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Figure 1. The characteristics of our method and visual comparison of point cloud completion results. (a) SVDFormer understands incom-
plete shapes from self-projected multiple views. (b) SVDFormer collaborates both geometric similarities (red boxes) and shape priors (yel-
low boxes) for shape refinement. (c) Qualitative comparison of our SVDFormer with PoinTr [43], PMP-Net++ [33], and SeedFormer [50].

Abstract

In this paper, we propose a novel network, SVDFormer,
to tackle two specific challenges in point cloud completion:
understanding faithful global shapes from incomplete point
clouds and generating high-accuracy local structures. Cur-
rent methods either perceive shape patterns using only 3D
coordinates or import extra images with well-calibrated in-
trinsic parameters to guide the geometry estimation of the
missing parts. However, these approaches do not always
fully leverage the cross-modal self-structures available for
accurate and high-quality point cloud completion. To this
end, we first design a Self-view Fusion Network that lever-
ages multiple-view depth image information to observe in-
complete self-shape and generate a compact global shape.

†Co-corresponding authors

To reveal highly detailed structures, we then introduce a re-
finement module, called Self-structure Dual-generator, in
which we incorporate learned shape priors and geomet-
ric self-similarities for producing new points. By perceiv-
ing the incompleteness of each point, the dual-path de-
sign disentangles refinement strategies conditioned on the
structural type of each point. SVDFormer absorbs the wis-
dom of self-structures, avoiding any additional paired in-
formation such as color images with precisely calibrated
camera intrinsic parameters. Comprehensive experiments
indicate that our method achieves state-of-the-art perfor-
mance on widely-used benchmarks. Code is available at
https://github.com/czvvd/SVDFormer.
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1. Introduction
Point cloud completion plays an essential role in 3D vi-

sion applications and remains an active research topic in re-
cent years. To tackle this task, a variety of learning-based
techniques have been proposed, of which many demonstrate
encouraging results [44, 14, 47, 43, 35, 38, 45, 23, 50, 46].
However, the sparsity and large structural incompleteness of
captured point clouds still limit the ability of these methods
to produce satisfactory results.

We observe that there are two primary challenges in
this task. The first challenge is that crucial semantic parts
may be absent, resulting in a vast solution space for point-
based networks [44, 35, 43, 50] to identify plausible global
shapes and locate missing regions. Some alternative meth-
ods attempt to address this issue by incorporating additional
color images [48, 1, 51], but the paired images are hard to
obtain, as well as the well-calibrated intrinsic parameters.
The second one is how to infer detailed structures. Some
recent methods [35, 38] utilize skip-connections between
multiple refinement steps, allowing them to better leverage
learned shape pattern priors to iteratively recover finer de-
tails. Some other methods prioritize preserving the original
detail information by no-pooling encoding [50] or structural
relational enhancement [18]. However, all above mentioned
approaches typically employ a unified refinement strategy
for all surface regions, which hinders the generation of ge-
ometric details for various missing regions. By observing
and analyzing the partial inputs, we find that the missing
surface regions can be classified into two types. The first
type lacks similar structures in the input shape, and their re-
construction heavily relies on the learned shape prior. The
second type is consistent with the local structures that are
present in the partial input, and their recovery can be facili-
tated by appropriate geometric regularity [49]. For instance,
LiDAR scans in KITTI [8] are highly sparse and contain
limited information for generating fine details. Existing re-
finement strategies tend to produce and preserve implausi-
ble line-like shapes (see from Figure 7).

Based on the above observations, we propose a new neu-
ral network for point cloud completion called SVDFormer.
Our method makes improvements by fully leveraging self-
structure information in a coarse-to-fine paradigm.

First, similar to how a human would perceive and locate
the missing areas of a physical object by observing it from
different viewpoints, we aim to drive the neural network to
absorb this knowledge by augmenting the data representa-
tion. To achieve this, we design a Self-View Fusion Net-
work (SVFNet) that learns an effective descriptor, well de-
picting the global shape from both the point cloud data and
depth maps captured from multiple viewpoints (see from
Figure 1 (a)). To better exploit such kind of cross-modal in-
formation, we specifically introduce a feature fusion mod-
ule to enhance the inter-view relations and improve the dis-

criminative power of multi-view features.
Regarding the second challenge, our insight is to dis-

entangle refinement strategies conditioned on the struc-
tural type of each point to reveal detailed geometric struc-
tures. Therefore, we design a Self-structure Dual-Generator
(SDG) with a pair of parallel refinement units, called Struc-
ture Analysis and Similarity Alignment, respectively. The
former unit analyzes the generated coarse point clouds by
explicitly encoding local incompleteness, which enables it
to match learned geometric patterns of training data to infer
underlying shapes. The Similarity Alignment unit finds the
features of similar structures for every point, thus making it
easier to refine its local region by mimicking the geometry
of input local structures. With the aid of this dual-path de-
sign, our method can generate reasonable results for differ-
ent types of input shapes, including symmetrical synthetic
models with various degrees of incompleteness and highly
sparse real-world scans.

Extensive experiments demonstrate that SVDFormer
achieves state-of-the-art performance on widely-used
benchmarks. Our key contributions are listed below:

• We design a novel network called SVDFormer, which
significantly improves point cloud completion in terms
of global shape understanding and details recovery.

• We propose the novel Self-view Fusion Network
(SVFNet) equipped with a feature fusion module to en-
hance the multi-view and cross-modal feature, which
can output a plausible global shape.

• We introduce a Self-structure Dual-Generator (SDG)
for refining the coarse completion. It enables our
method to handle various kinds of incomplete shapes
by jointly learning the local pattern priors and self-
similarities of 3D shapes.

2. Related Work

2.1. Learning-based Shape Completion

Early learning-based methods [4, 9, 21, 25] often rely
on voxel-based representations for 3D convolutional neural
networks. However, these approaches are limited by their
high computational cost and limited resolution. Alterna-
tively, GRNet [37] and VE-PCN [27] use 3D grids as an
intermediate representation for point-based completion.

In recent years, several methods are proposed to directly
process points by end-to-end networks. One pioneering
point-based work is PCN [44], which uses a shared multi-
layer perceptron (MLP) to extract features and generates
additional points using a folding operation [39] in a coarse-
to-fine manner. Inspired by it, a lot of point-based meth-
ods [28, 16, 32, 35, 50, 43] have been proposed.

Later, to address the issue of limited information avail-
able in partial shapes using only point data, several
works [48, 1, 51, 13] have explored the use of auxiliary in-
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Figure 2. The architecture of SVDFormer. SVFNet first generates a global shape from the cross-modal input. The coarse completion is
then upsampled and refined with two SDGs.

put to enhance performance. We call them cross-modal-
based methods. These approaches involve the combina-
tion of rendered color images and partial point clouds,
along with the corresponding camera parameters. Although
these methods have shown promising results, they often re-
quire additional input that is difficult to obtain in practi-
cal settings. Different from these 3D data-driven methods,
MVCN [12] operates completion solely in the 2D domain
using a conditional GAN. However, it lacks the ability to
supervise the results using ground truth with rich space in-
formation. Besides, some other methods [36, 1] seek to su-
pervise point cloud completion in the 2D domain. The 2D
projections of completed points are used to calculate loss
by comparing them to the ground-truth depth. In contrast to
these methods, we propose to utilize 2D input by observing
self-structures to understand the overall shape. As a result,
our method achieves a more comprehensive perception of
the overall shape without requiring additional information
or differentiable rendering during training.

Considering the high-quality details generation, a variety
of strategies have been introduced by learning shape con-
text and local spatial relationships. To achieve this goal,
state-of-the-art methods design various refinement mod-
ules to learn better shape priors from the training data.
SnowflakeNet [35] introduces Snowflake Point Deconvo-
lution (SPD), which leverages skip-transformer to model
the relation between parent points and child points. FB-
Net [38] adopts the feedback mechanism during refinement
and generates points in a recurrent manner. LAKe-Net [23]
integrates its surface-skeleton representation into the re-
finement stage, which makes it easier to learn the missing
topology part. Another type of method tends to preserve
and exploit the local information in partial input. One di-
rect approach is to predict the missing points by combining
the results with partial input data [14, 43]. As the point
set can be viewed as a token sequence, PoinTr [43] em-
ploys the transformer architecture [26] to predict the miss-

ing point proxies. SeedFormer [50] introduces a shape rep-
resentation called patch seeds for preventing the loss of lo-
cal information during pooling operation. Some other ap-
proaches [17, 18, 46] propose to enhance the generated
shapes by exploiting the structural relations in the refine-
ment stage. However, these strategies employ a unified re-
finement strategy for all points, which limits their ability to
generate pleasing geometric details for different points. Our
approach differs from theirs by breaking down the shape re-
finement task into two sub-goals, and adaptively extracting
reliable features for different partial areas.

2.2. Multi-view fusion for Shape Learning

View-based 3D shape recognition techniques have
gained significant attention in recent years. The clas-
sic Multi-View Convolutional Neural Network (MVCNN)
model was introduced in [22], where color images are fed
into a CNN and subsequently combined by a pooling opera-
tion. However, this approach has the fundamental drawback
of ignoring view relations. Following works [7, 30, 10, 40]
propose various strategies to tackle this problem. For exam-
ple, Yang et al. [40] obtains a discriminative 3D object rep-
resentation by modeling region-to-region relations. LSTM
is used to build the inter-view relations [5]. Since the cross-
modal data are more available recently, methods are pro-
posed to fuse features of views and point clouds [41, 42].
Inspired by the success of multi-view fusion, our method
utilizes point cloud features to enhance relationships be-
tween multiple views obtained by self-view augmentation.

3. Method
The input of our SVDFormer consists of three parts: a

partial and low-res point cloud Pin ⊆ RN×3, NV cam-
era locations V P ⊆ RNV ×3 (three orthogonal views in
our experiments), and NV depth maps D ⊆ RNV ×1×H×W .
Given these inputs, our goal is to estimate a complete point
cloud P2 ⊆ RN2×3 in a coarse-to-fine manner. The over-
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Figure 3. Illustration of the feature fusion module.

all architecture is exhibited in Figure 2, which comprises
two parts: an SVFNet and a refiner equipped with two SDG
modules. SVFNet first leverages multiple self-projected
depth maps to produce a globally completed shape P0 ⊆
RN0×3. Subsequently, two SDGs gradually refine and up-
sample P0 to yield the final point cloud P2, which exhibits
geometric structures with high levels of detail. Note that
unlike some recent cross-modal approaches [48, 51, 1, 45],
our method makes full use of self-structures and does not
require any additional paired information such as color
images with precisely calibrated camera intrinsic parame-
ters [48, 51]. Depth maps are directly yielded by projecting
point clouds themself from controllable viewpoints during
the data-preprocessing stage.

3.1. SVFNet

The SVFNet aims to observe the partial input from dif-
ferent viewpoints and learns an effective descriptor to pro-
duce a globally plausible and complete shape. We first ex-
tract a global feature Fp from Pin using a point-based 3D
backbone network and a set of view features FV from the
NV depth maps using a CNN-based 2D backbone network.
We directly adopt well-established backbone networks. In
detail, the PointNet++ [20] with three set abstraction layers
encodes Pin in a hierarchical manner and the ResNet-18
model [11] is employed as the 2D backbone.

However, how to effectively fuse the above cross-modal
features is challenging. In our early experiments, we di-
rectly concatenate these features, but the produced shape
is less pleasing (see the ablation studies in Section 4.5).
This may be caused by the domain gap between 2D and
3D representations. To resolve this problem, we propose a
new feature fusion module, to fuse Fp and FV , and out-
put a global shape descriptor Fg , followed by a decoder
to generate the global shape Pc. The decoder uses a 1D
Conv-Transpose layer to transform Fg to a set of point-wise
features and regresses 3D coordinates with a self-attention
layer [26]. Finally, we adopt a similar approach to previous
studies [35, 50], where we merge Pc and Pin and resample
the merged output to generate the coarse result P0.
Feature Fusion. As shown in Figure 3, FV is first trans-
formed to query, key, and value tokens via linear projec-
tion and the guidance of global shape feature FP . Then, to

enhance the discriminability of view features, the attention
weights are calculated based on the query and key tokens
conditioned on the projected viewpoints V P . Detailedly,
we map V P into the latent space through a linear transfor-
mation and then use them as positional signals for feature
fusion. After the elemental-wise product, each feature in
F ′
V combines the relational information from other views

under the guidance of FP . Finally, the output shape de-
scriptor Fg is derived from F ′

V via maximum pooling.

3.2. SDG

The SDG seeks to generate a set of coordinate offsets
to fine-tune and upsample the coarse shape, based on the
structural type of the missing surface region. To achieve
it, SDG is designed as a dual-path architecture as shown in
Figure 4, which consists of two parallel units named Struc-
ture Analysis and Similarity Alignment, respectively. Over-
all, fed with the partial input Pin and coarse point cloud
Pl−1 outputted in the last step, we obtain the combined
point-wise feature Fl ⊆ RN×2C . Fl comprises two kinds of
sources of shape information: one is derived from learned
shape priors, while the other is learned from the similar ge-
ometric patterns found within Pin. Fl is then projected to
a higher dimensional space and reshaped to produce a set
of up-sampled offsets Ol ⊆ RrN×3, where r represents the
upsampling rate. The predicted offsets are further added
back to Pl−1 to obtain a new completion result. Note that
we iterate SDG twice, as shown in Figure 2.

3.2.1 Structure Analysis

Since detailed geometries from missing regions are harder
to be recovered, we embed an incompleteness-aware self-
attention layer to explicitly encourage the network to focus
more on the miss regions. Specifically, Pl−1 is first con-
catenated with the shape descriptor Fg , and then embedded
into a set of point-wise feature Fl−1 = {fi}

Nl−1

i=1 by a linear
layer. Next, Fl−1 is fed to the incompleteness-aware self-
attention layer to obtain a set of features FQ = {qi}

Nl−1

i=1 ,
which encodes the point-wise incompleteness information.
qi is computed by:

qi =

Nl−1∑
j=1

ai,j(fjWV )

ai,j = Softmax((fiWQ + hi)(fjWK + hj)
T )

, (1)

where WQ, WK , and WV are learnable matrix with the size
of C × C. hi is a vector that represents the degree of in-
completeness for each point x in Pl−1. Intuitively, points in
missing regions tend to have a larger distance value to the
partial input. We thus calculate the incompleteness by:

hi = Sinusoidal(
1

γ
min
y∈Pin

||x− y||), (2)
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Figure 4. The architecture of SDG. The upper path represents Structure Analysis and the lower path represents Similarity Alignment. Each
sub-network generates an offset feature which is then concatenated with each other and used to regress into the coordinate offsets.

where γ is a scaling coefficient. We set it as 0.2 in our
experiment. The sinusoidal function [26] is used to ensure
that hi has the same dimension as the embeddings of query,
key, and value. We then decode FQ into F

′

Q for further
analysis of the coarse shape.

3.2.2 Similarity Alignment

The Similarity Alignment unit exploits the potential similar
local pattern in Pin for each point in Pl−1 and addresses
the feature mismatch problem caused by the unordered na-
ture of point clouds. Inspired by the point proxies in [43],
we begin by using three EdgeConv layers [29] to extract
a set of downsampled point-wise feature Fin. Each vector
in Fin captures the local context information. Since there
could exist long-range similar structures, we then perform
feature exchange by cross-attention, which is a classical so-
lution for feature alignment. The calculation process is sim-
ilar to vanilla self-attention. The only difference lies in that
the query matrix is produced by FQ, while Fin serves as
the key and value vectors. The cross-attention layer outputs
point-wise feature FH ⊆ RNl−1×C , which integrates simi-
lar local structures in Pin for each point in the coarse shape
Pl−1. In this way, this unit can model the geometric simi-
larity between two point clouds and facilitate the refinement
of points with similar structures in the input. Similar with
the structure analysis unit, FH is also decoded into a new
feature F

′

H . These two decoders have the same architecture,
which is implemented with two layers of self-attention [26].
For more details of the used self-attention, cross-attention,
and decoders, please refer to the supplemental files.

3.3. Loss Function

In order to measure the differences between the gener-
ated point cloud and the ground truth Pgt, we use the Cham-
fer Distance (CD) as our loss function, which is a common
choice in recent works. To facilitate the coarse-to-fine gen-

eration process, we regularize the training by computing the
loss function as:

L = LCD(Pc, Pgt) +
∑
i=1,2

LCD(Pi, Pgt) (3)

It is worth noting that we downsample the Pgt to the same
density as Pc, P1, P2 in order to compute the losses.

4. Experiment
4.1. Dataset and Evaluation Metric

We first use the PCN [44] and ShapeNet-55/34 [43]
dataset for evaluation. To ensure a fair comparison, we
follow the same experiment settings as previous meth-
ods [43, 50]. PCN contains shapes from 8 categories
in ShapeNet [2]. The ground-truth complete point cloud
has 16,384 points and the partial input has 2,048 points.
ShapeNet-55 [43] is also created based on ShapeNet [2] and
contains shapes from 55 categories. The ground-truth point
cloud has 8,192 points and the partial input has 2,048 points.
ShapeNet-34 contains 34 categories for training and leaves
21 unseen categories for testing, which is used for evalua-
tion of generalization ability on novel categories that are un-
seen during training. Secondly, to evaluate the generaliza-
tion ability in real-world scenarios, we test our method on
both KITTI [8] and ScanNet [3], which contain partial point
clouds extracted from LiDAR scans and RGB-D scans, re-
spectively. Specifically, we test on 2,401 KITTI cars ex-
tracted by [44], and 100 chair point clouds from ScanNet.
We use CD, Density-aware CD (DCD) [34], and F1-Score
as evaluation metrics. Following the recent work [50], we
report the ℓ1 version of CD for PCN and the ℓ2 version of
CD for Shapenet-55, for an easier comparison.

4.2. Results on the PCN Dataset

We compare SVDFormer with state-of-the-art meth-
ods [44, 37, 28, 47, 43, 35, 33, 38, 50, 46] in Table 1. CD



Table 1. Quantitative results on the PCN dataset. (ℓ1 CD ×103 and F1-Score@1%)

Methods Plane Cabinet Car Chair Lamp Couch Table Boat CD-Avg↓ DCD↓ F1↑

PCN [44] 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59 9.64 - 0.695
GRNet [37] 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83 0.622 0.708
CRN [28] 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51 - 0.652
NSFA [47] 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48 8.06 - 0.734
PoinTr [43] 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38 0.611 0.745

SnowflakeNet [35] 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40 7.21 0.585 0.801
SDT [46] 4.60 10.05 8.16 9.15 8.12 10.65 7.64 7.66 8.24 - 0.754

PMP-Net++ [33] 4.39 9.96 8.53 8.09 6.06 9.82 7.17 6.52 7.56 0.611 0.781
FBNet [38] 3.99 9.05 7.90 7.38 5.82 8.85 6.35 6.18 6.94 - -

Seedformer [50] 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85 6.74 0.583 0.818

Ours 3.62 8.79 7.46 6.91 5.33 8.49 5.90 5.83 6.54 0.536 0.841

Table 2. Quantitative results on ShapeNet-55. CD-S, CD-M, and
CD-H stand for CD values under the easy, moderate, and hard
difficulty levels, respectively. (ℓ2 CD ×103 and F1-Score@1%)

Methods CD-S CD-M CD-H CD-Avg↓ DCD-Avg↓ F1↑

FoldingNet [39] 2.67 2.66 4.05 3.12 - 0.082
PCN [44] 1.94 1.96 4.08 2.66 0.618 0.133

TopNet [24] 2.26 2.16 4.3 2.91 - 0.126
PFNet [14] 3.83 3.87 7.97 5.22 - 0.339
GRNet [37] 1.35 1.71 2.85 1.97 0.592 0.238
PoinTr [43] 0.58 0.88 1.79 1.09 0.575 0.464

SeedFormer [50] 0.50 0.77 1.49 0.92 0.558 0.472

Ours 0.48 0.70 1.30 0.83 0.541 0.451

values are courtesy of [50, 43], while F1-Score and DCD
values are computed using their pre-trained models. The
quantitative results demonstrate that SVDFormer achieves
almost the best performance across all metrics. Especially,
our method outperforms SeedFormer by 8.06% in DCD.

Figure 5 provides a visual comparison of the results pro-
duced by the different methods. In the case of the car
and plane models, all methods are successful in generat-
ing the overall shapes. However, SVDFormer outperforms
the other methods by producing sharper and more complete
edges for detailed structures, such as plane wings and car
spoilers. This is due to the generation ability of SDG. In the
case of chair and couch models, SVDFormer can accurately
locate missing regions and generate points among the holes
in the models, leading to more faithful results.

4.3. Results on the ShapeNet-55/34 Dataset

The test set of ShapeNet-55 can be classified into three
levels of difficulty: simple (S), moderate (M), and hard (H),
which correspond to different numbers of missing points
(2,048, 4,096, and 6,144). The quantitative results are pre-

Figure 5. Visual comparisons with recent methods [43, 33, 35, 50]
on the PCN dataset. Our method produces the most complete and
detailed structures compared to its competitors.

sented in Table 2, consisting of CD values for three diffi-
culty levels and the average value of two additional metrics.
Our method achieves the best result in CD across all diffi-
culty settings. Notably, SVDFormer outperforms the state-
of-the-art method SeedFormer, achieving a 12.8% improve-
ment in CD for the hard difficulty level. The results under
different difficulty levels are shown in Figure 6. Compared
to PoinTr and SeedFormer, our method produces smoother
surfaces. The visual results clearly demonstrate that SVD-
Former is capable of efficiently recovering geometries from
shapes with varying degrees of incompleteness.

We further evaluate SVDFormer on the ShapeNet-34
dataset. The results on both seen and unseen categories are
detailed in Table 3,which shows that SVDFormer achieves
the best performance in terms of all three metrics.



Table 3. Quantitative results on ShapeNet-34.

Methods
34 seen categories 21 unseen categories

CD-S CD-M CD-H CD-Avg↓ DCD-Avg↓ F1↑ CD-S CD-M CD-H CD-Avg↓ DCD-Avg↓ F1↑

FoldingNet [39] 1.86 1.81 3.38 2.35 - 0.139 2.76 2.74 5.36 3.62 - 0.095
PCN [44] 1.87 1.81 2.97 2.22 0.624 0.150 3.17 3.08 5.29 3.85 0.644 0.101

TopNet [44] 1.77 1.61 3.54 2.31 - 0.171 2.62 2.43 5.44 3.50 - 0.121
PFNet [14] 3.16 3.19 7.71 4.68 - 0.347 5.29 5.87 13.33 8.16 - 0.322
GRNet [37] 1.26 1.39 2.57 1.74 0.600 0.251 1.85 2.25 4.87 2.99 0.625 0.216
PoinTr [43] 0.76 1.05 1.88 1.23 0.575 0.421 1.04 1.67 3.44 2.05 0.604 0.384

SeedFormer [50] 0.48 0.70 1.30 0.83 0.561 0.452 0.61 1.07 2.35 1.34 0.586 0.402

Ours 0.46 0.65 1.13 0.75 0.538 0.457 0.61 1.05 2.19 1.28 0.554 0.427

  Input        PoinTr           SeedFormer          Ours              GT

H

H

M

S

Figure 6. Visual comparison with two representative approaches
[43, 50] on ShapeNet-55. H (Hard), M (Moderate), and S (Simple)
stand for the three difficulty levels.

4.4. Results on Real-world Scans

For the real-world scans, as there is no ground truth
available for real-world partial point clouds, we evalu-
ate the models pre-trained on PCN without fine-tuning or
re-training. We report the Minimal Matching Distance
(MMD) [44] (see from Table 4) as a quantitative evalua-
tion metric to assess the similarity of the output to a typical
car/chair for the real-world scans. Also, we demonstrate the
visual comparisons in Figure 7. Our method can produce
cleaner shapes with detailed structures and sharp edges. It
can be concluded that our method can generate more de-
tailed results even when the input is extremely sparse and
has a different distribution from the training data.

4.5. Ablation Studies and Discussions

To ablate SVDFormer, we remove and modify the main
components. All ablation variants are trained and tested on
the PCN dataset. The ablation variants can be categorized
as ablations on SVFNet and SDG.
Ablation on SVFNet. To investigate the impact of shape
descriptor extraction methods, we compare two variants of
SVFNet, and the results are presented in Table 5. In the vari-
ant A, we remove the input depth maps, and the completion

Table 4. Quantitative results on Real-world Scans. All the results
are produced by models pre-trained on PCN (MMD ×103).

Methods GRNet [37] PoinTr [43] SeedFormer [50] Ours

KITTI [8] 5.350 32.854 1.179 0.967
ScanNet [3] 2.672 2.516 2.231 1.926

     Partial                  PoinTr               SeedFormer             Ours

Figure 7. Visual comparison on real-world scans. All results are
produced by models pre-trained on PCN.

Table 5. Effect of SVFNet. (ℓ1 CD ×103 and F1-Score@1%)

Methods CD↓ DCD↓ F1↑

A : w/o Projection 6.63 0.547 0.831
B : w/o Feature Fusion 6.68 0.551 0.827

Ours 6.54 0.536 0.841

Table 6. Effect of SDG. (ℓ1 CD ×103 and F1-Score@1%)

Methods Analysis Alignment Embedding CD↓ DCD↓ F1↑

C ✓ ✓ 6.69 0.549 0.829
D ✓ ✓ 6.76 0.552 0.825
E ✓ 6.78 0.556 0.823
F ✓ 6.88 0.561 0.819

Ours ✓ ✓ ✓ 6.54 0.536 0.841

SeedFormer [50] 6.74 0.583 0.818
SnowflakeNet-baseline [35] 7.21 0.585 0.801

SnowflakeNet + SDG 6.73 0.553 0.828

performance is limited by relying only on 3D coordinates to
understand shapes. In the variant B, we evaluate the impor-



Figure 8. Visual comparison of the representative coarse-to-fine
method [50] and our variant A (w/o projection) on two partial
models. The upper results are the generated coarse point clouds.

tance of our Feature Fusion module by replacing the fusion
of different inputs with late fusion, which directly concate-
nates Fp and Fv . We observe an evident drop in perfor-
mance, indicating that the proposed SVFNet can effectively
fuse cross-modal features.

Furthermore, to conduct a more thorough analysis of
the effectiveness of our SVFNet, we generate visualiza-
tions of the results produced by our approach, our vari-
ant A, and SeedFormer, which also employ the coarse-to-
fine paradigm. In Figure 8, we present the results along-
side the coarse point cloud generated directly by SVFNet
(patch seeds of [50]). Our analysis reveals that during the
initial coarse completion stage, both SeedFormer and the
variant A produce suboptimal results, such as generating
too few points in missing areas. This presents a challenge
for the refinement stage, making it difficult to produce satis-
factory final results. Our SVFNet overcomes this challenge
by leveraging multiple viewpoints to observe partial shapes.
By doing so, our method is able to locate missing areas and
generate a compact global shape, leading to the production
of fine details in the final results. See the supplementary for
additional ablation experiments for the number of views.
Ablation on SDG. Table 6 compares different variants of

(a)

(b)

Figure 9. (a): Visual comparison of [50] and variant E (w/o Struc-
ture Analysis) on LiDAR scans. (b): Visual comparison of variant
E (w/o Similarity Alignment) and generated coarse point cloud Pc

on RGB-D scans. We select a query point (marked with red) in Pc

and visualize the attention map in the cross-attention layer. The
redder the color, the higher the similarity.

SVDFormer on the SDG module. In the variant C, we re-
move the Incompleteness Embedding of SDG, which re-
sults in a higher CD value and a lower F1-Score, indicat-
ing that the ability to perceive the incompleteness degree of
each part is crucial for the model’s performance. In the vari-
ants D and E, we completely remove the Similarity Align-
ment and Structure Analysis path from SDG, respectively.
The results show that the performance of the model drops
when any one of these paths is removed.

To better understand and analyze SDG, we show more
visual results in Figure 9. Specifically, we investigate the
effectiveness of the Structure Analysis path and the Simi-
larity Alignment unit by comparing the performance of dif-
ferent variants of the model on real-world scans. In Fig-
ure 9 (a), our method can generate plausible shapes, while
the variant E and SeedFormer produce undesired structures
due to over-preserving the partial input. This result proves
the importance of the Structure Analysis path, particularly
when the input contains limited information. In Figure 9
(b), we compare the results of our method with the variant
D. We show the generated coarse shape and select a query
point (missed in input) in Pc. We then visualize the atten-
tion map in the cross-attention layer to demonstrate the ef-
fectiveness of the Similarity Alignment unit. The results
show that, for shapes with highly-similar regions, the Simi-
larity Alignment unit can locate similar geometries of short
or long-range distances, leading to finer details.



Table 7. Complexity analysis. We compare the inference time (ms)
and the number of parameters (Params) of our method and three
classical methods on ShapeNet-55. Our method achieves a balance
between computation cost and performance.

Methods Time Params CD↓ DCD↓

GRNet [37] 10.67ms 73.15M 1.97 0.592
PoinTr [43] 12.36ms 30.09M 1.07 0.575

SeedFormer [50] 40.63ms 3.24M 0.92 0.558
Ours 23.11ms 19.62M 0.83 0.546

Extending SDG to other methods. In addition, we eval-
uate the generation ability of SDG by replacing the SPD
in SnowflakeNet [35] with SDG. As presented in Table 6,
SnowflakeNet achieves better performance in terms of all
metrics, when paired with our SDG module. This indicates
that our disentangled refiner has better generation ability.
Complexity Analysis. We show the complexity analysis in
Table 7, where the inference time on a single NVIDIA 3090
GPU, number of parameters, and the results on ShapeNet-
55 are shown. The comparison indicates that our method
achieves a trade-off between cost and performance.

5. Conclusion
We propose SVDFormer for point cloud completion.

We start by identifying the main challenges in the com-
pletion and developing new solutions for each of them.
SVDFormer leverages self-projected multi-view analysis to
comprehend the overall shape and effectively perceive miss-
ing regions. Furthermore, we introduce a decoder called
Self-structure Dual-generator that breaks down the shape
refinement process into two sub-goals, resulting in a dis-
entangled but improved generation ability. Experiments on
various shape types demonstrate that SVDFormer achieves
the state-of-the-art performance on point cloud completion.
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In this supplementary material, we provide more detailed
information to complement the main manuscript. Specif-
ically, we first introduce the implementation details, in-
cluding network architecture details and experimental set-
tings. Then, we conduct more ablation studies to analyze
our method. Next, we provide some failure cases and a dis-
cussion on the limitations of our work. Finally, we present
additional quantitative and qualitative results.

A. Detailed Settings

Network implementation details. We apply perspec-
tive projection to get the depth maps with the resolution
of 224 × 224 from three orthogonal views. We directly
feed the projected depth maps to the network without ap-
plying any color mapping enhancement. In SVFNet, we
use PointNet++ [20] to extract features from point clouds.
The detailed architecture is: SA(C = [3, 64, 128], N =
512,K = 16) → SA(C = [128, 256], N = 128,K =
16) → SA(C = [512, 256]). The final feature dimension of
ResNet18 [11] is set to 256. The dimension of the embed
query, key, and value in View Augment is set to 256. Af-
ter concatenation, we get the shape descriptor Fg with 512
channels. We use a self-attention layer of 512 hidden fea-
ture dimensions followed by an MLP to regress the coarse
points PC . The merged point cloud P0 has 512 and 1024
points for PCN and ShapeNet-55, respectively.

During refinement, we set the upsampling rates {r1,
r2} of the two SDGs as {4,8} and {2,4} for PCN and
ShapeNet-55, respectively. We adopt EdgeConv [29] to ex-
tract local features from Pin. The detailed architecture is:
EdgeConv(C = [3, 64],K = 16) → FPS(2048, 512) →
EdgeConv(C = [64, 256],K = 8). We use a shared-
weights architecture above in the two SDGs. After ob-
taining FQ and FH , we use a decoder composed of two
self-attention layers (one in the ShapeNet-55 experiments)
to further analyze the coarse shapes. The hidden feature
dimensions of self-attention layers are set as [768, 128r1]
and [512, 128r2] in the two SDGs, thus producing Fl ⊆
RN×256r. Fl is then passed to an MLP and reshaped to
rN × 128. Finally, the coordinates offset is predicted by an
MLP with feature dimensions of [128, 64, 3].

Usage of attention. In our method, the self-attention layer
is used to generate Pc in SVFNet and decode FQ and FH in
SDG. We also use a cross-attention layer to find the geomet-
ric similarity. In our experiments, we implement the self-
attention module and the cross-attention module following
the same transformer architecture [26]. The point-wise fea-
tures are regarded as sequence data. The calculation pro-
cedure is illustrated in Figure 10. Given the input feature
Fin = {fi}

Nl−1

i=1 , the output feature matrix Z = {zi}
Nl−1

i=1 is

Linear
Softmax

LinearFin ×
×

c Concatenation

Element-wise Summation

× Matrix Multiplication

Q

K

V Z
Figure 10. The calculation process of Self-Attention.

Table 8. Results and inference time of more ablation variants on
PCN. (ℓ2 CD ×103 and F1-Score@1%)

Variants CD↓ DCD↓ F1↑ Time

1 View 6.58 0.538 0.835 24.86ms
3 Views (Ours) 6.54 0.536 0.841 26.55ms

6 Views 6.55 0.536 0.840 27.11ms

Random Projection (inference) 6.58 0.537 0.838 26.25ms

Encoder in SpareNet [36] 6.66 0.551 0.825 37.26ms
ResNet-50 [11] as the 2D backbone 6.52 0.535 0.841 31.37ms

Vit-B/16 [6] as the 2D backbone 6.56 0.543 0.837 34.16ms

calculated as :

zi = hi + Linear(hi)

hi = bi + fi

bi =

Nl−1∑
j=1

ai,j(fjWV )

ai,j = Softmax((fiWQ)(fjWK)T )

, (4)

Experiment and training settings. The network is imple-
mented using PyTorch [19] and trained with the Adam op-
timizer [15] on NVIDIA 3090 GPUs.

For training on the PCN dataset [44], the initial learning
rate is set to 0.0001 and decayed by 0.7 for every 40 epochs.
The batch size is set to 12. It takes 400 epochs for conver-
gence. Since the point coordinates in PCN are normalized
to [-0.5, 0.5], the depth maps are projected at a distance of
0.7 in order to observe the whole shape. To ensure that the
input point cloud contains exactly 2048 points, we take a
subset for point clouds with more than 2048 points and ran-
domly duplicate points for those with less than 2048 points.

For training on ShapeNet-55/34 [43], the number of
missing points is randomly selected from 2048 to 6192.
The initial learning rate is set to 0.0001 and decayed by
0.98 for every 2 epochs. The batch size is set to 16. It
takes 300 epochs for convergence. The point coordinates in
ShapeNet-55 are normalized to [-1.0, 1.0]. Therefore, D are
projected at a distance of 1.5. Following [35, 50], We use
a partial matching strategy, which includes setting a larger
resolution for P0 and adding a partial matching loss [31].

B. Ablation Studies
Ablation on the number of projections. We conduct an
ablation experiment on the number of depth maps D in
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Figure 11. Example of failure cases.

Table 9. DCD results on the PCN dataset. Lower is better.
Methods Plane Cabinet Car Chair Lamp Couch Table Boat Avg

GRNet [37] 0.688 0.582 0.610 0.607 0.644 0.622 0.578 0.642 0.622
PoinTr [43] 0.574 0.611 0.630 0.603 0.628 0.669 0.556 0.614 0.611

SnowflakeNet [35] 0.560 0.597 0.603 0.582 0.598 0.633 0.521 0.583 0.585
PMP-Net++ [33] 0.600 0.605 0.614 0.613 0.610 0.647 0.577 0.622 0.611
Seedformer [50] 0.557 0.592 0.598 0.579 0.585 0.626 0.520 0.605 0.583

Ours 0.506 0.549 0.559 0.524 0.535 0.579 0.472 0.562 0.536

Table 10. F1-Score@1% on the PCN dataset. Higher is better.

Methods Plane Cabinet Car Chair Lamp Couch Table Boat Avg

GRNet [37] 0.843 0.618 0.682 0.673 0.761 0.605 0.751 0.750 0.708
PoinTr [43] 0.915 0.665 0.718 0.710 0.798 0.632 0.796 0.797 0.754

SnowflakeNet [35] 0.941 0.695 0.745 0.776 0.858 0.691 0.867 0.834 0.801
PMP-Net++ [33] 0.941 0.660 0.721 0.754 0.860 0.657 0.822 0.830 0.781
Seedformer [50] 0.950 0.700 0.753 0.803 0.885 0.712 0.884 0.850 0.818

Ours 0.962 0.738 0.792 0.833 0.897 0.746 0.901 0.863 0.841

SVFNet. The depth maps D are projected from 1, 3, and
6 orthogonal views, respectively. The results on PCN are
shown in Table 8. To balance the trade-off between ef-
fectiveness and computational consumption, we conduct all
experiments using three views. This choice allows us to
capture sufficient information from the point clouds while
keeping the computational cost manageable.
Ablation on choice of coordinate systems. To testify the
robustness of our method, during inference, we introduced
random variations to the projection, including camera view
angle offsets ranging from 0 to 10 degrees and observation
distance displacements ranging from 0 to 0.1. The result re-
ported in the 5th row of Table 8 shows that the performance
will not significantly drop with random projections.
Ablation of different encoders. We testify the design
of encoder to further demonstrate the effect of our self-
view fusion feature extractor. We first replace the SVFNet
with the encoder in SpareNet [36], which contains layers
of channel-attentive EdgeConv, to re-produce the shape de-

scriptor Fg . We report the new results in Table 8, which
demonstrates that our self-view fusion feature extractor
achieves better performance than existing encoder while
having a tolerable computation cost. In addition, we ablate
the choice of 2D backbone in the SVFNet. To be specific,
We replace it with ResNet-50 [11] and the vision trans-
former (ViT-B/16) [6], respectively. We find that a larger
CNN-based 2D backbone can slightly improve the perfor-
mance while introducing more computation cost. More-
over, using the ViT results in unsatisfactory performance.
This could be attributed to the fact that the entire model was
trained from scratch, and larger models may not perform
optimally with a limited amount of 3D training data.

C. Failure Cases and Limitations

Figure 11 displays the failure cases we observed. It’s
worth noting that in cases where input shapes lack irreg-
ular structures that are uncommon in the training dataset



(such as the water wheel of a watercraft), the network may
not be capable of producing satisfactory results. Neverthe-
less, our method still outperforms state-of-the-art (SOTA)
methods [43, 35, 50] when dealing with simple geometric
structures, like the body of the watercraft. Our SDG in-
corporates a Structure Analysis unit that leverages learned
priors to complete shapes. However, its effectiveness may
be constrained by the limited amount of available training
data. Given that transformers have demonstrated effective-
ness in scenarios with abundant training data, pretraining
with large-scale 2/3D datasets could be a promising ap-
proach to address this limitation.

D. Additional Results
More detailed quantitative results for individual cases are

available in Tables 9 and 10. Our method achieves the best
DCD and F1-score on each category of the PCN dataset.
In addition, we show more visual results in Figures 12, 13,
and 14. In Figure 12, we present two partial point clouds on
each category of the PCN dataset. In Figure 13, we present
six partial point clouds of ShapeNet-55 and compare the
results with two representative approaches [43, 50]. Our
method generates more compact overall shapes and richer
details. Also, we visualize more results in Figure 14, where
the partial shapes are generated from two different view-
points.



Figure 12. Visual results on the PCN dataset.



Figure 13. Visual Comparison with two representative approaches [43, 50] on ShapeNet-55.



Figure 14. More visual results on ShapeNet-55. We show results when the partial input are generated from two viewpoints.


