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Figure 1: We propose 2D3D-MATR, a novel detection-free method for accurate inter-modality matching between images
and point clouds. Our method adopts a coarse-to-fine pipeline where it first computes coarse correspondences between
downsampled image patches and point patches and then extends them to form dense pixel-point correspondences within
the patch region. A multi-scale sampling and matching scheme is devised to resolve the scale ambiguity in patch matching.
Compared to detection-based P2-Net (bottom-right) and single-scale patch matching (middle-right), 2D3D-MATR (top-right)
extracts significantly more accurate and dense 2D-3D correspondences. The inliers are in green and the outliers are in red.

Abstract

The commonly adopted detect-then-match approach to
registration finds difficulties in the cross-modality cases due
to the incompatible keypoint detection and inconsistent fea-
ture description. We propose, 2D3D-MATR, a detection-
free method for accurate and robust registration between
images and point clouds. Our method adopts a coarse-
to-fine pipeline where it first computes coarse correspon-
dences between downsampled patches of the input im-
age and the point cloud and then extends them to form
dense correspondences between pixels and points within
the patch region. The coarse-level patch matching is based
on transformer which jointly learns global contextual con-
straints with self-attention and cross-modality correlations
with cross-attention. To resolve the scale ambiguity in patch
matching, we construct a multi-scale pyramid for each im-
age patch and learn to find for each point patch the best
matching image patch at a proper resolution level. Ex-

*Equal contribution.
†Corresponding author: kevin.kai.xu@gmail.com.

tensive experiments on two public benchmarks demonstrate
that 2D3D-MATR outperforms the previous state-of-the-
art P2-Net by around 20 percentage points on inlier ra-
tio and over 10 points on registration recall. Our code
and models are available at https://github.com/
minhaolee/2D3DMATR.

1. Introduction

The inter-modality registration between images and
point clouds finds applications in many computer vision
tasks, e.g., 3D reconstruction, camera relocalization, SLAM
and AR. It aims at estimating a rigid transformation that
aligns a scene point cloud into the camera coordinates of an
image capturing the same scene. The typical pipeline of 2D-
3D registration is to first extract correspondences between
pixels and points and then adopt robust pose estimators such
as PnP-RANSAC [27, 17] to recover the alignment transfor-
mation. Therefore, the accuracy of the putative correspon-
dences is the crux of a successful registration.

Following the intra-modality correspondence methods
for stereo images [13, 34, 46, 15] or point clouds [19, 10,
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2, 22], 2D-3D matching methods [16, 39, 53] usually adopt
a detect-then-match approach where 2D and 3D keypoints
are first detected independently in the image and the point
cloud, respectively, and then matched based on their as-
sociated descriptors. Such method, however, suffers from
two difficulties. First, 2D and 3D keypoints are detected
in different visual domains. While 2D keypoint detection
is based on texture and color information, 3D detection is
hinged on local geometry. This makes the detection of re-
peatable keypoints difficult. Second, 2D and 3D descriptors
encode different visual information, which hampers extract-
ing consistent descriptors for matching pixels and points.
As a consequence, existing 2D-3D matching methods often
lead to too low inlier ratio to be practically usable.

Recently, detection-free approach has received increas-
ing attention in both stereo matching [43, 29, 56, 48] and
point cloud registration [55, 40]. Saving the step of keypoint
detection, it achieves high-quality correspondence with a
coarse-to-fine pipeline: It first establishes coarse correspon-
dences at the level of image or point patches and then refines
them into fine-grained matching of pixels or points. This
method has shown strong superiority over detection-based
ones due to the exploitation of global contextual informa-
tion at patch level. Such success, however, has not been
attained for 2D-3D matching. This is because designing a
coarse-level 2D-3D matching is non-trivial due to the scale
ambiguity between image and point patches caused by per-
spective projection (see Fig. 1). On the one hand, the re-
ceptive fields for extracting 2D and 3D features could be
misaligned, resulting in inconsistency between 2D and 3D
features. On the other hand, there could be many pixels or
points finding no counterpart on other side due to occlusion,
leading to considerable ambiguity for fine-level matching.

We propose 2D3D-MATR, the first, to our knowledge,
detection-free method for accurate and robust 2D-3D regis-
tration via addressing the challenges above. Adapting the
coarse-to-fine pipeline, our method first computes coarse
correspondences between downsampled patches of the in-
put image and the point cloud and then extends them to form
dense correspondences between pixels and points within the
patch regions. To achieve accurate feature alignment be-
tweem image and point patches, we design a coarse-level
matching module based on transformer [52] which jointly
learns global contextual constraints with self-attention and
cross-modality correlations with cross-attention.

Our key insight is that the feature misalignment between
2D and 3D due to projection can be resolved by image-
space multi-scale sampling and matching, assuming that
the area of local patches is small and the projection distor-
tions is negligible. We construct a multi-scale pyramid for
each image patch. During training, we find for each point
patch the best matching image patch at a proper resolution
level through computing the bilateral overlap between them

in the image space. During test, our model can automati-
cally infer 2D-3D patch correspondences at a proper scale
and produces dense correspondence in a high inlier ratio.
Extensive experiments on the RGB-D Scenes V2 [24] and
7-Scenes [18] benchmarks demonstrate the efficacy of our
method. In particular, 2D3D-MATR outperforms the pre-
vious state-of-the-art P2-Net [53] by at least 20 percentage
points on inlier ratio and over 10 points on registration re-
call on the two benchmarks. Our contributions include:

• The first detection-free coarse-to-fine matching net-
work for 2D-3D registration which first establishes
coarse correspondences of patch level and then refines
them into dense correspondences of pixel/point level.

• A transformer-based coarse matching module learning
well-aligned 2D and 3D features with both global con-
textual constraints and cross-modality correlations.

• A multi-scale 2D-3D matching scheme that resolves
2D-3D feature misalignment through learning image-
space multi-scale features and feature-scale selection.

2. Related Work
Stereo image registration. Traditional stereo image regis-
tration methods usually adopt a detect-then-match pipeline
to extract correspondences. A set of sparse keypoints are
first detected and described with hand-crafted [33, 44] or
learning-based descriptors [41, 15, 13, 46, 34] from both
sides, which are then matched based on feature similarity.
Keypoints detection is ill-posed and detection-free meth-
ods [43, 42, 26] propose to bypass the keypoint detection
step by computing a correlation matrix between all pairs of
features. However, the all-pair correlation matrix requires
huge computation, making the putative correspondences
relatively coarse-grained. For this reason, [29, 56, 48] fur-
ther propose to adopt a coarse-to-fine matching framework,
which achieves accurate and efficient image matching.
Point cloud registration. Similar progress as in image reg-
istration has also been witnessed in point cloud registra-
tion. Early works leverage hand-crafted descriptors such as
PPF [14] and FPFH [45] for keypoint detection. And recent
learning-based descriptors [12, 11, 10, 19, 2, 22] achieve
more robust and accurate matching results. To bypass the
keypoint detection, CoFiNet [55] introduces the coarse-to-
fine strategy to the matching of point clouds. And Geo-
Transformer [40] further designs a transformation-invariant
geometric structure embedding and achieves RANSAC-free
point cloud registration. Moreover, there are also methods
focusing on removing outlier correspondences [1, 9, 25],
which act as an effective alternative of traditional robust es-
timators such as RANSAC [17].
Inter-modality registration. Compared to intra-modality
matching problems, inter-modality matching between im-
ages and point clouds is more difficult. Based on how
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Figure 2: Overall pipeline of 2D3D-MATR. We first progressively downsample the input image I and the point cloud P and
learn multi-scale 2D and 3D features. The 2D and 3D features F̂I and F̂P at the coarsest stage are used to extract coarse
correspondences between the local patches of the image and the point cloud. A multi-scale patch matching module is devised
to learn global contextual constraints and cross-modality correlations. Next, the patch correspondences are extended to dense
pixel-point correspondences based on the high-resolution features FI and FP . Finally, PnP-RANSAC is adopted to estimate
the alignment transformation.

the correspondences are established, previous works can
be classified into two categories. The first class focuses
on visual localization in a known scene. The main idea
of them is to predict the 3D coordinates of each image
pixel with decision trees [47, 36, 37, 4, 51] or neural net-
works [3, 5, 6, 30, 31, 35, 54]. However, this class of meth-
ods lack generality to novel scenes. The second class fol-
lows the traditional detect-then-match pipeline [16, 39, 53],
where keypoints are first detected from each modality and
then matched with the associated descriptors. Compared to
the first class, this class of methods have better generality
theoretically. However, detecting repeatable inter-modality
keypoints is much more difficult and unstable as keypoints
are defined and described in different visual domains. For
this reason, existing methods still suffer from low inlier ra-
tio. In this work, we propose 2D3D-MATR to address these
issues with two specific designs, i.e., coarse-to-fine match-
ing and transformer-based multi-scale patch matching.

3. Method
3.1. Overview

Given a image I ∈ RH×W×3 and a point cloud P ∈
RN×3 of a scene, the goal of 2D-3D registration is to re-
cover the alignment transformation T between them, which
is composed of a 3D rotation R ∈ SO(3) and a 3D transla-
tion t ∈ R3. A traditional 2D-3D registration pipeline first
extracts correspondences C = {(xi,yi) | xi ∈ R3,yi ∈
R2} between 3D points and 2D pixels, and then estimates
the transformation by minimizing the 2D projection error:

min
R,t

∑
(xi,yi)∈C

∥K(Rxi + t,K)− yi∥2, (1)

where K is the intrinsic matrix of the camera and K is the
project function from 3D space to image plane. This prob-

lem can be effectively solved by PnP-RANSAC algorithm.
However, the solution can be erroneous due to inaccurate
correspondences.

In this work, we present a method to hierarchically ex-
tract inter-modality correspondences. We first adopt two re-
spective backbones to learn features for the image and point
cloud (Sec. 3.2). Next, we extract a set of coarse corre-
spondences between the downsampled patches of the image
and the point cloud (Sec. 3.3). At last, the patch correspon-
dences are the refined to dense pixel-point correspondences
on the fine level (Sec. 3.4). Fig. 2 illustrates the overall
pipeline of our method.

3.2. Feature Extraction

Backbones. Given a pair of image and point cloud, two
modality-specific encoder-decoder backbone networks are
adopted for hierarchical feature extraction. For the image,
we use a ResNet [20] with FPN [32] to generate multi-
scale image features. The downsampled 2D features F̂I ∈
RĤ×Ŵ×Ĉ at the smallest resolution and FI ∈ RH×W×C

at the original resolution are used for matching in coarse
and fine levels. For simplicity, we denote the pixel co-
ordinate matrices for F̂I and FI as Q̂ ∈ RĤ×Ŵ×2 and
Q ∈ RH×W×2, respectively. For the point cloud, we adopt
KPFCNN [50] to learn 3D features following [2, 22, 55, 40].
Unlike images which have fixed resolutions, point clouds
usually have inconsistent sizes and KPFCNN dynamically
downsamples them via grid downsampling. We use the
points P̂ ∈ RN̂×3 corresponding to the coarsest level
and their associated features F̂P ∈ RN̂×Ĉ for coarse-level
matching, while fine-level matching is conducted on the in-
put point cloud P and the associated features FP ∈ RN×C .
Patch construction. To extract patch correspondences on
the coarse level, we need first associate each downsampled
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Figure 3: Multi-scale patch matching. Given the coarse 2D and 3D features, we first learn global contextual constraints with
self-attention and cross-modality correlations with cross-attention. Then we adopt an image-space multi-scale sampling and
matching strategy to extract patch correspondences which are better aligned in the image plane.

pixel (point) with an image (point) patch. For the image,
we evenly divide I into Ĥ × Ŵ patches and each pixel in
F̂ corresponds to an image patch of H

Ĥ
× W

Ŵ
pixels. For

the point cloud, we use point-to-node partition [28] follow-
ing [55, 40], which assigns each point in P to its nearest
point in P̂ to compose the point patches.

3.3. Multi-scale Patch Matching

Attention-based feature refinement. Given the downsam-
pled image (Q̂, F̂I) and point cloud (P̂, F̂P), our goal in
the coarse level is to extract patch correspondences that
overlap with each other. However, inter-modality matching
between 2D and 3D is non-trivial. On the one hand, 2D and
3D features are learned from different domains, leading to
severe inconsistency between them. This problem is more
serious in patch matching than point matching as patch fea-
tures are learned from a large context, which aggravates the
feature misalignment. Second, as noted in [48, 55, 40],
coarse-level matching relaxes the matching criterion from
the strict 3D distance into a much looser local texture-
geometry similarity. This effectively eases the matching
difficulty but requires more global context. For this reason,
we devise a transformer-based [52] feature refinement mod-
ule to learn global contextual constraints and cross-modality
correlations.

Before feeding into transformer, we first augment the 2D
and 3D features with their positional information:

F̂I
pos = F̂I + ϕ(Q̂), F̂P

pos = F̂P + ϕ(P̂), (2)

and ϕ(·) is the Fourier embedding function [38]:

ϕ(x)=
[
x, sin(20x), cos(20x), ..., sin(2L−1x), cos(2L−1x)

]
,

(3)
where L is the length of the embedding. We then flatten the
first two spatial dimensions of the 2D features for simplicity
and use F̂I

pos, F̂
P
pos for future computation.

Afterwards, we leverage transformer to further refine the
features in two modalities. Given anchor features FA ∈

R|A|×d and memory features FM ∈ R|M|×d, transformer
models the pairwise correlations between them with atten-
tion mechanism to generate more discriminative features.
Specifically, the two set of features are first projected as:

Q = FAWQ, K = FMWK , V = FMWV , (4)

where WQ,WK ,WQ ∈ Rd×d are the projection weights
for query, key and value. The attention features for the an-
chor set are then computed as:

Attention(FA,FM) = Softmax(
QKT

d0.5
)V. (5)

And the attention features are further projected with a shal-
low MLP as the final output features.

We iteratively apply self-attention and cross-attention to
refine the 2D and 3D features as shown in Fig. 3. In self-
attention, we use the features from the same modality as
both the anchor features and memory features for atten-
tion computation to encode intra-modality global contex-
tual constraints. In cross-attention, we use the features from
one modality as the anchor features and the other modal-
ity as the memory features to learn cross-modality corre-
lations. By this means, we can obtain refined 2D and 3D
features which are more discriminative and better aligned.
The resultant features are denoted as ĤI ∈ RĤ×Ŵ×Ĉ and
ĤP ∈ R|N̂ |×Ĉ in 2D and 3D modalites, respectively.
Multi-scale matching. Due to the effect of perspective
projection, the objects in images have the scale ambiguity
problem, i.e., an object looks larger if it lies close to the
camera and smaller if far from the camera. However, the
scale of an object in the point cloud remains unchanged and
is agnostic to camera motion. As a result, the 2D and 3D
patches could be seriously misaligned: a 3D patch could
cover many 2D patches when the camera moves close, and
vice versa. Fig. 4 illustrates the misalignment between 2D
and 3D patches. This causes significant ambiguous objec-
tive during training: considering two nearby point patches
with different physical properties, they could be supervised



Figure 4: Scale misalignment between image patches and
point patches due to perspective projection. Left: when the
camera is far from the scene, the 3D patches on the key-
board are properly aligned with the 2D patches, and the 3D
patch around the mouse is even slightly smaller than the
matched 2D patch. Right: when camera move towards the
scene, the 3D patches cover several 2D patches, leading to
severe matching ambiguity.

to have similar features if covered by the same image patch.
This is unexpected as it aggravates the feature misalignment
and harms the distinctiveness of the features.

For this reason, we devise an image-space multi-scale
sampling and matching strategy to alleviate the scale ambi-
guity between 2D and 3D patches. Technically, we first di-
vide I into Ĥ0× Ŵ0 patches and then build a K-level patch
pyramid for each image patch. At each pyramid level, the
patch size is halved to generate a more fine-grained patch
partition. The features of the patch pyramid is obtained by
a lightweight K-stage CNN. We first downsample ĤI to
fit the finest patch pyramid level. The 2D features are then
downsampled by a factor of 2 at each stage to match the res-
olutions of each patch pyramid level. For simplicity, the 2D
patch features at the kth level are denoted as ĤI

k . At last,
the multi-scale 2D patch features {ĤI

k} and the 3D patch
features ĤP are normalized onto a unit hypersphere as the
final features.

By leveraging the multi-scale matching strategy, for each
3D patch, we find the 2D patch that coincides the best with
it on the image plane during training: the 3D patches far
from the camera prefer small 2D patches in a later level,
while the close ones are more likely to match with large 2D
patches in a early level. Fig. 5 illustrates our multi-scale
matching strategy, where our method provides 3D patches
with better aligned 2D patches. This can effectively alle-
viate the matching ambiguity and reduce the difficulty in
learning consistent 2D and 3D features. During inference,
the putative patch correspondences Ĉ are extracted with mu-
tual top-k selection [40]:

(xi, yi) is matched ⇔
(
ĥI
∗ (xi) is kNN of ĥP(yi)

)
∧(

ĥP(yi) is kNN of ĥI
∗ (xi)

) (6)

3.4. Dense Pixel-Point Matching

After obtaining the patch correspondences, we further
refine them to dense pixel-point correspondences. For each

Figure 5: Multi-scale patch matching based on image-space
patch pyramid with 3 levels. One matched patch pair is
shown in each pyramid level. The 3D patches far from the
camera are matched to small 2D patches in a later level,
while the close ones are matched to large 2D patches in a
early level.

(xi, yi) ∈ Ĉ, we collect the fine-level 2D and 3D features of
its local pixels and points from FI and FP , denoted as FI

i

and FP
i . For computational efficiency, we uniformly sam-

ple 1/4 of the pixels in each 2D patch. Following Sec. 3.3,
we normalize FI

i and FP
i to unit-length vectors and match

the pixels and points with mutual top-k selection as the lo-
cal dense correspondences of (xi, yi). We do not adopt a
specific matching layer such as Sinkhorn [46, 55, 40] here
as the 2D patches in large scales could have enormous pix-
els (e.g., 1600 pixels in our experiments), which causes un-
acceptable computational cost. On the contrary, mutual top-
k selection is very efficient and still achieves promising per-
formance. At last, we gather the local correspondences of
all (xi, yi) from Ĉ as the final dense pixel-point correspon-
dences. Note that as the 2D patches from different scales
can overlap with each other, we explicitly remove the re-
peated correspondences from the final correspondences.

3.5. Loss Functions

Our model is trained in a metric learning fashion. On
the coarse level, we adopt a scaled circle loss [49, 40] to
supervise the patch features. On the fine level, another stan-
dard circle loss [49] is used to supervise the dense pixel
and point features. The overall loss is then computed as
Lall = Lcoarse + λLfine, where λ = 1 is a balance factor.

Compared to contrastive loss [8] and triplet loss [21],
circle loss [49] has a circular decision boundary which fa-
cilitates convergence. Given an anchor descriptor di, the
descriptors of its positive and negative pairs are denoted as
DP

i and DN
i . The general circle loss on di is computed as:

Li=
1

γ
log

[
1+

∑
dj∈DP

i

eβ
i,j
p (dj

i−∆p)·
∑

dk∈DN
i

eβ
i,k
n (∆n−dk

i )
]
, (7)



where dji is the ℓ2 feature distance, βi,j
p = γλi,j

p (dji −∆p)

and βi,k
n = γλi,k

n (∆n − dki ) are the individual weights for
the positive and negative pairs, where λi,j

p and λi,k
n are the

scaling factors for the positive and negative pairs.
On the coarse level, we generate the ground truth based

on the bilateral overlap. A patch pair is regarded as posi-
tive if the 2D and 3D overlap ratios between them are both
at least 30%, and as negative if both the overlap ratios are
below 20%. Please refer to Sec. 4.1 for more details. The
overlap ratio between the 2D and 3D patches are used as
λp, and λn is set to 1. On the fine level, a pixel-point pair is
positive with the 3D distance is below 3.75cm and the 2D
distance is below 8 pixels, while being negative with a 3D
distance above 10cm or a 2D distance above 12 pixels. The
scaling factors are all 1. We ignore all other pairs on both
levels during training as the safe region. The margins are
set to ∆p = 0.1 and ∆n = 1.4 following [22, 40].

4. Experiments
As there is no public 2D-3D registration benchmark, we

build two challenging benchmarks based on RGB-D Scenes
V2 [24] (Sec. 4.2) and 7Scenes [18] (Sec. 4.3) datasets, and
evaluate the efficacy of 2D3D-MATR on them. Extensive
ablation studies are provided to study the influence of dif-
ferent design choices (Sec. 4.4).

4.1. Implementation Details

Network architecture. We adopt a 4-stage ResNet [20]
with FPN as the image backbone network, where the output
channels of each stage are {128, 128, 256, 512}. The reso-
lution of the input images is 480×640 and is downsampled
to 60×80 in the coarsest level. For the 3D backbone, we use
a 4-stage KPFCNN [50] where the output channels of each
stage are {128, 256, 512, 1024}. The point clouds are vox-
elized with an initial voxel size of 2.5cm which is doubled
at each stage. In the coarse level, we resize the 2D features
to 24× 32 before feeding them to the transformer for com-
putational efficiency. All the transformer layers have 256
features channels with 4 attention heads and ReLU activa-
tion. In the patch pyramid, we use H0 = 6 and W0 = 8
in the coarsest level and build K = 3 pyramid levels, i.e.,
{6× 8, 12× 16, 24× 32}. In the fine level, we project both
the 2D and 3D features to 128-d for feature matching.
Metrics. We mainly evaluate the models with 3 metrics:
(1) Inlier Ratio (IR), the ratio of pixel-point matches whose
3D distance is below a certain threshold (i.e., 5cm) over all
putative matches. (2) Feature Matching Recall (FMR), the
ratio of image-point-cloud pairs whose inlier ratio is above
a certain threshold (i.e., 10%). (3) Registration Recall (RR),
the ratio of image-point-cloud pairs whose RMSE is below a
certain threshold (i.e., 10cm).
Baselines. We mainly compare to 3 keypoint detection-
based baseline methods: (1) FCGF2D3D, a 2D-3D imple-

Model Scene-11 Scene-12 Scene-13 Scene-14 Mean

Mean depth (m) 1.74 1.66 1.18 1.39 1.49

Inlier Ratio ↑

FCGF-2D3D [10] 6.8 8.5 11.8 5.4 8.1
P2-Net [53] 9.7 12.8 17.0 9.3 12.2
Predator-2D3D [22] 17.7 19.4 17.2 8.4 15.7
2D3D-MATR (ours) 32.8 34.4 39.2 23.3 32.4

Feature Matching Recall ↑

FCGF-2D3D [10] 11.1 30.4 51.5 15.5 27.1
P2-Net [53] 48.6 65.7 82.5 41.6 59.6
Predator-2D3D [22] 86.1 89.2 63.9 24.3 65.9
2D3D-MATR (ours) 98.6 98.0 88.7 77.9 90.8

Registration Recall ↑

FCGF-2D3D [10] 26.4 41.2 37.1 16.8 30.4
P2-Net [53] 40.3 40.2 41.2 31.9 38.4
Predator-2D3D [22] 44.4 41.2 21.6 13.7 30.2
2D3D-MATR (ours) 63.9 53.9 58.8 49.1 56.4

Table 1: Evaluation results on RGB-D Scenes V2. Bold-
faced numbers highlight the best and the second best are
underlined.

mentation of FCGF [10] which samples random keypoints
from the image and the point cloud. (2) Predator2D3D, a
2D-3D implementation of Predator [22] which leverages a
graph network to learn the saliency of each pixel (point) for
sampling keypoints. (3) P2-Net [53], a 2D-3D correspon-
dence method which detects locally salient pixels (points) in
the feature space. Note that albeit successful in point cloud
registration, we find that Predator-2D3D fails to predict re-
liable saliency scores in 2D-3D scenarios. To this end, we
ignore the saliency scores in Predator-2D3D and randomly
sample keypoints according to the predicted overlap scores.
For fair comparison, we use the same backbones for all the
methods. Please refer to Appx. A for more details.

4.2. Evaluations on RGB-D Scenes V2

Dataset. RGB-D Scenes V2 [24] contains 11427 RGB-D
frames from 14 indoor scenes. For each scene, we fuse
a point cloud fragment with every 25 consecutive depth
frames and sample a RGB image every 25 frames. We se-
lect the image-point-cloud pairs with an overlap ratio of at
least 30%. The pairs from scenes 1-8 are used for training,
scenes 9 and 10 for validation, and scenes 11-14 for testing.
As last, we obtain a benchmark of 1748 training pairs, 236
for validation and 497 for testing.
Quantative results. We first compare our method to the
baselines on RGB-D Scenes V2 in Tab. 1. For Inlier Ra-
tio, P2-Net outperforms FCGF-2D3D benefiting from the
feature saliency-based keypoint detection. However, it still
suffers from low inlier ratio. And albeit achieving better in-
lier ratio on the first two scenes, Predator-2D3D performs
worse in the later two scenes where the camera is closer
to the scene. On the contrary, thanks to the coarse-to-fine
matching pipeline and the multi-scale patch pyramid, our
2D3D-MATR significantly improves the inlier ratio by 20



Model Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Mean depth (m) 1.78 1.55 0.80 2.03 2.25 2.13 1.84 1.77

Inlier Ratio ↑

FCGF-2D3D [10] 34.2 32.8 14.8 26.0 23.3 22.5 6.0 22.8
P2-Net [53] 55.2 46.7 13.0 36.2 32.0 32.8 5.8 31.7
Predator-2D3D [22] 34.7 33.8 16.6 25.9 23.1 22.2 7.5 23.4
2D3D-MATR (ours) 72.1 66.0 31.3 60.7 50.2 52.5 18.1 50.1

Feature Matching Recall ↑

FCGF-2D3D [10] 99.7 98.2 69.9 97.1 83.0 87.7 16.2 78.8
P2-Net [53] 100.0 99.3 58.9 99.1 87.2 92.2 16.2 79.0
Predator-2D3D [22] 91.3 95.1 76.7 88.6 79.2 80.6 31.1 77.5
2D3D-MATR (ours) 100.0 99.6 98.6 100.0 92.4 95.9 58.1 92.1

Registration Recall ↑

FCGF-2D3D [10] 89.5 79.7 19.2 85.9 69.4 79.0 6.8 61.4
P2-Net [53] 96.9 86.5 20.5 91.7 75.3 85.2 4.1 65.7
Predator-2D3D [22] 69.6 60.7 17.8 62.9 56.2 62.6 9.5 48.5
2D3D-MATR (ours) 96.9 90.7 52.1 95.5 80.9 86.1 28.4 75.8

Table 2: Evaluation results on 7Scenes. Boldfaced numbers
highlight the best and the second best are underlined.

percentage points (pp). And this advantage further con-
tributes to much higher Feature Matching Recall, where our
method surpasses the second best P2-Net by over 24 pp.

For the most important Registration Recall, P2-Net
achieves the best results among the three detection-based
baselines. And our method outperforms P2-Net by 18 pp
on registration recall thanks to the more accurate correspon-
dences. These results have demonstrated the strong gener-
ality of our method to unseen scenes.

4.3. Evaluations on 7Scenes

Dataset. 7-Scenes [18] consists of 46 RGB-D sequences
from 7 indoor scenes. We use the same method as above
to prepare the image-point-cloud pairs from each scene and
preserve the pairs that share at least 50% overlap. We follow
the official sequence split to generate the training, validation
and testing data, which makes 4048 training pairs, 1011 val-
idation pairs and 2304 testing pairs. Note that compared to
the benchmark used in [53], we provide a more challeng-
ing one with richer viewpoint changes and smaller overlap
ratios. For the evaluation results under the setting of [53],
please refer to Appx. D.
Quantative results. In contrast with Sec. 4.2, we evalu-
ate the generality to unseen viewpoints in known scenes
on 7-Scenes. The results are demonstrated in Tab. 2. For
Inlier Ratio, our method outperforms the second best P2-
Net by over 18 pp. For Feature Matching Recall, 2D3D-
MATR achieves an average improvement of 13.1 pp. And
our method surpasses the baseline methods by at least 10 pp
on Registration Recall. More surprisingly, Predator-2D3D
performs the worst on 7-Scenes. As the image-point-cloud
pairs in 7-Scenes commonly share more overlap, we assume
that explicitly predicting the overlap scores contributes to
little benefit but harms the distinctiveness of the learned fea-
ture representations.

Model PIR IR FMR RR

(a.1) 2D3D-MATR (full) 48.5 32.4 90.8 56.4
(a.2) 2D3D-MATR w/o coarse-to-fine - 11.2 52.2 34.6

(a.1) 2D3D-MATR (full) 48.5 32.4 90.8 56.4
(b.2) 2D3D-MATR w/o self-attention 45.9 29.0 91.8 44.0
(b.3) 2D3D-MATR w/o cross-attention 50.4 29.3 89.1 47.7
(b.4) 2D3D-MATR w/o attention 37.0 23.1 87.0 42.3

(c.1) 2D3D-MATR (full) 48.5 32.4 90.8 56.4
(c.2) 2D3D-MATR w/ (24 × 32) 37.7 29.2 88.3 36.9
(c.3) 2D3D-MATR w/ (12 × 16) 44.2 29.9 89.2 51.7
(c.4) 2D3D-MATR w/ (6 × 8) 41.7 23.6 87.7 50.2
(c.5) 2D3D-MATR w/ (24 × 32, 12 × 16) 46.1 32.2 90.5 54.5
(c.6) 2D3D-MATR w/ (24 × 32, 6 × 8) 42.3 31.6 90.0 51.3
(c.7) 2D3D-MATR w/ (12 × 16, 6 × 8) 49.8 30.9 90.1 54.2

Table 3: Ablation studies on RGB-D Scenes V2. Bold-
faced numbers highlight the best and the second best are
underlined.

Compared to RGB-D Scenes V2, 7-Scenes have more
significant scale variations across different scenes. Nev-
ertheles, our method still outperforms the baseline meth-
ods by a large margin, demonstrating the strong robustness
of 2D3D-MATR to scale variance. It is noteworthy that
2D3D-MATR achieves more significant improvements on
the two hard scenes, i.e., heads and stairs. On the one hand,
the camera is much closer to the scene surfaces in heads
than in other scenes. This causes great difficulty to ex-
tract accurate correspondences as a small error in 3D space
could be amplified on the image plane. On the other hand,
stairs contains numerous repeated patterns which is hard to
distinguish. Thanks to our multi-scale patch pyramid and
coarse-to-fine matching strategy, our method can better han-
dle these hard cases.

Qualitative results. Fig. 6 visualizes the extracted corre-
spondences from P2-Net and 2D3D-MATR. We also show
the single-scale version of 2D3D-MATR where 24×32 im-
age patches are used. Our method extracts more accurate
and more thoroughly distributed correspondences over the
whole scene, which is crucial for successful registration.
The last two rows shows two difficult cases from heads
and stairs. In the 3rd row, P2-Net fails to detect reliable
keypoints and thus suffers from low inlier ratio. Due to
a near placement of the camera, the single-scale version
of 2D3D-MATR can only extract the correspondences in
the distant background areas. On the contrary, benefiting
from multi-scale patch pyramid, full 2D3D-MATR extracts
much more accurate correspondences distributed over the
whole scene. And the 4th row contains repeated patterns
distributed from near to far. P2-Net detects keypoints near
the boundaries but fails to match them correctly. Benefiting
from the global contextual contraints and cross-modality
correlations learned from the transformer module, 2D3D-
MATR extracts more accurate correspondences from the
stairs. Please refer to Appx. D for more visualizations.



(a) P2-Net (b) 2D3D-MATR (single-scale) (c) 2D3D-MATR (multi-scale)

#Corr: 125
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IR: 53.9%

Figure 6: Comparisons of correspondences on 7-Scenes. Our method extracts more accurate and more thoroughly distributed
correspondences over the whole scene. And it extracts accurate correspondences from repeated patterns (see the 4th row).

4.4. Ablation Studies

We further conduct extensive ablation studies to inves-
tigate the efficacy of our designs on RGB-D Scenes V2.
Following [40], we report another metric Patch Inlier Ra-
tio (PIR), the ratio of patch correspondences whose overlap
ratios are above a certain threshold (i.e., 0.3), to evaluate the
performance on the coarse level.
Coarse-to-fine matching. First, we ablate the coarse-level
matching step in our pipeline and match randomly sam-
pled keypoints from both sides as correspondences. In
this model, we apply the attention-based feature refinement
module between the encoders and the decoders. As shown
in Tab. 3(a), the performance drops significantly without the
coarse-to-fine matching pipeline. Compared to strict pixel-
point matching, patch matching is more robust and reliable
as more context could be leveraged. This effectively re-
duces the searching space during matching, and facilitates
extracting accurate correspondences.
Feature refinement module. Next, we study the influ-
ence of the attention-based feature refinement in Tab. 3(b).
We first remove the self-attention modules and the cross-
attention modules in the network. The model without self-
attention suffers from more serious performance degrada-
tion, which means global context plays a more important
role than cross-modal aggregation in 2D-3D registration.
We then completely remove all attention modules, which
further degradates the performance.
Multi-scale patch pyramid. At last, we evaluate the effici-

cay of the multi-scale patch pyramid in Tab. 3(c). We pro-
gressively ablate each resolution level from our full model
and evaluate the performance. Obviously, the models with
one single resolution perform worse than the multi-scale
models, demonstrating the effectiveness of our design. And
note that the inlier ratios of the models with small resolution
are lower. This is because the image patches in these models
are larger and thus leads to more matching ambiguity.

5. Conclusion

We have presented 2D3D-MATR to hierarchically ex-
tract pixel-point correspondences for inter-modality regis-
tration between images and point clouds. Benefiting from a
coarse-to-fine matching pipeline, our method bypasses the
need of keypoint detection across two modalities. We fur-
ther construct a multi-scale patch pyramid to alleviate the
scale ambiguity during patch matching. These designs sig-
nificantly improve the quality of the extracted correspon-
dences and contribute to accurate 2D-3D registration. A
potential limitation of our method is that it still relies on
RANSAC for successful registration. In the future, we
would like to extend our method for RANSAC-free inter-
modality registration.
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National Key R&D Program of China (2018AAA0102200)
and the NSFC (62325221, 62132021).



A. Implementation Details

We mainly compare to three baseline methods in the
experiments: (1) FCGF-2D3D, a 2D-3D implementation
of FCGF [10]; (2) P2-Net [53], a 2D-3D version of D2-
Net [15] and D3Feat [2]; (3) Predator-2D3D, a 2D-3D ver-
sion of Predator [22]. For FCGF-2D3D, we supervise the
descriptors using circle loss [49] instead of the hardest-in-
batch contrastive loss used in [10]. This model could be re-
garded as a simplified P2-Net without the detection branch.
For P2-Net, as there is no official code released for P2-Net,
we reimplement it from the scratch. We use the detection
loss defined in [2] to supervise the detection scores because
we find the model fails to converge on our benchmarks us-
ing the original detection loss in [53]. For Predator-2D3D,
we find that it cannot predict reliable saliency scores in 2D-
3D matching, so we only predict the overlapping scores and
use them as probabilities to sample random keypoints. And
we use transformer [52] instead of the graph network in [22]
as we find transformer achieves better results. For the base-
line methods, we sample 10000 2D keypoints and 1000 3D
keypoints and extract correspondences between them using
mutual nearest selection.

For fair comparison, we apply the same backbone net-
works in all the methods, i.e., a 4-stage ResNet [20] with
FPN [32] backbone for images and a 4-stage KPFCNN [50]
backbone for point clouds. For the 2D backbone, the out-
put channels of each stage are {128, 128, 256, 512}. For
the 3D backbone, the output channels of each stage are
{128, 256, 512, 1024}. The resolution of the input images is
480× 640 and the resolution in the coarest level is 60× 80.
Following [48], we convert RGB images to grayscale be-
fore feeding them to the network. The point clouds are
voxelized with an initial voxel size of 2.5cm and downsam-
pled in each stage using grid subsampling as in [50]. The
detailed architecture of our method is illustrated in Fig. 7.
And we use the same training settings in all the methods.
We use Adam [23] optimizer to train the networks. The net-
works are trained for 20 epochs and the batch size is 1. The
initial learning rate is 10−4, which is decayed by 0.05 every
epoch. For all methods (including ours), 256 correspon-
dences are randomly sampled to supervise the pixel (point)
descriptors. To estimate the transformation, we use PnP-
RANSAC implemented in OpenCV [7] with 5000 iterations
and the distance tolerance of 8.0.

B. Metrics

Following [53], we mainly evaluate our method using 3
metrics: Inlier Ratio, Feature Matching Recall and Regis-
tration Recall.

Inlier Ratio (IR) measures the fraction of inliers among
all putative pixel-point correspondences. Following [53],
a correspondence is an inlier if their 3D distance is below

τ1 = 5cm under the ground-truth transformation T∗
P→I

IR =
1

|C|
∑

(xi,yi)∈C

J∥T∗
P→I(xi)−K−1(yi)∥2 < τ1K, (8)

where J·K is the Iversion bracket, xi ∈ P, yi ∈ Q (Q is the
pixel coordinate matrix of I), and K−1 is the function that
unprojects a pixel to a 3D point according to its depth value.

Feature Matching Recall (FMR) is the fraction of image-
point-cloud pairs whose IR is above τ2 = 0.1. FMR mea-
sures the potential success during the registration:

FMR =
1

M

M∑
i=1

JIRi > τ2K, (9)

where M is the number of all image-point-cloud pairs.
Registration Recall (RR) is the fraction of correctly reg-

istered testing pairs. A pair of image and point cloud is
regarded as correctly registered if the root mean square er-
ror (RMSE) between the point clouds transformed by the
ground-truth and the predicted transformation TP→I is be-
low τ3 = 0.1m:

RMSE =

√
1

|P|
∑

pi∈P

∥TP→I(pi)− T∗
P→I(pi)∥22, (10)

RR =
1

M

M∑
i=1

JRMSEi < τ3K. (11)

We further report Patch Inlier Ratio (PIR) in the ablation
studies to evaluate the accuracy of the patch matching fol-
lowing [40]. PIR is the fraction of patch correspondences
whose overlap ratios under the ground-truth transformation
are above 0.3. It reflects the quality of the putative patch
correspondences. A pixel (point) is overlapped if there ex-
ists a point (pixel) such that their 3D distance is below a
3D threshold (i.e., 3.75cm) and their 2D distance is below
a 2D threshold (i.e., 8 pixels). As a result, we obtain two
overlap ratios, one on the image side and one on the point
cloud side. Here we take the smaller one of them as the final
overlap ratio between I and P.

C. Data Preparation
As there is no off-the-shelf benchmarks for 2D-3D reg-

istration, we first build two challenging benchmarks based
on RGB-D Scenes V2 [24] and 7Scenes [18] datasets.

C.1. RGB-D Scenes V2

RGB-D Scenes V2 consists of RGB-D scans of 14 in-
door scenes. We evaluate the generality to unseen scenes
of our method and the baselines on this benchmark. For
each scene, we fuse every 25 consecutive depth frames into
a point cloud fragment, which is then voxelized with a voxel
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Figure 7: Network architecture.

size of 2.5cm. The first RGB image of every 25 frames are
sampled as the set of images. We then consider every pair
of image and point cloud, and select those whose overlap
ratios are at least 30%. The overlap is computed in the 3D
space. The image are first unprojected into a point cloud ac-
cording to the corresponding depth frame. Then a point is
considered as overlapped if there exists a point in the other
side which is closer than 3.75cm to it. The pairs from scenes
1-8 are used for training, scenes 9 and 10 for validation, and

scenes 11-14 for testing. As last, we obtain a benchmark of
1748 training pairs, 236 for validation and 497 for testing.
Tab. 4 shows the statistics on the testing set of our bench-
mark. In Scene-11 and Scene-12, the camera is further from
the scene and the images have a larger range of depth. While
in Scene-13 and Scene-14, the scene is much closer to the
camera.



Scene Scene-11 Scene-12 Scene-13 Scene-14 Mean

Depth mean (m) 1.74 1.66 1.18 1.39 1.49
Depth std (m) 0.67 0.64 0.39 0.48 0.55
Depth range (m) 2.20 2.22 1.72 2.07 2.05

Table 4: Statistics on the testing set of RGB-D Scenes V2.

Scene Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Depth mean (m) 1.78 1.55 0.80 2.03 2.25 2.13 1.84 1.77
Depth std (m) 0.48 0.30 0.21 0.43 0.39 0.62 0.48 0.41
Depth range (m) 2.66 1.60 0.97 1.91 1.79 2.48 3.03 2.06

Table 5: Statistics on the testing set of 7-Scenes.

C.2. 7-Scenes

7-Scenes consists of RGB-D scans of 7 indoor scenes
where each scene has multiple RGB-D sequences. We fol-
low the data split in [18, 3, 53] to evaluate the generality to
unseen viewpoints of our method and the baselines on this
benchmark. For each squence, we follow the same method
as in Appx. C.1 to prepare the point cloud fragments and the
RGB image frames. Then, for each scene, we collect the
all images and point cloud fragments in the training (test-
ing) sequences, and select the image-point-cloud pairs from
them whose overlap ratios are at least 50% as the training
(testing) data. The training data are split by 80%/20% for
training/validation. Note that as the RGB images and the
depth images are not calibrated in 7-Scenes, we follow [54]
to rescale the image by 585

525 for an approximate calibration.
Tab. 5 shows the statistics on the testing set of 7-Scenes.
The distance between the camera and the scene significantly
varies in different scenes. The camera is relatively far from
the scene in office, pumpkin and kitchen, but is much closer
in heads. As a result, the scale ambiguity is more significant
in 7-Scenes.

D. Additional Experiments
D.1. Additional Ablation Studies

Patch pyramid. In Tab. 6, we further progressively ablate
the patch pyramid and report the detailed results on each
scene. Note that here all the models are both trained and
tested with the corresponding resolution levels, while we
albate each pyramid level only in the inference in Tab. 3 of
the main paper.

For Inlier Ratio, three models achieves comparable re-
sults on the first two scenes, but the models with multi-
scale patch pyramid performs considerably better than the
single-scale one on Scene-13 and Scene-14. As discussed
in Tab. 4, the camera is closer to the scene in Scene-13 and
Scene-14, which could cause severe inconsistency between
the image patchs and the point patches. By leveraging the
patch pyramid, the scale ambiguity is alleviated such that
more accurate correspondences are obtained.

Model Scene-11 Scene-12 Scene-13 Scene-14 Mean

Inlier Ratio ↑

(24 × 32, 12 × 16, 6 × 8) 32.8 34.4 39.2 23.3 32.4
(24 × 32, 12 × 16) 32.9 34.4 35.3 21.6 31.1
(24 × 32) 31.7 33.3 27.3 16.8 27.3

Feature Matching Recall ↑

(24 × 32, 12 × 16, 6 × 8) 98.6 98.0 88.7 77.9 90.8
(24 × 32, 12 × 16) 97.2 98.0 86.6 77.0 89.7
(24 × 32) 97.2 97.1 85.6 75.7 88.9

Registration Recall ↑

(24 × 32, 12 × 16, 6 × 8) 63.9 53.9 58.8 49.1 56.4
(24 × 32, 12 × 16) 55.6 53.9 43.3 41.2 48.5
(24 × 32) 52.8 51.0 26.8 26.1 39.2

Table 6: Additional ablation studies on RGB-D Scenes V2.
Boldfaced numbers highlight the best and the second best
are underlined.

Model Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Inlier Ratio ↑

FCGF-2D3D [10] 59.2 58.5 67.5 54.4 45.0 51.6 33.5 52.8
P2-Net [53] 60.9 66.9 66.1 55.8 57.0 56.1 42.4 57.9
Predator-2D3D [22] 75.3 71.6 82.1 56.1 55.3 57.2 57.7 65.0
2D3D-MATR (ours) 84.1 79.2 76.5 73.6 71.8 78.0 69.1 76.0

Feature Matching Recall ↑

FCGF-2D3D [10] 81.8 81.0 91.0 67.5 41.7 52.3 10.5 60.8
P2-Net [53] 82.5 93.0 89.5 70.6 76.2 64.6 22.5 71.3
Predator-2D3D [22] 98.8 94.0 100.0 66.5 69.0 61.5 69.0 79.8
2D3D-MATR (ours) 100.0 96.5 99.0 99.0 92.0 99.5 99.0 97.9

Registration Recall ↑

FCGF-2D3D [10] 99.8 98.0 98.0 97.0 89.2 96.7 94.5 96.2
P2-Net [53] 99.8 98.0 96.0 98.1 91.7 97.2 93.0 96.3
Predator-2D3D [22] 99.6 92.5 99.0 96.5 82.0 95.5 87.0 93.2
2D3D-MATR (ours) 100.0 98.0 98.5 98.5 95.0 100.0 98.0 98.3

Table 7: Evaluation results on 7Scenes following the ex-
periment settings in [53]. Boldfaced numbers highlight the
best and the second best are underlined.

For Registration Recall, more significant improvements
are also obtained in the last two scenes. Note that alth-
ough the three models achieve similar inlier ratios in Scene-
11, the multi-scale patch pyramid provide more thoroughly-
distributed correpondences, which contributes more accu-
rate registration.
Mutual top-k selection. We replace the mutual top-k se-
lection in the point matching module with the non-mutual
version on RGB-D Scenes V2, which achieves 31.7% IR
(0.7 pp↓), 91.6% FMR (0.8 pp↑) and 50.8% RR (5.6 pp↓).
We also note that the model with non-mutual top-k selection
still beats all the baselines, demonstrating the effectiveness
of our method.

D.2. Additional Evaluations on 7-Scenes

We further present the evaluation results on 7-
Scenes [18] following the settings in [53]. We fuse a point
cloud fragment with 5 consecutive depth frames. During



training, we construct 5 training pairs between the fused
point cloud and the corresponding RGB images. During
testing, we only use the last RGB frame to construct 1 test-
ing pair for each point cloud fragment. The RGB images
are rescaled as described in Appx. C.2. As a result, we ob-
tain 23500 training pairs, 2500 validation pairs, and 3400
testing pairs. All the models are trained from scratch in the
experiments. Compared to our benchmark in the main pa-
per, this setting is more easier due to small transformation
and high overlap ratio. Note that the thresholds for the met-
rics in this setting are τ1 = 4.5cm, τ2 = 50% and τ3 = 5cm
following [53].

The results are shown in Tab. 7. For Inlier Ratio, 2D3D-
MATR outperforms the baseline methods by a large mar-
gin, especially on the last four harder scenes. This further
contributes to significant improvements on Feature Match-
ing Recall, where our method surpasses the second best
Predator-2D3D by 18 pp. For Registration Recall, the per-
formance tends to be saturated in most scenes. Nonethe-
less, 2D3D-MATR still achieves the best results, especially
on pumpkin and stairs. These results have demonstrated the
efficacy of our method.

D.3. Qualitative Results

We provide more qualitative comparisons of P2-Net [53]
and 2D3D-MATR on 7-Scenes (Fig. 8) and RGB-D Scenes
V2 (Fig. 9). It is observed that the correspondences from
our method are much denser and more accurate those from
P2-Net. Moreover, 2D3D-MATR extracts correspondences
from both near and far regions, showing strong robustness
to scale variance.

E. Limitations
Albeit achieving the new state-of-the-art preformance,

2D3D-MATR could have the following three limitations.
First, despite of higher inlier ratio, our method still rely

on PnP-RANSAC to estimate the alignment transformation.
Compared to point cloud registration, the 2D errors of the
2D-3D correspondences are sensitive to the camera pose.
For instance, given two points which are 5cm away from
each other in the 3D space, their distance in the image plane
could be merely 2 pixels if they are far from the camera but
up to tens of pixels if they are close to the camera. For this
reason, it is more difficult to achieve accurate registration
and thus PnP-RANSAC is still necessary.

Second, we find that the generality of 2D-3D matching
to novel scenes is not as good as that of image matching
or point cloud matching. This can be observed by compar-
ing the results on RGB-D Scenes V2 and 7-Scenes, where
the former is worse. We assume the reason is that inter-
modality matching is more difficult than intra-modality
matching as one need project the visual information from
different domains to a common feature space.

Third, the uniform patch partition strategy in our method
is relatively simple and coarse. Although we design a multi-
scale patch pyramid mechanism to handle scale ambiguity,
the patches are still not perfectly aligned in most cases. This
could cause difficulty in learning consistent features for the
patches, and increase redundancy in the fine-level matching.
A possible solution is to leverage semantic information to
extract patches, which we will leave as future work.
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