2018. 5

[35] Markus Oberweger, Mahdi Rad, and Vincent Lepetit. Mak-
ing deep heatmaps robust to partial occlusions for 3d object
pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCV), September 2018. 1, 2

[36] Jaewoo Park and Nam Ik Cho. Dprost: Dynamic projective
spatial transformer network for 6d pose estimation. In Shai
Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner, editors, Computer Vision – ECCV
2022, pages 363–379, Cham, 2022. Springer Nature Switzer-
land. 7, 12

[37] Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter
Fox. Latentfusion: End-to-end differentiable reconstruction

and rendering for unseen object pose estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020. 4

[38] Kiru Park, Timothy Patten, and Markus Vincze. Pix2pose:
Pixel-wise coordinate regression of objects for 6d pose esti-
mation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), October 2019. 1, 2

[39] Georgios Pavlakos, Xiaowei Zhou, Aaron Chan, Konstanti-
nos G Derpanis, and Kostas Daniilidis. 6-dof object pose
from semantic keypoints. In 2017 IEEE international confer-
ence on robotics and automation (ICRA), pages 2011–2018.
IEEE, 2017. 1, 2

[40] Yudi Pawitan. In all likelihood: statistical modelling and
inference using likelihood. Oxford University Press, 2001. 4

[41] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. Pvnet: Pixel-wise voting network for 6dof pose
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 1, 2

[42] Mahdi Rad and Vincent Lepetit. Bb8: A scalable, accurate,
robust to partial occlusion method for predicting the 3d poses
of challenging objects without using depth. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), Oct 2017. 1, 2

[43] Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Rambach,
Nassir Navab, Benjamin Busam, Didier Stricker, and Fed-
erico Tombari. Zebrapose: Coarse to fine surface encod-
ing for 6dof object pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6738–6748, June 2022. 1, 2, 3,
5, 6, 7, 10, 11, 12

[44] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. Real-time
seamless single shot 6d object pose prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018. 1, 2

[45] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), October 2019. 5

[46] Gu Wang, Fabian Manhardt, Federico Tombari, and Xi-
angyang Ji. Gdr-net: Geometry-guided direct regression
network for monocular 6d object pose estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16611–16621, June
2021. 3, 5, 6, 7, 8, 11, 12

[47] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J. Guibas. Normalized object
coordinate space for category-level 6d object pose and size
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 9

[48] Di Wu, Zhaoyong Zhuang, Canqun Xiang, Wenbin Zou,
and Xia Li. 6d-vnet: End-to-end 6-dof vehicle pose es-
timation from monocular rgb images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2019. 1

[49] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes. 2018. 1, 6

[50] Yan Xu, Kwan-Yee Lin, Guofeng Zhang, Xiaogang Wang,
and Hongsheng Li. Rnnpose: Recurrent 6-dof object pose
refinement with robust correspondence field estimation and
pose optimization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 14880–14890, June 2022. 7, 12

[51] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. Dpod:
6d pose object detector and refiner. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019. 3

[52] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations in neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 4, 9

[53] Menglong Zhu, Konstantinos G Derpanis, Yinfei Yang,
Samarth Brahmbhatt, Mabel Zhang, Cody Phillips, Matthieu
Lecce, and Kostas Daniilidis. Single image 3d object de-
tection and pose estimation for grasping. In 2014 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 3936–3943. IEEE, 2014. 1

[54] Yiming Zuo, Weichao Qiu, Lingxi Xie, Fangwei Zhong,
Yizhou Wang, and Alan L. Yuille. Craves: Controlling
robotic arm with a vision-based economic system. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019. 1

	. Introduction
	. Related Work
	. Method
	. Overview
	. Covariance of the Pose Distribution
	. Linear-Covariance Loss

	. Experiments
	. Network Structure
	. Implementation Details
	. Datasets and Metrics
	. Comparison with the State of the Art
	. Ablation Study on LM-O

	. Conclusion
	. Supplementary
	. Linearization of PnP Solver
	. Detailed Results on Gradient Correctness
	. Details on ZebraPose-based Experiments
	. Detailed Results on LM-O and YCB-V

