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Group Pose: A Simple Baseline for End-to-End Multi-person Pose Estimation
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Abstract

In this paper, we study the problem of end-to-end multi-
person pose estimation. State-of-the-art solutions adopt the
DETR-like framework, and mainly develop the complex de-
coder; e.g., regarding pose estimation as keypoint box detec-
tion and combining with human detection in ED-Pose [35],
hierarchically predicting with pose decoder and joint (key-
point) decoder in PETR [27].

We present a simple yet effective transformer approach,
named Group Pose. We simply regard K -keypoint pose es-
timation as predicting a set of N x K keypoint positions,
each from a keypoint query, as well as representing each
pose with an instance query for scoring N pose predictions.

Motivated by the intuition that the interaction, among
across-instance queries of different types, is not directly
helpful, we make a simple modification to decoder self-
attention. We replace single self-attention over all the
N x (K + 1) queries with two subsequent group self-
attentions: (i) N within-instance self-attention, with each
over K keypoint queries and one instance query, and (ii)
(K +1) same-type across-instance self-attention, each over
N queries of the same type. The resulting decoder re-
moves the interaction among across-instance type-different
queries, easing the optimization and thus improving the per-
formance. Experimental results on MS COCO and Crowd-
Pose show that our approach without human box supervi-
sion is superior to previous methods with complex decoders,
and even is slightly better than ED-Pose that uses human
box supervision. Code is available here'.

1. Introduction

Multi-person pose estimation aims to detect the corre-
sponding human keypoints for all human instances in an
image. Previous frameworks include top-down [25, 6, 35,
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Figure 1: Comparison of transformer decoders. Here we mainly
illustrate the overview of the decoder part of PETR [27], ED-
Pose [38], and our Group Pose. The three end-to-end frameworks
differ in query design and decoder architecture. Group Pose only
uses a simple transformer decoder rather than developing complex
decoders. ‘inst’ and ‘kpt’ represent for instance and keypoint.

, 29, 33] and bottom-up methods [1, 24, 12, 5] that di-
vide the task into two sequential sub-tasks: human detec-
tion with single-person pose estimation or human-agnostic
keypoint detection with human instance grouping [24].
Another line in previous frameworks is one-stage meth-
ods [22, 26, 31, 34], which directly predict instance-aware
keypoints. These frameworks rely on non-differentiable
hand-crafted post-processes [10, 24], which complicate the
pipelines and challenge the optimizations. Inspired by the
success of DETR [2] in object detection, building an end-
to-end framework for multi-person pose estimation has seen
significant interest.

Recent approaches follow the DETR framework [2,

, 39], with the transformer encoder-decoder architecture
for multi-person pose estimation, as shown in Figure 1.
PETR [27] hierarchically predicts the keypoint positions
and uses two subsequent decoders, pose decoder and joint
decoder, with two different queries, pose query (a person
has one pose query) for pose decoder, and keypoint queries
for joint decoder. ED-Pose [38] transfers pose estimation
to a keypoint box detection problem, and learns a content
query and a box query for each keypoint position prediction
with using the box size to process the query.
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In this paper, we present a simple yet effective trans-
former approach, named Group Pose, for end-to-end multi-
person pose estimation. Instead of using a single query to
predict and score one pose, similar to ED-Pose, we use the
N x K keypoint queries to regress the N x K positions, by
regarding each keypoint as an object, as well as [V instance
queries, each representing a K -keypoint pose for scoring
the K -keypoint pose prediction.

We make a simple modification for the decoder archi-
tecture. We replace standard self-attention in the decoder
with two subsequent group self-attentions: N parallel self-
attentions with each over K keypoint queries and the cor-
responding instance query for exploiting kinematic relation
and gathering information for scoring pose predictions, and
(K +1) parallel self-attentions with each over N queries of
the same type for collecting duplicate prediction informa-
tion like self-attention of the original DETR.

The two self-attentions capture two kinds of interactions:
(i) NV within-instance interactions over K keypoint queries
and one instance query, (ii) (K + 1) across-instance interac-
tions over IV queries of the same type (e.g., nose keypoint
query or instance query). The extra interactions in stan-
dard self-attention are (iii) across-instance interactions for
queries with different types, which is not directly useful.
Empirical results show that the removal of the third kind of
interactions eases the optimization and thus improves the
performance.

The design about self-attention is different from the
closely-related approach ED-Pose [38]. On the one hand,
in addition to removing the third interactions, ED-Pose only
models across-instance interactions for the instance queries.
In contrast, our approach also models across-instance inter-
actions for the K keypoint types. On the other hand, our ap-
proach separates the two interactions using two subsequent
group self-attentions, explicitly exploring the information
about queries belonging to the same human instance, and
with the same type. ED-Pose couples the two interactions
using a single masked self-attention with the third interac-
tions masked. It is empirically demonstrated that the two
differences benefit the pose estimation performance.

Experimental results show that our simple approach
Group Pose without human box supervision surprisingly
outperforms the recent end-to-end methods with human box
supervisions on MS COCO [16] and CrowdPose [14]. No-
tably, Group Pose achieves 72.0 AP with ResNet-50 [9] and
74.8 AP with Swin-Large [18] on MS COCO val2017.
We hope our simple transformer decoder in Group Pose will
motivate people to simplify the design in end-to-end multi-
person pose estimation.

2. Related Work

Multi-person pose estimation is a challenging task that
aims to detect the corresponding human keypoints for all

human instances in an image. Previous methods usually
adopt complex frameworks to address it, which are divided
into non-end-to-end and end-to-end methods.

Non-end-to-end methods. There are typically two types:
two-stage and one-stage. Two-stage frameworks, includ-
ing top-down [25, 6, 35, 4, 29, 33] and bottom-up meth-
ods [1, 24, 12, 5], split the multi-person pose estimation
task into two sequential sub-tasks, human detection with
single-person pose estimation or human-agnostic keypoint
detection with human instance grouping. In top-down
methods, an object detector is first employed to detect the
boxes of human instances, which is then cropped for single-
person pose estimation in each box. Bottom-up meth-
ods first predict all human keypoints in a human-agnostic
way then group them into instances. While one-stage
frameworks [40, 22, 26, 31, 34] directly predict instance-
aware keypoints. These methods require hand-crafted pose-
processes, such as NMS [10] or grouping [24], which com-
plicate the pipelines and challenge the optimizations. In this
paper, we focus on concise ways, end-to-end frameworks.

End-to-end methods. Current end-to-end multi-person
pose estimation frameworks [27, 36, 38] are built by fol-
lowing the designs of DETR [2] and its variants [41, 23, 3,

, 13, 39]. They adopt a paradigm of splitting the multi-
person pose estimation task into two sub-processes. For ex-
ample, PETR [27] views the task as a hierarchical set pre-
diction problem. It first determines human instances by pre-
dicting a set of poses with a pose decoder and then refines
the keypoints in each pose with a joint (keypoint) decoder.
There are also two different types of queries, pose query
(a person has one pose query) for pose decoder and key-
point queries for joint decoder. QueryPose [36] and ED-
Pose [38] follow this end-to-end paradigm but further in-
corporate an extra human detection task. QueryPose [30]
follows Sparse R-CNN [30] to build two parallel RoIAlign-
based [8] decoders to perform human detection and pose
estimation, respectively. ED-Pose [38] transfers pose esti-
mation task to a keypoint box detection problem. It first
employs a human detection decoder [39] to determine the
human instances with box queries. Then it builds a human-
to-keypoint detection decoder with a content query and a
box query for each keypoint position, collecting contextual
information near keypoint positions.

Although these end-to-end methods show promising re-
sults in multi-person pose estimation, they rely on complex
decoders. Our Group Pose, on the other hand, adopts a sim-
ple transformer decoder, improving the performance and
simplifying the process.

3. Group Pose

Group Pose is a simple yet effective end-to-end multi-
person pose estimation framework. We follow previous
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Figure 2: Our Group Pose architecture. The backbone takes an image as input and outputs image features, which are refined by the
transformer encoder. To directly predict N human poses with K keypoint positions in each pose, we adopt N x (K + 1) queries,
containing /N instance queries for scoring poses and N x K keypoint queries for regressing positions.

end-to-end frameworks [27, 38] to view the multi-person
pose estimation task as a set prediction problem, but directly
adopt a simple transformer decoder [4 ] instead of complex
decoders, simplifying the process. Next, we introduce the
key elements of Group Pose.

3.1. Overview

The overall structure of Group Pose is depicted in Fig-
ure 2. Group Pose consists of a backbone [9, 18], a
transformer encoder [32], a transformer decoder, and task-
specific prediction heads. This framework enables Group
Pose to simultaneously regresses K keypoints (e.g., K =
17 on MS COCO) for N human instances given an image.

Backbone and transformer encoder. We directly follow
DETR frameworks [4 1] to build the backbone and the trans-
former encoder (with 6 deformable transformer layers [41])
for Group Pose. It takes an image as input and outputs the
extracted multi-level features, which serve as inputs for the
following transformer decoder. We use 4 feature levels in
Group Pose, with downsampling rates of {8, 16, 32, 64}.

Transformer decoder. For transformer decoder, we adopt
a combination of N x K keypoint queries and /N instance
queries as input instead of using a single query to predict
and score one pose. The keypoint queries regard each key-
point as an object and are used to regress the NV x K key-
point positions, while each instance query is for scoring
the corresponding K-keypoint pose prediction. Besides,
the architecture of transformer decoder is simple, which
stacks 6 same decoder layers [41]. In each decoder layer,
we follow the macro design of previous DETR frameworks
by building self-attention, cross-attention implemented with
deformable attention, and FFN. We only make simple mod-
ifications to self-attention in our Group Pose. Specifically,
we replace the standard self-attention with two subsequent
group self-attentions, enabling decoder layers to perform
interactions over queries belonging to the same human in-
stance and with the same type.

Prediction heads. There are two prediction heads imple-
mented with FFNs in Group Pose for human classification
and human keypoints regression. Group Pose predicts for

N human poses, each contains a classification score and K
keypoint positions for the corresponding K -keypoint pose.

Loss function. The Hungarian matching algorithm [2]
is employed for one-to-one assignment between predicted
poses and ground-truth poses. Our loss function comprises
solely of classification loss (L.;s) and keypoint regression
loss (Lypt), without any extra supervisions such as hu-
man detection loss in QueryPose [36] and ED-Pose [38]
or heatmap loss in PETR [27]. The keypoint regres-
sion loss (Lpt) is a combination of a normal ¢; loss and
a constrained ¢; loss named Object Keypoint Similarity
(OKS) [27]. We directly use the cost coefficients and loss
weights of ED-Pose [38] in the hungarian matching and the
calculation of losses.

3.2. N x K keypoint queries and N instance queries

In multi-person pose estimation, frameworks are re-
quired to predict NV human poses with K keypoint positions
in each pose given an image. We directly use N x K key-
points queries to predict the poses, with each K predicted
keypoint positions to represent a corresponding K -keypoint
pose for a human instance. To classify if it is a human in-
stance by scoring the predicted N human poses, we also
introduce N instance queries. Thus, in Group Pose, a hu-
man instance can be represented with a combination of K
keypoint queries and one instance query. As these two types
of queries are responsible for different tasks, we construct
and initialize them differently.

Query construction. We follow the previous end-to-end
frameworks [27, 38] to first identify human instances and
predict human poses in each position of the output memory
from the transformer encoder. Then we select N human
instances (N = 100) based on the classification scores, re-
sulting N human poses and the corresponding output mem-
ory features of the selected IV positions (with the shape of
N x D, where D is the channel dimension). We then con-
struct and initialize the keypoint queries and the instance
queries based on the above results.

For N x K keypoint queries, we construct the content
part of K keypoint queries (X x D) in each human instance
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Figure 3: Conceptual comparison of self-attention implementations. Given N x (K + 1) queries, three different implementations of
self-attention are considered in the decoder layers. (a) standard self-attention over all queries. (b) standard self-attention with an attention
mask, removing the across-instance interactions for queries with different types. (c) our proposed group self-attentions. Dashed boxes

indicate the masked-out interactions.

by combining K randomly initialized learnable keypoint
embeddings (K x D) and the corresponding output memory
feature (1 x D). And the position part of K keypoint queries
(K x 2)in each human instance is initialized with the cor-
responding predicted K -keypoint pose (K x 2). For N in-
stance queries, we only consider the content part and use a
randomly initialized learnable instance embedding (1 x D)
for each human instance. This is because instance query is
for the classification task, which does not requires explicit
position information. When performing cross-attention in
the decoder layers, we simply use the mean of K keypoint
positions as the reference point for the instance query in
each human instance.

3.3. Group self-attentions

In DETR frameworks [2, 41, 23], self-attention in the
transformer decoder is usually applied to model interactions
among queries, collecting information from other queries
and facilitating the duplicate removal for instances. While
the situation is slightly different in Group Pose, as there two
different types of queries, K keypoint queries and one in-
stance query for each human instance. Motivated by the in-
tuition that the interactions among across-instance queries
of different types, e.g., the interactions between the in-
stance query and the keypoint queries across human in-
stances, may not be directly helpful for the above pur-
poses. We thus replace the standard self-attention over all
the N x (K + 1) queries with two subsequent group self-
attentions: N within-instance self-attentions and K + 1
same-type across-instance self-attentions.

N within-instance self-attentions. We build interactions
among the queries within a human instance, exploiting kine-
matic relations and gathering information for scoring pose
predictions. It calculates IV self-attention maps for N hu-
man instances in parallel with shapes of (K +1) x (K +1),
omitting the dimensions of batch size and attention heads.

(K + 1) same-type across-instance self-attentions. Simi-
lar to the within-instance group self-attentions, We add an-

other group self-attentions, which collect information from
the same-type queries in other instances and help remove
duplicate predictions. We build interactions across human
instances with the same-type queries, the instance query and
each keypoint queries, resulting in K + 1 same-type across-
instance self-attentions. It also can be implemented in par-
allel with one self-attention module, calculating K + 1 self-
attention maps with shapes of N x N.

Compared with the standard self-attention, our two sub-
sequent group self-attentions explicitly explores the infor-
mation about queries belong to the same human instance
and with the same type, while remove the across-instance
interactions for queries with different types. Empirical re-
sults in Section 4.3 show that the removal of this kind of
interactions eases the optimization and thus improves the
performance for our Group Pose.

4. Experiments
4.1. Settings

Datasets. Our experiments are conducted on two represen-
tative human pose estimation datasets, MS COCO [16] and
CrowdPose [14]. MS COCO contains 200K images and
250K person instances with 17 keypoint annotations per in-
stance (we set the number of keypoint queries as K = 17
on MS COCO). CrowdPose has 20K images and 80K per-
son instances with 14 keypoint annotations per instance
(K = 14 on CrowdPose). CrowdPose is more challenging
as it includes many crowd and occlusion scenes. We train
Group Pose on COCO train2017 set and evaluate it on
COCO val2017 set and test—dev set. On CrowdPose,
we train our model on the t rain set and evaluate it on the
test set.

Evaluation metric. The OKS-based average precision
(AP) scores are reported as the main metric for both
datasets. For MS COCO, we adopt AP with different thresh-
olds and different object sizes (medium and large), denoted
as AP, AP5g, APr5, APy, and AP, following the stan-



Table 1: Comparisons with state-of-the-art methods on MS COCO val2017. We also provide the reference (Ref) for previous
frameworks. The ‘HM’, ‘BR’, and ‘KR’ denote heatmap-based losses, human box regression losses, and keypoint regression losses. ‘RLE’

represents the residual log-likelihood estimation in Poseur [

]. 1 denotes the flipping test. } removes the prediction uncertainty estimation

in Poseur as a fair regression comparison. The best results are highlighted in bold.

Method Ref Backbone Loss AP AP50 AP75 AP APj,
Mask R-CNN [8] CVPR 17 ResNet-50 HM 65.5 87.2 71.1 61.3 73.4
g Mask R-CNN [8] CVPR 17 ResNet-101 HM 66.1 87.4 72.0 61.5 74.4
i PRTRT [15] CVPR 21 ResNet-50 KR 68.2 88.2 75.2 63.2 76.2
- & Poseurt [21] ECCV 22 ResNet-50 RLE 70.0 - - - —
Lﬁ Poseur [21] ECCV 22 ResNet-50 RLE 74.2 89.8 81.3 71.1 80.1
ki [ HrHRNet' [5] CVPR 20 HRNet-w32 HM 67.1 86.2 73.0 61.5 76.1
] =)
ui = DEKRT [7] CVPR 21 HRNet-w32 HM 68.0 86.7 74.5 62.1 7T
é % SWAHRT [20] CVPR 21 HRNet-w32 HM 68.9 87.8 74.9 63.0 77.4
ma LOGO-CAPT [37] CVPR 22 HRNet-w32 HM 69.6 87.5 75.9 64.1 78.0
Y DirectPose [31] — ResNet-50 KR 63.1 85.6 68.8 57.7 71.3
g CenterNet ' [40] - Hourglass-104 KR+HM 64.0 - - - —
g FCPose [22] CVPR 21 ResNet-50 KR+HM 63.0 85.9 68.9 59.1 70.3
InsPose [28] ACM MM 21 ResNet-50 KR+HM 63.1 86.2 68.5 58.5 70.1
" PETR [27] CVPR 22 ResNet-50 HM+KR 68.8 87.5 76.3 62.7 7T
"g PETR [27] CVPR 22 Swin-L HM+KR 73.1 90.7 80.9 67.2 81.7
= QueryPose [30] NeurIPS 22 ResNet-50 BR+RLE 68.7 88.6 74.4 63.8 76.5
,.c w2
5 é QueryPose [30] NeurlIPS 22 Swin-L BR+RLE 73.3 91.3 79.5 68.5 81.2
2 E ED-Pose [38] ICLR 23 ResNet-50 BR+KR 71.6 89.6 78.1 65.9 79.8
)
5 ED-Pose [38] ICLR 23 Swin-L BR+KR 74.3 91.5 81.6 68.6 82.6
- GroupPose - ResNet-50 KR 72.0 89.4 79.1 66.8 79.7
g GroupPose - Swin-T KR 73.6 90.4 80.5 68.7 81.2
GroupPose - Swin-L KR 74.8 91.6 82.1 69.4 83.0
dard evaluation process2. On CrowdPose, to better evaluate 4.2. Main Results
p

the model performance in different crowded scenarios, we
adopt AP with different thresholds and different crowding
levels, denoted as AP, AP5g, and AP75, as well as APg,
APj; and APy for images with easy, medium and hard
crowding levels.

Implementation details. Our training and testing settings
follow ED-Pose [38]. During training, we adopt the widely-
used data augmentations in DETR frameworks [2, 41, 39,

], including random flip, random crop, and random re-
size with the short sides in [480, 800] and the long side less
or equal to 1333. We use the AdamW optimizer[! 1, 19]
with the weight decay 1 x 10~* and train 60 epochs and
80 epochs on MS COCO [16] and CrowdPose [ 4], respec-
tively. We adopt a total batch size of 16, and set the base
learning rate as 1 x 10~%. The base learning rate for the
backbone is 1 x 10~° following the DETR frameworks. The
learning rates are decayed at the 50-th epoch and 70-th by
a factor of 0.1 for MS COCO and CrowdPose, respectively.
During testing, we resize the input images with their short
sides being 800 and long sides less or equal to 1333.

Zhttps://cocodataset.org/#keypoints-eval

Our purpose is to build a simple baseline for end-to-end
multi-person pose estimation. Thus, we mainly compare
our Group Pose with previous end-to-end frameworks, in-
cluding PETR [27], QueryPose [36], and ED-Pose [38]. Be-
sides, to show the effectiveness of our method, we also add
comparisons with non-end-to-end frameworks, such as top-
down [8, 15], bottom-up [5, 7, 20, 37], and one-stage meth-
ods [31, 40, 22, 28].

Comparisons with end-to-end frameworks on COCO.
Table 1 and Table 2 present the comparisons on COCO
val2017 setand test—dev set. Results show that Group
Pose outperforms PETR [27], QueryPose [36], and ED-
Pose [38] consistently.

On COCO val2017, Group Pose surpasses PETR and
QueryPose by over a significant 3.0 AP with ResNet-50 [9]
and the gaps remain 1.5+ AP with a strong backbone, Swin-
Large [18]. When comparing with the recently proposed
ED-Pose [38], which transfers pose estimation to a keypoint
box detection problem and combines human box detection
task, Group Pose can also exceed it with non-negligible
margins. Moreover, unlike these methods that use complex
decoders and add extra supervisions, e.g., extra heatmap or
box supervisions, our Group Pose only use a simple decoder



Table 2: Comparisons with state-of-the-art methods on MS COCO test-dev2017 dataset. Notations are consistent with Table 1.

Method Ref Backbone Loss AP AP5q AP75 AP AP,

= Mask R-CNN [8] CVPR 17 ResNet-50 HM 63.9 87.7 69.9 59.7 71.5

é Mask R-CNN [8] CVPR 17 ResNet-101 HM 64.3 88.2 70.6 60.1 71.9

g- PRTRT [15] CVPR 21 ResNet-101 KR 68.8 89.9 76.9 64.7 75.8

= & PRTRT [15] CVPR 21 HRNet-w32 KR 71.7 90.6 79.6 67.6 78.4
5 = HrHRNet' [5] CVPR 20 HRNet-w32 HM 66.4 87.5 72.8 61.2 74.2
—E = DEKRT [7] CVPR 21 HRNet-w32 HM 67.3 87.9 74.1 61.5 76.1
& | £ | swaHRf 0] CVPR 21 HRNet-w32 HM 67.9 889 74.5 624 755
§ = | LoGO-CcAPT [37] CVPR 22 HRNet-w32 HM 68.2 88.7 74.9 62.8 76.0
2 DirectPose [31] - ResNet-50 KR 62.2 86.4 68.2 56.7 69.8

()]3 CenterNet! [40] — Hourglass-104 KR+HM 63.0 86.8 69.6 58.9 70.4

2 FCPose [22] CVPR 21 ResNet-50 KR+HM 64.3 87.3 71.0 61.6 70.5

© InsPose [28] ACM MM 21 ResNet-50 KR+HM 65.4 88.9 T1.7 60.2 72.7

é PETR [27] CVPR 22 ResNet-50 HM+KR 67.6 89.8 75.3 61.6 76.0

§ PETR [27] CVPR 22 Swin-L HM+KR 70.5 91.5 78.7 65.2 78.0

- g QueryPose [36] NeurIPS 22 Swin-L BR+RLE 72.2 92.0 78.8 67.3 79.4
f] E ED-Pose [38] ICLR 23 ResNet-50 BR+KR 69.8 90.2 77.2 64.3 77.4
= & ED-Pose [38] ICLR 23 Swin-L BR+KR 72.7 92.3 80.9 67.6 80.0
E " GroupPose - ResNet-50 KR 70.2 90.5 77.8 64.7 78.0
g GroupPose - Swin-T KR 72.1 91.4 79.9 66.7 79.5
GroupPose - Swin-L KR 72.8 92.5 81.0 67.7 80.3

and are trained only with keypoint regression targets. The
above evidences indicate that complex design for end-to-
end multi-person pose estimation may not be necessary.

On COCO test-dev, our Group Pose achieves 70.2
AP, 72.1 AP, and 72.8 AP with ResNet-50 [9], Swin-
Tiny [18], and Swin-Large [!8] as the backbone. Compared
with other end-to-end frameworks, similar trends are ob-
served with the ones on COCO val2017.

Comparisons with end-to-end frameworks on Crowd-
Pose. To further demonstrate the effectiveness of Group
Pose, we provide comparisons with previous end-to-end
frameworks on the challenging CrowdPose dataset [14]. Ta-
ble 3 reports the results of PETR [27], QueryPose [36],
ED-Pose [38], and our Group Pose with the same back-
bone Swin-Large [18]. Overall, Group Pose achieve 74.1
AP, performing the best over all methods.

Moreover, it is interesting when we compare the AP
scores with easy, medium, and hard crowding levels of dif-
ferent models. PETR [27] performs worse with the easy
crowding level while giving the second best results with
the hard level. ED-Pose [38] performs worst with the hard
crowding level. We conjecture that this phenomenon is
caused by the differences in their decoders, e.g., human in-
stances crowded with each other have similar boxes, which
challenges the human keypoint decoder. Our Group Pose,
which uses K keypoint queries and one instance query for
each human instance and considers different interactions
among queries, can achieve reasonable good results with
easy, medium, and hard crowding levels.

Table 3: Comparisons with state-of-the-art methods on Crowd-
Pose test dataset. Swin-L is adopted as the backbone. Other
notations are consistent with Tabel 1.

Method Loss AP APsy APy | AP APy APy
PETR [27] HM+KR | 71.6 904 783 | 773 720 658
QueryPose [36] | BR+RLE | 72.7 91.7 781 | 795 734 65.4
ED-Pose [38] BR+KR 73.1 905 798 | 80.5 73.8 638
GroupPose KR 741 913 804 | 808 747 664

Comparisons with various non-end-to-end frameworks
on COCO. We also compare Group Pose with repre-
sentative non-end-to-end frameworks in Table 1 and Ta-
ble 2. Group Pose can easily outperform previous bottom-
up methods [5, 7, 20, 37] and one-stage methods [31,

, 22, 28]. For example, Group Pose surpasses the re-
cent proposed LOGO-CAP [37] with flipping test by over
2.0 AP on both COCO val2017 and test—-dev, even
with a smaller backbone (ResNet-50 [9]) than it (HRNet-
w32 [29]). Group Pose is more concise and precise than
those bottom-up and one-stage methods. Surprisingly,
Group Pose can also beat previous top-down methods like
PRTR [15] and Poseur [21]. Given the simple design and
the end-to-end property, our Group Pose can serve as a
simple baseline for pursuing higher performance on multi-
person pose estimation.

4.3. Ablation Study

We run a number of ablation experiments to verify the
effectiveness of key elements in our Group Pose. We adopt



Table 4: Ablation experiments for Group Pose. Evaluated on MS COCO val2017. Default settings are marked in gray .

(a) Query designs for human instances. Both
instance (inst) and keypoint (kpt) queries are
essential in Group Pose, especially the key-

(b) Benefits of the instance query. On the model only
with kpt queries, the inst query is first added but not
for classification (cls). Then we use the inst query for

(c) Number of instances. When the number
is smaller than 100, increasing instance num-
bers provide gains. 100 is set by default for the

point ones. the cls task. number of instances.
query types ‘ AP APy, APp query types  cls task ‘ AP  AP,;, APp #instance ‘ AP AP, AP
inst& kpt 72.0 66.8 79.7 only kpt avgkpt | 71.2  66.0 79.1 50 714 664 79.1
onlykpt | 71.2  66.0 79.1 inst & kpt  avgkpt | 71.7  66.8 79.3 100 72.0 668 79.7
only inst 64.5 61.1 69.9 inst & kpt inst 720 66.8 79.7 200 720 66.9 79.7

(d) Self-attention implementations. In the self-attention module, remov-
ing the across-instance interactions for queries with different types with
attention (attn) mask or group self-attentions eases the optimization and
improves the performance.

(e) Group self-attentions. Both types of self-attentions are important in
group self-attentions. We also conduct an experiment by removing both
within-instance and across-instance self-attentions. The performance fur-
ther drops to 65.3 AP.

self-attention implementations ~ w/ attn mask ‘ AP AP, AP group self-attentions | AP APy AP,
standard self-attention X 69.4 64.0 775 wthin-instance & across-instance self-attentions | 72.0 66.8 79.7
standard self-attention v 70.7 65.5 784 within-instance self-attentions 66.3 638 708
group self-attentions X 720 66.8 797 across-instance self-attentions 674 630 744
ResNet-50 [9] as the backbone. Unless specified, we report g 70 720
the results on COCO val2017 with 60 epochs training. z 604
. . . 2 60
Ablation: query designs for human instance. Table 4a &
. . . . . o group self-attentions
gives the results of representing a human instance with dif- & 50 ;;;”::lq::m
ferent query designs. Both instance query and keypoint % 40 standard self-atiention w/ mask
. . . . =
queries are essential in Group Pose. As the multi-person E
. . . . . 30
pose estimation is to predict human poses given an image, 12 o4 36 48 60

it is reasonable that keypoint queries themself can achieve
good results, while removing keypoint queries gives a sig-
nificant performance drop (from 72.0 AP to 64.5 AP).

For the instance query, its benefits come from two as-
pects: (i) gather information within human instance and
help model training and (ii) decouple the classification task
and keypoint positions regression task. Table 4b shows the
improvements brought by these two benefits.

Ablation: self-attention implementations. Table 4d pro-
vides the comparisons between different self-attentions in
the decoder layers, including (i) standard self-attention over
all the N x (K + 1) queries (Figure 3 (a)), (i) standard
self-attention with an attention mask (Figure 3 (b)), which
masks out the across-instance interactions for queries with
different types, and (iii) our group self-attentions (Figure 3
(c)). Results validate that the across-instance interactions
for queries with different types are not directly helpful for
the multi-person pose estimation task. Removing this type
of interactions eases the model optimization, helps model
converge faster, thus improves the performances. The com-
parisons on convergence curves are given in Figure 4. Be-
sides, we find that it is better to separately perform differ-
ent types of interactions, the within-instance and same-type
across-instance interactions, with different parameters. Ta-
ble 4d shows that our sequential implementation group self-
attentions bring a 1.3 AP gain over the parallel implemen-
tation of standard self-attention with an attention mask.

Ablation: group self-attentions. We ablate the effects of
N within-instance self-attentions over K keypoint queries

Figure 4: Faster and better convergence. The z-axis corresponds
to #epoch, and the y-axis corresponds to AP score. One can see
that group self-attentions converge faster and better than other self-
attention implementations.

and one instance query and (K + 1) across-instance self-
attentions over N queries of the same type in Table 4e.
Large performance gaps (over —5.0 AP) are observed when
we remove either of these two group self-attentions. Both
the interactions are important for multi-person pose estima-
tion. The within-instance self-attentions explore kinematic
relations and gather information for scoring pose predic-
tions, which help the model predict precise keypoint posi-
tions for human poses. The same-type across-instance self-
attentions collect information from the same-type of key-
point queries or instance queries, removing duplicate pre-
dictions for poses among human instances. As shown in
Figure 5, model without the same-type across-instance self-
attentions produces more duplicated pose predictions for
the same human instance than Group Pose.

Ablation: number of instances. Table 4c gives how pre-
defined number of human instances affect the results. We
find 100 human instances are enough and can achieve com-
parable results with 200 human instances. We set the num-
ber of human instances as 100 by default. Thus, Group Pose
has 100 x (17 4+ 1) queries on COCO [16] and contains
100 x (14 + 1) queries on CrowdPose [14].



Figure 5: Comparison of removing duplicated predictions. We visualize the predicted poses of Group Pose (second row), and Group
Pose without same-type across-instance self-attentions (first row) according to the number of objects. Group Pose produces less duplicated
pose predictions. The yellow dashed ellipse indicates the duplicated predicted human instance, leading to a mismatch of other instances.

Best view in zoom in.

Table 5: Analysis on model convergence. Group Pose without
human detection already can outperform ED-Pose [38]. Besides,
Group Pose can also benefit from better human instance initializa-
tion with human detection. We report AP on COCO val2017
dataset. ‘Det Dec’ = human detection decoder. The results of ED-
Pose are from the original paper [38].

Method w/ Det Dec | 12e 24e 36e 48e 60e

ED-Pose [38] v 60.5 67.5 69.7 708 T71.6

GroupPose X 61.0 676 701 714 720

GroupPose 614 68.1 703 716 722
4.4. More Analysis

We provide more analysis about our Group Pose in this
section, including the analysis on model convergence and
the analysis on model inference speed, detailed next.

Analysis on model convergence. A common wisdom
about training models is to provide a good initialization and
then refine the model based on it. ED-Pose [38] splits the
multi-person pose estimation task into two sub-processes,
which first detect human instances with a human detection
decoder and then use a human-to-keypoint detection de-
coder for predicting human poses. The human detection de-
coder gives good initialization for human instances, which
can help ED-Pose learn and converge faster. Although our
Group Pose adopts a different design for transformer de-
coder, it can also be built upon a human detection decoder
and enjoys the benefits brought by better initialization of hu-
man instances. Based on this observation, we build a variant
of our Group Pose, whose transformer decoder consists of
2 human detection decoder layers and 4 simple transformer
decoder layers for multi-person pose estimation, following
ED-Pose [38].

Table 5 shows the AP scores of three models, ED-Pose,
Group Pose, and Group Pose with human detection de-

Table 6: Analysis on model inference speed. Frames per second
(FPS) and inference time (Time) are measured with ResNet-50 and
different image resolutions on one NVIDIA A100 GPU.

Method Input Resolution FPS 1 Time [ms] |
PETR [27] 480 x 800 20.0 50
800 x 1333 12.1 83
480 x 800 19.0 56
P 36
QueryPose [36] 800 x 1333 13.4 75
ED-Pose [ 3] 480 x 800 42.4 24
800 x 1333 24.7 40
480 x 800 68.6 15
GroupPose
800 x 1333 31.3 32

coder, under different training schedules. Group Pose al-
ready shows superior results than ED-Pose with 12 epochs,
24 epochs, 36 epochs, 48 epochs, and 60 epochs training,
even without the help of human detection decoder. More-
over, the comparison between Group Pose and Group Pose
with human detection decoder verifies that good initializa-
tion for human instances leads to faster convergence and
better results.

Analysis on model inference speed. Table 6 provides the
comparisons of inference time and FPS among end-to-end
frameworks, including PETR [27], QueryPose [36], ED-
Pose [38], and our Group Pose. Simple designs usually
show efficiency. Results show that our simple transformer
decoder can be faster than complex decoders in previous
end-to-end frameworks. Even with an image in a large size
800 x 1333, our Group Pose can also achieve real-time
speed (above 30 FPS) on a single A100 GPU.

5. Conclusion

In this paper, we present a simple baseline, Group Pose,
for end-to-end multi-person pose estimation. With sim-
ple designs for queries and decoder self-attentions, the ap-



proach outperforms previous end-to-end frameworks while
being faster. Besides, the transformer decoder in Group
Pose is also flexible, which can be built solely or upon
human detection decoders. We hope Group Pose can pro-
vide insights for exploring concise and effective end-to-end
multi-person pose estimation frameworks.
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A. Appendix
A.1. More details and analysis on inference speed

We measure different end-to-end frameworks with
ResNet-50 backbone on a single NVIDIA A100 GPU. To
avoid the speed limitation of I/O and randomness of image
augmentation, we pre-load test images with one fixed reso-
Iution (e.g., 480 x 800 or 800 x 1333) into the GPU mem-
ory to remove the time cost of inputs pre-processing. Then,
we directly send them into different inference models for a
fair and precise comparison. Thus, the reported inference
time (Time) in Table 6 is faster than their original papers of
PETR [27], QueryPose [36] and ED-Pose [38].

Group Pose is faster than previous end-to-end frame-
works with complex decoders. This can be explained by
that Group Pose only contains a simple transformer de-
coder, thus eliminating some extra intermediate processes,
e.g., an additional query selection® in ED-Pose [38].

A.2. Ablation on across-instance interactions

Group Pose captures (K +1) across-instance interactions
over N queries of the same type, including one instance
type and K keypoint types, and the interaction designs are
to be explored. With the same basic setting in Section 4.3,
the following table includes the relevant ablations:

across-instance interactions ‘ AP APy,  APp

inst-inst & kpt-kpt 72.0 668 T79.7
only kpt-kpt 714 664  79.0
only inst-inst 71.0 650 79.0

Results validate that same-type across-instance interac-
tions of both the instance (inst-inst) and keypoint (kpt-
kpt) queries are essential in Group Pose. The across-
instance interactions in Group Pose bring +0.6 and +1.0
AP gains over only modeling the keypoint queries and in-
stance queries, suggesting the usefulness of promoting in-
formation aggregation of same-type queries, thus improv-
ing performance, as analyzed in Section 4.3.

A.3. Ablation on self-attentions implementations

The proposed group self-attentions introduce two types
of self-attentions, including within-instance and across-
instance self-attentions. In practice, they are implemented
with self-attention modules by calculating multiple atten-
tion maps in parallel. We ablate the effects of whether shar-
ing the modules in the following table:

self-attention implementations ~ share ‘ AP APy, APp
group self-attentions X 720 668 79.7
group self-attentions v 71.5 663 794

We can observe that sharing modules gives a —0.5 AP drop
over the unshared one. This is mainly because the two types

3Called ‘fine human query selection’ in their paper.

of self-attentions in Group Pose are responsible for gath-
ering within-instance and across-instance information, re-
spectively. Thus, it is reasonable that the unshared imple-
mentation can achieve a better result.

A.4. Qualitative results on instance query

Group Pose directly utilizes instance query for classifi-
cation to identify human instances. For studying what in-
stance query looks at to give final results, we visualize the
gradient norm of instance query with respect to each pixel in
given images, as shown in Figure 6. The gradient norm re-
flects the degree of change in final results due to each pixel
interference, thus showing which pixels the instance query
relies on for classification. The results show that the in-
stance query in Group Pose looks at pixels inside human
instances of given images even without human box supervi-
sion, thus accurately scoring the predicted poses.

A.5. Visualization results

We visualize the predicted results on MS COCO in Fig-
ure 7 and CrowdPose in Figure 8. As can be observed,
Group Pose performs well on a wide range of poses, in-
cluding scale variations, motion blur, pose deformations,
occlusion, and crowded scenes. The results demonstrate the
effectiveness of our design of Group Pose for end-to-end
multi-person pose estimation.

A.6. Limitation

Group Pose shows good results on benchmark datasets,
while there are also some failure cases. We find that Group
Pose has difficulties in the situation that only contains a
small part (e.g., leg, head) of human instances, resulting in
confusing prediction of the unlabeled keypoints, as shown
in Figure 9. We will conduct deep studies on this problem
in future works.



Figure 6: The gradient norm of instance query with respect to each pixel in given images
by bright color. Best view in zoom in.

Figure 7: Visualization results of Group Pose on MS COCO. Group Pose performs well with scale variations and pose
deformations. Best view in color.



Figure 8: Visualization results of Group Pose on CrowdPose. Group Pose is robust for challenging crowded and occluded
scenes. Best view in color.

Group Pose Ground Truth Group Pose

Figure 9: Visualization results on MS COCO images with small parts of human instance. Model is based on ResNet-50.
The red dashed box indicates difficulties in predicting unlabeled keypoints. Best view in color and zoom in.



