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Abstract

Point cloud completion aims to recover the complete
shape based on a partial observation. Existing methods re-
quire either complete point clouds or multiple partial obser-
vations of the same object for learning. In contrast to pre-
vious approaches, we present Partial2Complete (P2C), the
first self-supervised framework that completes point cloud
objects using training samples consisting of only a single
incomplete point cloud per object. Specifically, our frame-
work groups incomplete point clouds into local patches as
input and predicts masked patches by learning prior in-
formation from different partial objects. We also propose
Region-Aware Chamfer Distance to regularize shape mis-
match without limiting completion capability, and devise
the Normal Consistency Constraint to incorporate a lo-
cal planarity assumption, encouraging the recovered shape
surface to be continuous and complete. In this way, P2C
no longer needs multiple observations or complete point
clouds as ground truth. Instead, structural cues are learned
from a category-specific dataset to complete partial point
clouds of objects. We demonstrate the effectiveness of our
approach on both synthetic ShapeNet data and real-world
ScanNet data, showing that P2C produces comparable re-
sults to methods trained with complete shapes, and out-
performs methods learned with multiple partial observa-
tions. Code is available at https://github.com/
CuiRuikai/Partial2Complete.

1. Introduction

Point clouds are widely used for 3D shape representa-
tion and play a crucial role in a range of applications [18,
30, 28, 29]. However, real-world raw point clouds are col-
lected from sources such as laser scanners [10] and depth
cameras [8], and so are often incomplete and noisy due to
occlusions and varying lighting conditions. For this reason,

*Email: ruikai.cui@anu.edu.au
†Corresponding author. Email: shi.qiu@anu.edu.au

𝑥(")

DNN

𝑦#(") 𝑦(")

matching loss

(a) supervised
𝑥(")

DNN

𝑦#(")

(b) unpaired
𝑦($)

matching loss adversarial loss

DNN

(c) weakly-supervised

𝑥%
(") 𝑥&

(") … 𝑥'
(")

𝑦#%
(") 𝑦#&

(") … 𝑦#'
(")

view-consistency loss

𝑥(")

DNN

𝑦#(")

self-supervised loss

(d) Ours

Figure 1. Conceptual comparison of point cloud completion
schemes. Let x(i)

k be the k-th incomplete observation of object
i, while ŷ(i) and y(i) be the corresponding completed prediction
and ground truth, respectively. (a) Supervised approaches rely on
paired partial-complete samples. (b) Unpaired methods require
partial point clouds and complete examples to guide predictions
to match the input shape and follow the complete shape distribu-
tion. (c) Weakly-supervised models learn completion based on
consistency across multi-view partial samples of an object. (d)
Our scheme differs from existing settings as only a single partial
observation per object instance is available for learning.

point cloud completion (PCC) [40, 9, 34, 14] is studied to
obtain complete point clouds from partial ones.

Supervised learning [39, 34, 24] offers a straightforward
solution, where both partial point clouds and ground truth
completions are required during training. Nevertheless, col-
lecting complete point clouds is challenging. As a result,
training data pairs are often obtained by simulating occlu-
sions on 3D model collections like ShapeNet [5]. Due to the
distribution gap between real and simulated data, the real-
world performance of these approaches is often limited.

Unpaired (or unsupervised) PCC [6] is an alternative to
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supervised PCC, which trains a category-specific network
using only partial point clouds and a set of example com-
plete shapes of the same category. This approach enables
the use of incomplete shapes from large-scale real scans and
virtual 3D object datasets, as the partial points and com-
plete shapes do not need to be paired. However, obtaining
a large, complete, and clean 3D point cloud dataset remains
challenging, due to factors such as labor cost, equipment ex-
penses, etc. Weakly-supervised methods [13, 23, 31] have
been proposed by constructing weak supervision cues us-
ing multiple unaligned observations from different views of
the same object. However, the performance can be signifi-
cantly affected by alignment errors, and collecting observa-
tions from many views is difficult due to hardware limita-
tions or viewing angle restrictions.

To address these challenges, we propose a new self-
supervised approach to PCC, where for training, we only
require one point cloud observation with unknown incom-
pleteness per object. This novel setting offers several ben-
efits for completion: 1) it eliminates the need for complete
samples, thereby reducing the difficulty and expense of an-
notation; 2) partial objects can be easily collected from the
actual world even if only a single viewing angle is available,
significantly expanding the scope of training data; 3) by
leveraging the unknown incompleteness assumption, partial
samples, complete shapes and weakly-supervised cues can
be unified in the learning framework to improve comple-
tion quality. Fig. 1 illustrates the difference of our proposed
setting with existing main schemes.

In this paper, we introduce Partial2Complete (P2C), an
effective approach for training a category-specific point
cloud completion network using only single partial point
clouds. Inspired by He et al. [15], P2C groups input points
as patches that represent a small but possibly continuous
region on the underlying surface, where we expect the net-
work to predict masked patches based on unmasked regions.
Our approach assumes that a structural prior can be learned
by observing a number of training objects with different
missing parts, guiding the reconstruction of severely incom-
plete point clouds. Furthermore, we develop the cycle con-
straint [43] from unpaired image translation to propose a
latent reconstruction loss to the framework. This regular-
ization ensures that completing different partial regions of
the same object leads to the same completed shape.

We also present two new components to address prob-
lems that are unique to the self-supervised setting. First, tra-
ditional point cloud distance measures [40, 36] lack aware-
ness of complete or missing regions that occur in the com-
pletion task, leading to either limited completion capability
or mismatching predictions. To address this challenge, we
introduce Region-Aware Chamfer Distance (RCD) to esti-
mate point cloud correspondence based on regions centered
at dynamically generated skeleton points. By optimising

RCD, possible outlier points can be pulled to the target point
set and completion of missing regions will not be restricted.
On the other hand, motivated by techniques that use dif-
ferential geometry-based surface curvature to describe and
identify local surface shape [2, 20, 35, 33], we propose the
Normal Consistency Constraint (NCC) to encourage gener-
ated points to follow the local 2D surface manifold of the
incomplete point cloud. The NCC queries the normal direc-
tion similarity for nearby points and computes the similarity
variance as a regularizer to encourage local planarity.

We apply P2C to synthetic and real-world completion
tasks to comprehensively verify its effectiveness. We show
that, without any complete shape examples, our approach
not only achieves comparable results against methods with
access to complete samples, but also outperforms weakly-
supervised methods trained with multiple incomplete obser-
vations. In summary, our main contributions are:

• We propose, P2C, the first self-supervised framework
that is able to complete point clouds with only a single
partial point cloud per object for learning.

• We design a novel distance measure, Region-Aware
Chamfer Distance, which overcomes problems of re-
stricting completion and insufficient supervision, by
constructing local regions around dynamically con-
structed skeleton points.

• We present the Normal Consistency Constraint to re-
fine shape predictions to follow the local surface man-
ifold by minimizing a novel consistency metric, im-
proving surface continuity and completeness.

2. Related Works
Supervised Point Cloud Completion. Earlier efforts to
address point cloud completion can be divided into sur-
face reconstruction and template matching. Surface recon-
struction methods [18, 19] attempt to restore missing re-
gions by fitting existing points to an implicit surface based
on geometric cues, and then resample new points from the
estimated surface. On the other hand, template match-
ing techniques [32, 25] retrieve a template shape from
a database and deform it to fit the target shape. How-
ever, surface reconstruction-based methods are able to fill
holes on the surface but are limited in handling severe ge-
ometric incompleteness, while template matching methods
are computationally expensive and rely on the availability
of a sufficient number of example shapes. Starting with
the pioneering work PCN [40], deep learning-based meth-
ods [38, 37, 24, 39] have gained significant attention in
point cloud completion. However, the supervised training
approach requires paired ground truth, which is difficult to
obtain for real-world scans. As a result, these methods are
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Figure 2. The Pipeline of P2C. Starting from the partial point cloud Pp, we divide it into patches and partition these patches into three
groups (Grec, Gcom, Glatent). The encoder takes Grec to produce features f then the decoder generates a predicted point cloud Pc based
on f . Glatent is never observed by the encoder, we resample corresponding regions G

′
latent in Pc to yield another feature embedding f ′.

The overall loss has four components. The reconstruction loss Lr and completion loss Lc are realized by RCD. The Latent reconstruction
loss Lf and the normal consistency constraint Lncc are introduced to regularize the inference.

often trained on synthetic datasets, which leads to impres-
sive results on synthetic data but may not generalize well to
real-world scans [41].
Unpaired and Weakly-Supervised Completion. To ad-
dress the issue of data acquisition, Chen et al. [6] pro-
posed the first method, Pcl2Pcl, that can be trained without
paired partial and complete point sets. This was achieved
through a generative adversarial network [11], where the
generator transforms a partial shape latent encoding into
a representation indistinguishable from the latent variable
obtained from real complete shapes by the discriminator.
Following Pcl2Pcl, many methods [36, 41, 3, 7] have been
proposed to produce more accurate results. Nevertheless,
complete shape repositories are still required, and combin-
ing unaligned real-world partial scans with complete shapes
from other sources may result in poor outcomes due to
alignment errors. Different from prior approaches, Gu et
al. [13] tackle the problem of point cloud completion by us-
ing unaligned real-world partial point clouds as their data
source. The network is trained with multi-view geometric
constraints as weak supervision cues. However, these meth-
ods require scans from multiple viewing angles, which are
not always feasible to obtain.
Self-Supervised Learning. To mitigate the cost of dataset
collection and annotation, self-supervised learning [12]
have been proposed. For example, DINO [4] demon-
strated improved classification performance using only self-
supervised training, without any labels. Self-supervised
learning has also gained popularity in point cloud studies.
Building upon the work of He et al. [15], Liu et al. [21]
proposed a self-supervised mask discrimination framework
for pretraining transformers. For point cloud upsampling,
SSPU-Net [42] leverages the consistency between input
sparse and generated dense point clouds to train the network
using only sparse clouds. Concurrently with our research,
Hong et al. [16] proposed a related point cloud completion

scheme, but used the same data for training and testing to
enable an adaptive closed-loop [1] optimization. In con-
trast, our approach uses distinct test samples.

3. Method

A complete point cloud can be generated by uniformly
sampling an underlying object surface, while an incomplete
point cloud is obtained from the surface via biased sam-
pling, e.g. due to occlusion. Our proposed self-supervised
point cloud completion method aims to predict an object’s
complete shape, given only a single incomplete point cloud
per object from the same object category during learning.
The key motivation of our method is to recover the miss-
ing part of one object by observing similar regions of other
objects in the same category. Accordingly, even if a large
shape collection contains only partial objects, as long as all
kinds of parts of a category are exhibited across multiple ob-
ject instances, the dataset is sufficient for learning to com-
plete partial shapes.

Given only partial observations, our method learns com-
pletion via patch-wise self-supervised learning (Sec. 3.1),
where patches (Sec. 3.2) of the partial point cloud are gener-
ated to achieve both shape augmentation and region-aware
regularization (Sec. 3.3). Further, we introduce the Nor-
mal Consistency Constraint during training (Sec. 3.4) to en-
force the assumption that object surfaces are continuous and
closed by leveraging a local planarity along the object sur-
face. The overall pipeline is depicted in Fig. 2.

3.1. Partial2Complete

Let Pp be an incomplete point cloud and Pc a predicted
completion of Pp. Our framework takes Pp as input to gen-
erate M patches, each of which represents a local region on
the surface of the observed shape. The M patches are parti-
tioned into three groups {Grec, Gcom, Glatent}. Grec is the



observable region for the network, and we force the network
to generate a shape prediction Pc that preserves the regions
in Grec by introducing the reconstruction loss Lr. Although
Lr effectively regularizes the predicted shape to match the
observed regions in Grec, this loss alone is not enough to
guide the network to predict a complete shape. To this end,
the completion loss Lc is used to penalize the network for
not predicting the masked group Gcom. Manually masked
parts and those missing from the input are both unseen by
the network, hence, are indistinguishable for the network,
and so minimizing Lc guides the network to complete both
naturally absent and intentionally masked regions.

The first group Grec is passed through the encoder to ob-
tain a latent feature embedding f , representing an encoding
of the corresponding object and serving as input to the de-
coder to produce a shape prediction Pc. To further regular-
ize the completion, we introduce latent reconstruction loss
Lf to encourage two different sets of local regions of an ob-
ject sharing the same object latent representation [43]. Par-
ticularly, we exploit the third set of patches Glatent, which
is separate from Grec and not observed by the encoder. By
resampling Glatent in Pc, we collect the patches at the same
spatial location as another group G

′

latent. Then, we pass
G

′

latent to the encoder, resulting in a latent feature f ′, and
Lf is utilized to penalize the difference between f and f ′.

3.2. Patchification and Partition

We sample patches from the object surface to provide
information about local regions. To achieve this, we use
farthest point sampling (FPS) [26] to sample M points as
patch centers C = {ci}Mi=1 from partial shape Pp. Then, we
gather the k-nearest neighbors of each center point based on
Euclidean distance to obtain a patch gi = {p|p ∈ NPp

k (ci)}
where NPp

k (ci) denotes the set of k-nearest neighbors for ci
in Pp. Furthermore, the patches are divided into the three
partitions: Grec, Gcom, and Glatent, with ratio r1 : r2 :
r3. Once the decoder produces the predicted shape Pc, we
resample G

′

latent as the regions corresponding to Glatent in
the prediction by employing the same patch centers used for
Glatent and searching for the k-nearest neighbors in Pc.

3.3. Region-Aware Chamfer Distance

Chamfer Distance (CD) and Unidirectional Chamfer
Distance (UCD) are commonly used to measure the dis-
tance between two point clouds that may have different
numbers of points [40, 36]. UCD between two point sets
S1 and S2 is defined as follows:

dUCD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥2. (1)

CD takes both directions into account and can be defined
through UCD as dCD = dUCD(S1, S2) + dUCD(S2, S1).

target set

local region

(a) CD (b) UCD

(c) RCD pulling direction

true surface

predicted set

Figure 3. Comparison of pulling direction to minimize different
distance measures. (a) CD takes the nearest neighbor for every
point in the predicted set, leading to restrictions in completing
missing parts; (b) UCD considers the nearest neighbor only for
every point in the target set, resulting in no moving directions for
noisy points; (c) RCD is aware of observed and unseen regions and
thus only evaluates point distance for observed regions, pulling
outlier points to the underlying surface while allowing completion
of unseen parts.

Let Pp be a partial point cloud of an object with some
missing regions, and Pc be a prediction corresponding to a
complete but possibly noisy shape of the same object. When
applying the two distance measures to self-supervised com-
pletion, where we have no access to a complete shape as
ground truth, CD is not aware of incompleteness while
UCD has no regularization for outliers. For dCD(Pp, Pc),
predicted points p ∈ Pc that correspond to unseen parts
in the partial shape are estimated as far away from the un-
derlying surface. Therefore, as shown in Fig. 3 (a), the
two points in the blue box are located on the true surface
of the object, but they will be displaced to minimize the
CD. Thus, CD prevents the network from inferring miss-
ing parts. Moreover, dUCD(Pp, Pc) measures the distance
by only considering the points in the prediction that are the
nearest neighbors of points in Pp. We show the effect on
UCD in Fig. 3 (b) that although completion of unseen re-
gions will not be restricted, outlier points bounded by the
red box are less likely to be selected as nearest neighbors of
points in the target set, leading to no distance measure for
outliers in the prediction. As a consequence, the network
will not learn to avoid outliers in the prediction when using
UCD as the distance measure.

Region-Aware Chamfer Distance (RCD) addresses the
problem of seen/unseen region awareness by constructing
local regions in both prediction and partial input centered
at skeleton points that are dynamically sampled from the
partial shape Pp. Specifically, given two point sets, Pp

and Pc, m points are sampled from Pp as skeleton points
C = {ci}mi=1 through farthest point sampling [27], repre-
senting a rough observed shape. Then, the k-nearest neigh-
bors in each point set are gathered for each skeleton point in
C, forming two sets that represent the matched regions Rp
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Figure 4. Illustration of the effect of NCC in a 2D case: The vari-
ance of normal similarity is lower when the point follows the un-
derlying surface, as shown in (a) and (c), while the variance is
larger when the new point results in a surface that diverges from
the existing surface curvature, as shown in (b) and (d).

and Rc. Then, RCD can be defined through UCD as:

dRCD(Pp, Pc) = dUCD(Rp, Rc) + dUCD(Rc, Rp), (2)

where

Rp =

m⋃
i=1

{NPp

k (ci)| ci ∈ C} for Pp,

Rc =

m⋃
i=1

{NPc

k (ci)| ci ∈ C} for Pc,

are the union of k-nearest neighbors for all skeleton points
in Pp and Pc, respectively.

3.4. Normal Consistency Constraint

To further regularize the completion, we introduce the
Normal Consistency Constraint (NCC) to improve surface
continuity. Specifically, given a point cloud P = {pi}ni=1,
the total least squares estimation of the normal direction [2]
of a tangent plane centered at pi is obtained by eigen-
value decomposition of the covariance matrix Cov of the
k-nearest neighbors ∀qj ∈ NP

k (pi), defined as:

Cov =
1

k

k∑
j=1

(qj − p̂)(qj − p̂)T , p̂ =
1

k

k∑
j=1

qj , (3)

where the eigenvector corresponding to the smallest eigen-
value of Cov is the estimated normal direction vi, and vi is
normalized as ∥vi∥= 1. We define the normal consistency
of a point pi as:

nc(pi) =

( k∑
j=1

(vTi vj − µi)
T (vTi vj − µi)

)1/2

, (4)

where a dot product between two normal directions is ap-
plied as the similarity measure, and µi = 1

k

∑k
j=1 v

T
i vj

is the mean of similarities between vi and vj . The value of
nc(·) represents the variance of the normal similarity, which
estimates the local surface curvature. As the local surface
approaches piece-wise planar, nc(·) decreases to 0, while
nc(·) increases as the curvature increases. Further, NCC is
formulated as:

NCC(P ) =
1

n

n∑
i=1

nc(pi). (5)

As illustrated in Fig. 4, when a new point added to fill
a hole or extend an edge following the local plane, this re-
sults in a smaller nc value than if the point diverges from
the surface curvature. Therefore, the NCC regularizes the
prediction to be more smooth and extends edge points to
make the prediction more complete, leading to better shape
completion.

3.5. Optimization

The reconstruction loss and completion loss are defined
as Lr = dRCD(Grec, Pc) and Lc = dRCD(Gcom, Pc), re-
spectively. We encode G

′

latent in Pc as a latent representa-
tion f ′ ∈ Rd, and we encourage it to be consistent with the
first latent embedding f ∈ Rd via latent reconstruction loss:

Lf (f, f
′) =

1

d

d∑
i=1

ϕ(fi − fi
′), (6)

where ϕ(·) is the Huber [17] loss function. Together with
the NCC as a loss function Lncc = NCC(Pc), we have the
overall loss defined as:

L = λrecLr + λcomLc + λlatentLf + λnccLncc, (7)

where λrec, λcom, λlatent, λncc are weighting parameters.

4. Experiments
4.1. Implementation Details

We employ the encoder from PCN [40] for our method.
The decoder is implemented as a multi-layer perceptron
with two hidden layers of 2048 dimensions. For the loss
functions, we set the weights for the reconstruction loss,
completion loss, and latent reconstruction loss to 1, 1, and
0.1, respectively. The weight for the NCC loss is set to 0.1.
The number of patches used is 64, each formed by a local
region of 32 points. The three groups Grec, Gcom, Glatent

each contain 20, 40, and 4 patches, respectively. The net-
work is trained using the AdamW [22] optimizer with a
starting learning rate of 10−3 and a weight decay of 10−3

for 300 epochs.



Table 1. Quantitative comparison result of our method and other methods on the 3D-EPN dataset using CD-ℓ2 ↓ (×104).

Method Data Source Average Plane Cabinet Car Chair Lamp Couch Table Boat

FoldingNet [38] paired 6.8 2.6 7.6 4.8 8.3 9.7 7.4 8.0 5.8
PCN [40] paired 7.4 2.5 8.0 4.8 9.0 12.2 8.1 8.9 6.0
TopNet [34] paired 6.4 2.3 7.5 4.6 7.6 8.9 7.3 7.5 5.2
PoinTr [39] paired 4.3 1.2 6.5 4.0 5.1 4.5 5.4 5.4 2.6

Pcl2Pcl [6] unpaired 17.4 4.0 19.0 10.0 20.0 23.0 26.0 26.0 11.0
C4C [36] unpaired 14.3 3.7 12.6 8.1 14.6 18.2 26.2 22.5 8.7
Inv [41] complete 23.6 4.3 20.7 11.9 20.6 25.9 54.8 38.0 12.8
Cai et al. [3] unpaired 13.6 3.5 12.2 9.0 12.1 17.6 26.0 19.8 13.6
P2C∗(Ours) unpaired 10.9 3.7 12.5 7.7 11.3 15.3 13.2 15.2 8.0

Gu et al. [13] multi-view 21.3 5.9 20.8 9.5 20.4 34.9 27.1 36.7 14.8
PPNet [23] multi-view 28.1 5.6 46.6 22.4 24.3 46.1 28.4 36.4 15.0
P2C(Ours) single partial 14.1 4.3 19.4 8.6 13.5 16.3 20.2 18.1 12.0

Table 2. Quantitative comparison result of our method and other
methods on the PCN dataset using CD-ℓ2 ↓ (×104).

Method Air Cab Car Cha Lam Sof Tab Wat Avg

Folding [38] 2.4 8.4 4.9 9.2 11.5 9.6 8.4 7.4 7.7
PCN [40] 3.0 7.5 5.7 9.7 9.2 9.5 9.2 6.2 7.5
TopNet [34] 2.3 8.2 4.7 8.6 11.0 9.3 7.5 5.2 6.4

C4C [36] 4.1 14.2 9.9 14.6 19.2 27.8 16.8 9.0 14.4
Inv [41] 3.9 17.4 11.0 13.8 14.2 23.0 20.3 9.7 14.1
P2C(Ours) 3.5 11.7 9.0 12.8 16.4 16.2 18.6 9.1 12.2

4.2. Dataset and Evaluation Metrics

Dataset. For a comprehensive comparison, we evaluate
our method on synthetic and real-world datasets following
state-of-the-art point cloud completion works [39, 36]. We
evaluate our method on synthetic datasets 3D-EPN [9] and
PCN [40], where the former is usually adopted as an un-
paired method benchmark, and the latter is widely used in
supervised method evaluation. Moreover, we also extract
real-world objects from ScanNet [8]. In particular, 4357
chairs and 1271 tables are extracted as the training set, while
the validation set contains 1368 chairs and 350 tables. Scan-
Net objects are unaligned and have around 800 points on
average, creating a more challenging scenario.
Evaluation Metric. We use ℓ2 Chamfer Distance (CD)
as the evaluation metric for synthetic datasets. In the case
of real-world datasets, where ground-truth complete shapes
are unavailable, we evaluate the prediction in terms of both
fidelity and quality. To measure the preservation of ob-
served regions in the prediction, we adopt the Unidirec-
tional Chamfer Distance (UCD), Unidirectional Hausdorff
Distance (UHD), and our proposed Region-Aware Chamfer
Distance (RCD). To evaluate the quality of the generated
shapes, we utilize a complete shape example set extracted
from ShapeNet [5] and employ the Minimal Matching Dis-

Figure 5. Visual comparison of point cloud completion results on
the 3D-EPN dataset.

tance (MMD) [39] as the quality metric.

4.3. Synthetic Data Evaluation

We compare the performance of our proposed P2C with
state-of-the-art methods in the field, including supervised,
unpaired (or unsupervised), and weakly-supervised meth-
ods. To ensure a fair comparison, we use their open-source
implementation and the same hyperparameters except Cai et



Figure 6. Visual comparison of point cloud completion results on the ScanNet dataset.

al. [3] where open-source implementation is not available,
so we cited their reported result. Since the unsupervised
method utilizes unpaired partial and complete samples for
training, we provide results of our P2C trained with the
same data source, indicated as P2C∗. The results on the
3D-EPN dataset are shown in Tab. 1, demonstrating the su-
periority of our method. P2C outperforms the best unpaired
method [3] by 2.7 w.r.t CD-ℓ2 without any design to uti-
lize known complete example shapes. Moreover, compared
with the best weakly-supervised method [13], our proposed
P2C improves the CD score by 7.2 with only single partial
observations for training. Although fully supervised meth-
ods still show numerical advantages by heavily exploiting
complete and paired ground-truth data, our self-supervised
framework P2C has significantly reduced the performance
gap between the two different learning schemes.

Tab. 2 shows the performance comparison on the PCN
dataset. Our method is trained with the same data source
as unpaired methods for a fair comparison. On average,
we achieve 12.2 CD-ℓ2, while other unpaired methods have
around 14, showing that our approach attains a much better
overall object completion quality. The per-category results
demonstrate that our proposed method outperforms the best
unpaired model in six out of all eight testing categories.

Fig. 5 presents a qualitative comparison between our
method and some recent methods [36, 41, 13, 23], show-
casing that our method can successfully complete objects
with diverse missing regions even in the absence of com-
plete samples. In particular, our method trained on unpaired
data recovers not only realistic geometry, such as the lamp
post, but also captures fine-grained details, such as the car’s
wheel and the desk’s edges.

Table 3. Shape completion comparison with supervised and un-
paired methods on the ScanNet dataset. The numbers shown are
RCD ↓, UCD-ℓ2 ↓, UHD ↓, and MMD ↓ scaled by 103 and 104,
102, and 103, respectively.
Metric RCD UCD UHD MMD

Category Chair Table Chair Table Chair Table Chair Table

Folding [38] 14.2 11.9 124.6 86.1 23.5 16.9 6.5 8.0
PCN [40] 17.9 14.9 131.8 85.1 24.5 16.8 5.9 7.2
TopNet [34] 20.3 14.1 114.6 82.5 23.0 16.7 5.8 7.6

C2C [36] 16.2 10.1 18.5 14.6 13.0 10.2 9.8 9.1
Inv [41] 18.4 9.5 8.5 7.5 10.0 8.6 15.2 16.2
P2C(Ours) 4.6 6.7 7.7 7.2 8.3 8.2 14.1 8.1

4.4. Real-world Data Evaluation

We evaluate the effectiveness of our method on the Scan-
Net dataset by training P2C on only partial objects and com-
paring it with relevant methods pretrained on the ShapeNet
dataset. The results are shown in Tab. 3, which indicates
that our method outperforms methods trained with complete
shape examples in terms of fidelity (RCD, UCD, UHD), in-
cluding both supervised and unsupervised methods. While
we achieve the best result in the table category compared
with other unpaired methods using MMD as a quality mea-
sure, the unpaired method C2C [36] outperforms ours on the
chair category and supervised methods perform better than
ours on both categories. Considering the fact that MMD
measures the distance of a prediction and its ShapeNet near-
est neighbor [39], the MMD scores for the compared meth-
ods are usually better since they are all trained on ShapeNet
to closely resemble ShapeNet samples.



Table 4. Ablation study on four categories (plane, car, chair, table)
of the 3D-EPN dataset. We investigate the impact of RCD, Lf ,
and NCC designs. Results reported in CD-ℓ2 ↓ scaled by 104.

Model RCD Latent Recon. NCC CD-ℓ2

A 18.6
B ✓ 13.5
C ✓ ✓ 12.0

D ✓ ✓ ✓ 11.2

Target CD UCD RCD

Low High

Figure 7. Visualization of per-point distance measures. Our pro-
posed RCD computes point cloud distance by considering the cor-
responding regions that appear in the target shape. In contrast, the
vanilla CD assigns large distances to the unseen parts of the can-
didate shape, while the UCD lacks a distance measure to outliers
near the observed part of the target shape.

4.5. Ablation Study

Model Design Analysis. To examine the effectiveness of
our design, we conducted a detailed ablation study on the
key components using four main categories in the 3D-EPN
dataset. The Chamfer Distance-based evaluation results are
summarized in Tab. 4. The baseline model (Model A) is
the same framework, employing only reconstruction and
completion losses. We then replace the vanilla CD mea-
sure used in the baseline model with the proposed RCD
in Eq. 2 to form Model B and observe a significant im-
provement compared to the baseline. This is because the
vanilla CD restricts the prediction to overfit existing re-
gions, thereby preventing the model from inferring miss-
ing regions. When the latent reconstruction loss (Lf ) is in-
corporated in Model C, the performance increases by 1.5
compared to Model B, indicating the effectiveness of Lf .
Finally, to retain more completeness but fewer outliers, we
further introduce the NCC (Eq. 5) to form our complete P2C
framework (Model D), which helps to establish a state-of-
the-art result as shown in Tab. 1.
Region-Aware Chamfer Distance. We demonstrate the ef-
fect of RCD in Fig. 7, where we visualize different distance
measures. Given a partial shape and a noisy complete pre-
diction, vanilla CD computes the distances for all points in
the prediction without considering some parts that have no
correspondence in the partial observation. This issue causes
substantial distance estimations for missing parts. Conse-
quently, as the objective function aims to minimize distance,
an overfitted network will reconstruct the exact inputs in-
stead of recovering missing regions. On the other hand,

Table 5. The effect of different schemes for enforcing local pla-
narity in CD-ℓ2 ↓ scaled by 104.

Method Average Plane Car Chair Table

Baseline 13.5 4.7 14.2 14.4 20.8
Mean 12.8 4.4 12.3 14.2 19.8
Min 13.2 4.7 13.5 14.4 20.1

Variance 11.6 4.3 10.1 13.9 18.2

UCD lacks regularization to outlier points as those points
are usually further from observed points than valid point
predictions. This limitation allows the network to cheat the
metric by outputting a shape that fills the whole 3D space,
in which case the UCD value will be zero for any possible
input shape. Our proposed RCD addresses the above prob-
lems by introducing region awareness since we only evalu-
ate distance for points near the observed region, assigning
no distance to unseen parts. Therefore, outlier points are
constrained in the observed region, while completion capa-
bility will not be restricted.
Normal Consistency Constraint. To evaluate the effec-
tiveness of NCC in improving surface continuity, we com-
pare two alternative strategies for calculating the normal
consistency (Eq. 4) of a given point. Instead of incorpo-
rating the local planarity, we estimate the curvature as the
mean of normal vector dot product similarity or minimum
of the similarity and compare our method with them. Tab. 5
shows the quantitative results comparing the strategies,
where the baseline model is a simplified variant that only
utilizes the reconstruction and completion losses. Based on
the mean similarity and minimal similarity, we observe in-
cremental improvements compared to the baseline model,
where the average CD-ℓ2 only drops from 13.5 to 12.8 and
13.2, respectively. In comparison, our proposed NCC that
uses the variance can better estimate the local surface cur-
vature and improve the completion quality.

We provide more ablation studies in the supplementary
material, including model complexity and efficiency, empir-
ical hyperparameter selection, visualizations, etc.

5. Conclusion
In this paper, we propose P2C, the first self-supervised

point cloud completion method that only requires a sin-
gle partial point cloud observation per object for learning.
Our method employs a novel Region-Aware Chamfer Dis-
tance to measure input-prediction similarity, and we design
the Normal Consistency Constraint to enhance prediction
completeness. Experimental results demonstrate that P2C
exhibits state-of-the-art performance on both synthetic and
real-world completion tasks, even outperforming models
trained with known complete samples. Overall, our pro-
posed method provides an effective solution for point cloud
completion given only partial observation data.
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