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Abstract

This paper presents a novel approach to generating the
3D motion of a human interacting with a target object, with
a focus on solving the challenge of synthesizing long-range
and diverse motions, which could not be fulfilled by exist-
ing auto-regressive models or path planning-based meth-
ods. We propose a hierarchical generation framework to
solve this challenge. Specifically, our framework first gen-
erates a set of milestones and then synthesizes the motion
along them. Therefore, the long-range motion generation
could be reduced to synthesizing several short motion se-
quences guided by milestones. The experiments on the
NSM, COUCH, and SAMP datasets show that our approach
outperforms previous methods by a large margin in both
quality and diversity. The source code is available on our
project page https://zju3dv.github.io/hghoi.

1. Introduction

Scene-aware motion generation [19] aims to synthesize
3D human motion given a 3D scene model to enable vir-
tual humans to naturally wander around scenes and interact
with objects, which has a variety of applications in AR/VR,
filmmaking, and video games.

Unlike traditional motion generation methods for char-
acter control which aim to generate short or repeated motion
on the fly guided by a user’s control signals [56], we focus
on the setting of generating long-term human-object inter-
actions [56, 19, 76] given a starting position of the human
and a target object model. This setting brings in new chal-
lenges. First, the entire approaching process and the human-
object interaction should be coherent, which requires the
capability of modeling long-range interaction between the
human and the object. Second, in the context of content
generation, the generative model should be able to synthe-
size diverse motions as there are many plausible ways for a
real human to approach and interact with the target object.

*Corresponding author.

Figure 1. Generation of human-object interactions. Given an
object, our method first predicts a set of milestones, where the
rings indicate the positions and the humans with pink clothes rep-
resent the local poses. Then the motions are infilled between mile-
stones. This figure shows that our method can generate diverse
milestones and motions with the same object. The flow of time is
shown with a color code where darker blue denotes the later frame.

Existing methods for motion synthesis can be roughly
characterized into online generation and offline generation.
Most online methods [56, 19, 76] focus on real-time con-
trol of characters. Given a target object, they generally use
auto-regressive models to recurrently generate future mo-
tions by feeding their predictions. Although they have been
widely used for interactive scenarios like video games, their
motion quality is not satisfactory enough for long-term gen-
eration [63]. A plausible cause is the error accumulation
in the auto-regressive process, where the errors in previous
predictions are fed back as the model input, as discussed
in [40, 26, 45, 46, 22]. To improve the motion quality,
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some recent offline methods [6, 65, 64, 63] employ a multi-
stage framework, which first generates the trajectory and
then synthesizes motions. TDNS [63] generates paths by
combining the cVAE model [33] and deterministic planning
methods like A* [18]. Although this strategy can produce
reasonable paths, the path diversity is limited, as demon-
strated by our experimental results in Sec. 4.4.

In this paper, we propose a novel offline approach for
synthesizing long-term and diverse human-object interac-
tions. Our innovation lies in a hierarchical generation strat-
egy, which first predicts a set of milestones and then gener-
ates human motions between milestones. Fig. 1 illustrates
the basic idea. Specifically, given the starting position and
the target object, we design a milestone generation module
to synthesize a set of milestones along the motion trajectory,
each of which encodes the local pose and indicates the tran-
sition point during the human movement. Based on these
milestones, we employ a motion generation module to pro-
duce the full motion sequence. Thanks to the milestones,
we simplify the long-sequence generation into synthesizing
several short motion sequences. Furthermore, the local pose
at each milestone is generated by a transformer that consid-
ers the global dependency [62], leading to temporally con-
sistent results, which further contribute to coherent motions.

In addition to our hierarchical generation framework, we
further exploit diffusion models [53, 23, 54] to synthesize
human-object interactions. Previous diffusion models for
motion synthesis [31, 59] combine transformer [62] and De-
noising Diffusion Probabilistic Model (DDPM) [23]. Di-
rectly applying them to our setting is prohibitively compute-
intensive due to the long motion sequences and may lead to
the GPU memory explosion [50]. Because our hierarchical
generation framework converts the long-term generation to
the synthesis of several short sequences, the required GPU
memory is reduced to the same level of short-term motion
generation. Therefore, we can efficiently leverage the trans-
former DDPM to synthesize long-term motion sequences,
which improves the generation quality.

We validate our design choices on the NSM [56],
COUCH [76], and SAMP [19] datasets with extensive ex-
periments. On these datasets, our hierarchical framework
outperforms previous methods significantly in both motion
quality and diversity.

2. Related Work

2.1. Motion synthesis

Motion synthesis is a long-standing problem in computer
graphics and vision [68, 51, 42, 9]. With the rapid devel-
opment of deep learning, recent works have applied neural
networks to motion synthesis [14, 40, 26, 72]. Some meth-
ods are deterministic [28, 81, 44, 67] while others try to
predict stochastic motions by VAE [70, 1, 71, 79, 45] and

GAN [4, 34]. To further improve the performance, some
works apply GCN [67, 10, 66, 35, 39] or transformers [5] to
extract the features from the human skeleton. To handle the
ambiguity of human motion, some works [26, 55] propose
to employ phase signals to guide the motions. Recent works
start to consider the scene context [56, 6]. NSM [56] is
the first work that aims at synthesizing human motions with
object-level interactions with specific action labels. Based
on NSM, SAMP [19] applies cVAE to predict diverse mo-
tions. These works [56, 19, 76] mainly focus on the inter-
action with one or two objects while others [6, 65] generate
motions with a full scene (including the information about
floors and walls) as the input. [6] predicts future motions of
the given motion sequence by first predicting the trajectory
and then generating motions based on a 2D image of the
scene. Similar to this pipeline, [65] applies GAN [16]. Fur-
thermore, [64] proposes a framework that first places pose
on a human-provided path and then synthesizes motions in
a 3D scene with a full-scene scan. [63] combines A∗ and
cVAE to generate diverse human motions. To further con-
trol human motion, [80] employs the gaze, and COUCH
[76] explicitly models the hand contacts to guide the pre-
diction. Some methods [7, 21] also enable physically simu-
lated characters to perform scene interaction tasks including
sitting [7, 21] and carrying boxes [21]. Some works also fo-
cus on grasp [58, 69], manipulation [73] and the interaction
with dynamic objects [57].

Ours vs. others. This work follows the setting of [56, 19]
and focuses on object-level interaction. In contrast to
[56, 19] which generate motions mainly based on auto-
regressive models, we design a hierarchical framework to
synthesize motions. Different from [6, 64], our work fo-
cuses on much more long-term generation (longer than 10
seconds) while [6] is 2 seconds and [64] is 6 seconds. In-
stead of planning the path auto-regressively with an ex-
tra network to generate diverse trajectories like [63], our
method directly predicts a set of milestones to describe the
approaching process which is inherently diverse. In addi-
tion, most methods [19, 76, 64, 63] rely on cVAE to gen-
erate stochastic motions while we exploit DDPM [23] to
synthesize trajectories and motions.

2.2. Diffusion models

Diffusion models [53] are a class of likelihood-based
methods that generate samples by gradually removing noise
from a signal. Then, [23, 54] develop the diffusion mod-
els for high-quality image generation. To control the gen-
erated results, [12] proposes classifier guidance for trading
off diversity for fidelity. Later, the classifier-free model [24]
achieves better results [48] in text-conditioned image gen-
eration. In addition, diffusion models have been success-
fully applied to other domains like the generation of videos
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Figure 2. Overview of our pipeline. Our pipeline consists of three components: First, the goal pose is synthesized given the object. Then,
a number of milestones with local poses are predicted based on the goal pose. Finally, the trajectory and the full motion sequences are
infilled between the milestones.

[52, 25] and 3D contents [47].
There are some works [74, 59, 31, 38] that apply DDPM

to synthesize motions. [3, 8] also explore latent diffusion
models [50] for motion generation. However, most works
focus on text-conditioned [74, 11], audio-driven [82] and
music-driven [60, 82] motion generation while we target
human-object interaction. In this work, we apply trans-
former DDPM [23] to a multi-stage framework, which sep-
arately generates trajectories and synthesizes motions.

There are some concurrent works [27] that apply DDPM
to synthesize motions in a scene. However, [27] is designed
for short-term motion generation (around 2 seconds) while
we target long-term human motion generation (longer than
10 seconds). Different from existing work [59, 27], we em-
ploy DDPM in a multi-stage framework, where trajectories
and motions are separately predicted.

3. Methods
Given the object I and the starting point s, our goal is to

synthesize 3D human motions {(ri,θi)}Ni=1 with human-
object interactions. ri is the root trajectory, and the θi indi-
cates local pose at i-th frame.

We design a hierarchical motion generation framework
as shown in Fig. 2. First, we employ GoalNet[19] to predict
an interaction goal on the object. Then, we generate the goal
pose (Sec. 3.1) to explicitly model the human-object inter-
action. Next, our milestone generation module (Sec. 3.2)
estimates the length of the milestones, produces the trajec-
tory of the milestones from the starting point to the goal, and
places milestone poses. Therefore, the long-range motion
generation is decomposed into combinations of short-range
motion synthesis. Finally, we design a motion generation
module (Sec. 3.3) to synthesize the trajectory between the
milestones and infill the motions.

3.1. Goal pose generation

We call the pose in which a person interacts with an ob-
ject and remains stationary a goal pose. To synthesize di-
verse human motion, we first generate a goal pose interact-
ing with the object following [58, 69, 63]. Most methods
[78, 75, 20] generate human poses using the cVAE model.
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Figure 3. Part VQ-VAE. Part VQ-VAE first splits the skeleton into
multiple parts and learns the codebooks separately. The composi-
tion of different parts is subsequently modeled with the autoregres-
sive prediction model.

They project the poses to the standard normal distribution in
the continuous space [33]. Empirically, we find that cVAE
models do not perform well in our setting. To overcome
this challenge, we introduce VQ-VAE [61, 49] to model the
data distribution which exploits a discrete representation to
cluster the data in a finite set of points [37]. We hypothesize
that limited data of goal pose from the SAMP dataset [19]
can always be clustered by VQ-VAE but may not be enough
for learning a continuous latent space for VAE [41]. In ad-
dition, based on the observation that different human poses
may share similar properties [15, 29] (e.g., humans may sit
with different hand positions but the same leg positions), we
split joints into L (L = 5) different non-overlapping groups
like MotionPuzzle [29].

Quantization. As shown in Fig. 3, the goal pose θg is
split into separate joint groups as θg = {θgi}Li=1. Then
a discrete codebook Zi with a list of vectors compares the
output ẑi from the encoder Ei to find the closest vector in
Euclidean distance. The L vectors with minimal distances
will be concatenated and fed into a shared decoder D to



reconstruct θg . The loss function is defined as:

L(θg, D(z)) = ∥θg −D(z)∥22 +
L∑

i=1

∥sg[Ei(θgi)]− zi∥22

+β

L∑
i=1

∥sg[zi]− Ei(θgi)∥22,

(1)

where

z = [z1, ..., zL], (2)
zi = argmin

z′
i∈Zi

∥z′i − ẑi∥ , (3)

ẑi = E(θgi). (4)

Here, the term sg[·] donotes the stop-gradient operator, and
∥sg[zi]−Ei(θgi)∥22 is the commitment loss [49] controlled
by a weighting factor β.

Generation. With Ei and D available, we can represent
θg = {θg1, ...,θgL} by a sequence of the part-based code-
book indices. To be more specific, we use Ei to extract the
feature from θgi and find the closest vector zi ∈ Zi. Then
we use si ∈ {0, ..., |Zi| − 1} to indicate the index of zi in
Zi. Therefore, θg can be represented by s = {s1, ..., sL}.

To generate a natural goal pose, we convert the prob-
lem to predict a sequence of indices that can represent θg .
We formulate the inference as a conditional auto-regressive
process and employ a transformer [62] to learn to predict the
distribution of possible indices [13]. The condition contains
the environment around the goal Og , and the action ag . Fol-
lowing NSM [56] and COUCH [76], a cylindrical volume
of a pre-defined radius and height is created around the goal.
Within this volume, spheres are uniformly sampled and the
occupancies corresponding to the object of these spheres are
calculated. Then, these occupancies are flattened to form a
feature vector denoted as Og . ag is a vector indicating the
action type. These variables are fed into the transformer as
tokens. Our target is to learn the likelihood of the sequence:

p(s | Og,ag) =
∏
i

p (si | s<i,Og,ag) . (5)

After predicting the indices, we map them back to their cor-
responding codebook entries to get the quantized features
z = [z1, ..., zL], which are fed into the decoder D to gener-
ate the goal pose θg .

3.2. Milestone generation

Based on the starting pose and the goal pose, we can gen-
erate the milestone trajectory and synthesize the local poses
at the milestones. Following [74, 59], we build a trans-
former DDPM [23] and apply it to generate the milestones
for better quality. Because the length of motion data is un-
known and can be arbitrary (e.g., the human could quickly

walk towards the chair and sit down or sit after walking
around the chair slowly), we predict the length of mile-
stones, denoted by N . Then we synthesize N milestone
points and place the local poses on these points.

Transformer DDPM. Here we first briefly introduce
DDPM [23], which is learned to reverse a diffusion process.
Formally, the diffusion model [53] is defined as a latent
variable model of the form pθ (x0) :=

∫
pθ (x0:T ) dx1:T ,

where x0 ∼ q (x0) is the data and x1, . . . ,xT are the la-
tents. pθ (x0:T ) is formulated as a Markov chain as:

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1 | xt) , (6)

pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (7)

Diffusion models approximate posterior q (x1:T | x0) as a
Markov chain that gradually adds Gaussian noise to the data
with variance schedules given by βt:

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) , (8)

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
. (9)

In contrast to adding noises on x0 sequentially, DDPM for-
mulates the diffusion process as:

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
, (10)

where αt = 1−βt and ᾱt =
∏t

s=1 αs. Hence, we can gen-
erate xt by sampling a noise ϵ as the training data. DDPM
employs a neural network to model pθ (xt−1 | xt) and the
inference is to gradually denoise xt from t = T to t = 1
where xT ∼ N (0, I).

Like existing works [74, 31] that apply DDPM in the
motion domain, we employ a transformer decoder [62] as
our architecture of DDPM. The transformer takes the noise
xt and the condition C as input. The condition C means
variables related to the generation, which will be described
in detail in each subsection. The diffusion time-step t is
in the sinusoidal position embeddings form [62] and is in-
jected into each block in the transformer. Different from
existing works [59, 74] that assume the length of the mo-
tion sequences is already given, we insert a parallel branch
to estimate the length of milestones by taking the length to-
ken Htok and the condition C as the input, as shown in
Fig. 4. The length prediction head is an MLP and pre-
dicts a multinomial distribution over discrete length in-
dices {1, 2, ..., Nmax} like [17], where Nmax represents the
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Figure 4. Overview of transformer DDPM for milestone gener-
ation. The model first takes the length token Htok and the condi-
tion C as the input to predict the data length. Then it constructs
the noise sequence x1:N

T with length N . In the diffusion process,
it is fed with C and the sequence x1:N

t at time-step t to predict the
target x̂1:N

0 . For other sub-modules, we remove the length predic-
tion head.

length of the longest sequences for training. We use cross-
entropy loss as the loss function. At inference time, we sam-
ple the length N from the estimated distribution. Next, we
construct N milestones as the input to the transformer. We
predict the denoised data x̂0 based on the condition C by
the DDPM f . This is formulated as x̂0 = f (xt, t,C), and
the training loss is defined as:

L = Et∈[1,T ],x0∼q(x0),ϵ∼N (0,I) [∥x0 − x̂0∥] . (11)

In our setting, we use a two-step strategy like [64, 63],
where two transformer DDPMs are applied to first generate
the milestone points and then synthesize the local pose at
each milestone.

Generation of milestone points. The milestone points
are conditioned on the object, the information of the starting
point, and the goal. We then define the condition as:

Cm = {Is, Ig,Os,Og,g, s}, (12)

where Is and Ig are the object representation relative to the
starting point and the goal. Similar to other methods [56, 19,
76], the object representation is modeled by an 8×8×8 grid
with their positions and occupancies. Following NSM [56]
and COUCH [76], we also explicitly model the occupancies
around the starting point and the goal with Os and Og (the
same form as the occupancy feature described in Sec. 3.1).

The information of goal g is defined as {rg,ag,θg}, where
rg means the goal position and orientation in the starting
point coordinate system, ag is the target action label at the
goal, and θg is the goal pose. s = {as,θs} represents the
action labels as and the pose θs at the starting point.

The target is to predict the milestone {m1, ...,mN} with
length N . Following NSM [56], a bi-directional scheme
is employed for the milestone points generation where we
predict the roots of milestones in both the starting point co-
ordinate system and the goal coordinate system. The final
predicted roots are blended from these two kinds of outputs.
The milestone point mi is defined as:

mi = {rbi , ci,wi}. (13)

The representation is similar to previous work [19, 56, 76],
where rbi indicates the root position and forward direc-
tions relative to the starting point and the goal, ci is a la-
bel vector indicating the contact between the environment
and the body, and we use a high-dimensional feature vector
wi to encode the character state at the milestone following
[56, 19, 76]. The details of these variables are provided in
the supplementary material. We use transformer DDPM fm
to predict the length and synthesize milestone points.

Generation of milestone poses. Previous works [64, 63]
separately place the poses on the sparse points along the
path and infill the motions between, which may lead to un-
natural transitions between these poses. On the contrary, we
generate the local pose at each milestone with transformer
DDPM to build the temporal dependency. With the help of
the generated milestone points, we can access the accurate
spatial relationship Ii between the object and the charac-
ter and the ego-centric environment occupancies Oi [76]
at the i-th milestone. The milestone poses also depend on
the milestone state including {ci,wi} at the i-th milestone.
Consequently, we define the condition Ck as a combination
with starting pose θs, goal pose θg , and frame-wise condi-
tion γi at the i-th milestone as:

Ck = {θs,θg,γ1, ...,γN}, (14)
where γi = {Ii,Oi, ci,wi}. (15)

The local poses at the milestones are predicted by the trans-
former DDPM fk without the length prediction head.

3.3. Motion generation

Instead of predicting motions frame-by-frame [56, 19,
76], our approach hierarchically synthesizes the full se-
quence based on the generated milestones. We follow
[6, 64, 63] to first generate the trajectory and then syn-
thesize the motions. Specifically, within two consecutive
milestones, we first complete the trajectory. Then, the mo-
tions are infilled with the guidance of successive milestone



poses. The two steps are accomplished using two trans-
former DDPMs (described in Sec. 3.2), respectively. For
each step, we carefully design the condition of DDPM to
generate the target output.

Trajectory completion. For the trajectory completion be-
tween the milestones mi and mi+1, we assume that it is
only conditioned on the milestones and the object. Thus we
define the condition as:

Cr = {Ii, Ii+1,Oi,Oi+1,mi,mi+1, t
i+1
i }, (16)

where Ii indicates the object representation relative to the
milestone i and Oi denotes the ego-centric occupancies (the
same form as the occupancy feature described in Sec. 3.1)
around the i-th milestone like NSM [56] and COUCH [76].
mi has been shown in Eq. (13). ti+1

i represents the posi-
tion and orientation of the (i + 1)-th milestone in the i-th
milestone’s coordinate system. Between two consecutive
milestones, we generate the trajectory with a length of 2
seconds, which is 61 frames. Similar hyperparameters can
be found in previous methods [64, 63].

The target output is the trajectory between two consec-
utive milestones. Similar to the milestone point, we syn-
thesize the trajectory in the j-th frame with a bi-directional
scheme. The trajectory is composed of a set of points that
have the same representation as the milestone in Eq. (13).
We generate the trajectory with a transformer DDPM fr
similar to the one in Sec. 3.2. Since we assume the tra-
jectory length between two milestones is fixed, the DDPM
fr does not have the length prediction head.

Motion infilling. To synthesize the long-range motion,
we convert a long sequence into several fixed-length short
sequences with the help of milestone points and milestone
poses. For a sub-sequence between the consecutive mile-
stone poses, our goal is to generate the missing local poses
over the trajectory. The generated motion has to satisfy the
trajectory and naturally transits from a milestone to the next
milestone. Like milestone pose generation, we use the same
representation of frame-wise condition in Eq. (15). The
condition is defined as:

Cp = {θ1,θ61,γ1, ...,γ61}, (17)

where θ1 and θ61 are the local poses of two consecutive
milestones. By taking these inputs, we generate smooth
motions using another transformer DDPM fp without the
length prediction head.

4. Experiments
4.1. Implementation details

We train the part VQ-VAE and transformer DDPM mod-
els with the Adam optimizer [32]. All the models are trained

with a fixed learning rate of 0.0001 with batch size 256. The
remaining details are in the supplementary material.

4.2. Datasets and evaluation metrics

Test setting. Our experiments are conducted on the
SAMP [19], COUCH [76], and NSM [56] datasets. Pro-
vided with a starting point, a starting pose, an object, and
an endpoint, the virtual human is asked to approach the ob-
ject, interact with it, and leave to reach the endpoint. The
ablation studies are conducted on the SAMP dataset.

Metrics. Following the previous method [19], we calcu-
late the Fréchet distance (FD) between the generated and
ground-truth motions to measure the motion quality. We
also conduct user studies and each sequence is evaluated by
at least 3 users with scores ranging from 1 to 5. In addition,
we calculate the penetration ratio [64, 75, 78] and foot slid-
ing [72, 36] to show the physical plausibility between the
3D object and the synthesized motions. We compute the
Average Pairwise Distance (APD) [71, 77] to evaluate the
diversity. Specifically, we calculate the APD of synthesized
motion, the character’s pose during object interactions, and
trajectories. Following previous work [56, 19], we calculate
PE (positional errors) and RE (rotational errors) to indicate
the precision of object interactions. For each test object, we
generate multiple sequences. More details are included in
the supplementary material.

4.3. Comparison with other methods

Results on the SAMP dataset. On the SAMP dataset
[19], we compare our method with online methods SAMP
[19] and MoE [72]. As our method is offline, we also imple-
ment and modify offline methods SLT [64] and TDNS [63]
to our setting. For SLT [64], we employ A∗ [18] to plan
a path and select points along the path as subgoals to form
the input for SLT. More details about the implementation
of [64, 63] are in the supplementary material. Since MoE
often fails to finish the action, we do not calculate the pene-
tration ratio for it. As shown in Tab. 1, our approach outper-
forms other methods in terms of lower FD, higher user study
scores, and higher APD. Furthermore, our method achieves
much higher trajectory diversity than SAMP [19]. Although
TNDS [63] proposes Neural Mapper (NM) which combines
A∗ [18] and cVAE, the diversity of the generated trajectory
is inferior to our method, as indicated by APDT .

Results on the COUCH dataset. As our target is to syn-
thesize diverse motions instead of controlling the charac-
ters, we only evaluate the motion quality on the COUCH
dataset [76]. Tab. 2 shows that our method outperforms all
baselines. Our approach achieves much higher APDT than
other methods. We observe that APDT of TDNS [63] is



Method FD ↓ User study ↑ APDM ↑ APDP ↑ APDT ↑ PE↓ RE↓ Penetration↓ Sliding↓
MoE [72] 74.33 2.76 3.50 2.63 52.46 ∞ ∞ - 1.68
SAMP [19] 57.34 2.86 3.63 3.05 63.18 3.44 4.12 6.98 1.02
SLT∗ [64] 68.83 2.30 3.08 2.66 40.13 1.77 1.60 4.28 1.71
TDNS∗ [63] 46.60 2.90 3.68 3.40 66.04 0.45 0.39 5.14 0.94
Ours 22.34 3.62 4.06 4.52 91.38 0.39 0.32 4.00 0.50

Table 1. Quantitative results on the SAMP dataset. SLT∗ and TDNS∗ mean we modify and implement them on the SAMP dataset. The
subscript “M”, “P ” and “T ” stand for “Motion”, “Pose” and “Trajectory”. PE and RE represent the positional error and rotation error.
Sliding denotes foot sliding. ∞ means the method failed to reach the goal.

Method FD↓ User study ↑ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
NSM [56] 118.98 2.99 0 0 0 8.20 0.59
SAMP [19] 160.12 1.94 0.89 0.18 4.69 4.94 0.72
COUCH [76] 127.19 3.05 1.41 0.66 23.48 7.43 0.37
SLT∗ [64] 93.46 3.01 1.68 1.17 2.86 3.90 1.85
TDNS∗ [63] 71.72 3.29 2.70 2.19 16.98 5.12 1.17
Ours 56.35 4.27 3.22 2.30 64.96 3.54 0.55

Table 2. Quantitative results on the COUCH dataset. SLT∗ and
TDNS∗ mean we modify and implement them.

Method FD↓ User study↑ APDM ↑ APDP ↑ APDT ↑ PE↓ RE↓ Penetration↓ Sliding↓
NSM [56] 90.39 3.95 0 0 0 1.72 0.40 6.43 0.69
SAMP [19] 68.86 3.77 1.21 0.11 20.01 4.77 4.84 7.83 1.38
Ours 57.02 4.04 2.62 0.93 62.23 1.01 0.28 4.85 0.80

Table 3. Quantitative results on the NSM dataset.

Figure 5. Results in a cluttered scene. Our method can generate
motions that avoid obstacles in a cluttered scene.

higher than the approaches [19, 64] that employ determin-
istic A∗ [18], but much lower than our method. Although
COUCH [76] exhibits lower foot sliding than our method,
it may sometimes get stuck, resulting in lower foot sliding
since the character does not move.

Results on the NSM dataset. On the NSM dataset [56],
we compare our approach with SAMP [19] and NSM [56].
Tab. 3 shows that our method outperforms baselines. Com-
pared with the deterministic method NSM, our approach
could generate stochastic motion and diverse trajectories.

Variants FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
w/o GP 31.07 3.21 2.46 85.21 4.10 0.49
w/o MT 27.87 3.62 3.01 127.94 5.30 0.72
w/o MP 25.14 4.01 3.78 85.69 4.58 0.43
w/o TC 36.77 2.76 2.42 83.26 4.34 0.63

Ours 22.34 4.06 4.52 91.38 4.00 0.50

Table 4. Ablation study of the impact of sub-modules. Al-
though the variant without MT generates more diverse trajectories
as shown in APDT , the motion quality is much worse as indicated
by the higher FD, penetration, and sliding. w/o: without. GP: goal
pose generation. MT: milestone point generation. MP: milestone
pose generation. TC: trajectory completion.

Results in a cluttered scene. We show our generated re-
sults in a cluttered scene in Fig. 5. The percentage of
frames with penetration is 3.8% for our method and 4.9%
for SAMP. More details are in the supplementary material.

Qualitative results. As demonstrated in Fig. 6, our ap-
proach achieves better results than baselines [19, 63] on the
SAMP dataset. Fig. 7 compares our method with COUCH
and TDNS on the COUCH dataset. More qualitative results
are in the supplementary material.

4.4. Ablation study

Impact of each sub-module. To show the effectiveness
of our hierarchical design, we evaluate our method against
four variants where we remove one sub-module for each
variant. Tab. 4 indicates that each component improves per-
formance. Generating a whole trajectory leads to more di-
verse trajectories but the motion quality is worse and has
more foot sliding. This validates the necessity of the sepa-
rate generation of trajectories and motions.

Goal pose generation. We evaluate our goal pose gen-
erator with several variants, including cVAE, DDPM, and
standard VQ-VAE. For this evaluation, we only replace the
goal pose generation module and keep the others the same.

Tab. 5 shows that part VQ-VAE generates more diverse
poses than continuous latent space models. The comparison



SAMP OursTDNS

Figure 6. Qualitative results on the SAMP dataset. We compare our method with the baselines SAMP [19] and TDNS [63]. The failure
cases are pointed out by the red rectangles. Specifically, the first row indicates that SAMP and TDNS tend to walk backward with more
foot sliding. The second row shows that the baselines start to sit and lie down before reaching the object while our method synthesizes more
natural results. The third row demonstrates that our framework has the capability to generate a long trajectory and walk naturally along the
trajectory while SAMP gets stuck near the object and TDNS synthesizes unnatural motions. Lines on the floor indicate trajectories. The
human with pink clothes indicates the start position. Darker color denotes later frames in the sequence.

OursTDNSCOUCH

Figure 7. Qualitative results on the COUCH dataset. We compare our method with the baseline COUCH [76] and TDNS [63]. The
failure cases are pointed out by the red rectangles. Specifically, the first row indicates that COUCH and TDNS tend to sit when the character
is far from the object. The second row shows that COUCH may fail to stand up and TDNS may stand up unnaturally. To better visualize
the results of TDNS in the second row, we only keep the frames in which the human stands up and goes to the endpoint.

with standard VQ-VAE shows the necessity of our part de-
sign. We also try part VQ-VAE for motion infilling, but the
results in Tab. 6 show that its performance is worse.

Milestone generation. To further investigate the impact
of milestones, we compare our approach with the variants

that employ path-planning methods and select points along
the path as milestones. For this ablation, we implement
A∗ and NM [63] proposed by TDNS. As demonstrated in
Tab. 7, the diversity of generated trajectories of A∗ [18] is
much worse, and the motion quality drops significantly, as
indicated by the lower APDT and higher FD. The trajectory



Variants FD ↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
cVAE 27.06 3.36 3.27 90.52 4.36 0.47

DDPM 34.22 3.75 3.37 84.76 4.31 0.49
VQ-VAE 24.77 3.78 3.87 89.19 4.27 0.48

Part VQ-VAE 22.34 4.06 4.52 91.38 4.00 0.50

Table 5. Ablation study of goal pose generation. We implement
the goal pose module with different architectures.

Variants FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
Part VQ-VAE 28.71 3.85 3.62 83.51 4.32 0.89

DDPM 22.34 4.06 4.52 91.38 4.00 0.50

Table 6. Ablation study of part VQ-VAE for motion infilling.
We replace the DDPM as part VQ-VAE to predict motions.

Variants FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
A∗ 40.59 4.07 4.42 42.98 4.24 0.88

NM [63] 40.54 4.15 4.31 52.74 4.15 0.96
MT 22.34 4.06 4.52 91.38 4.00 0.50

Table 7. Ablation study of milestone generation. We compare
our method with the variant based on the path generated by A∗

path planning [18]. NM: Neural Mapper [63]. MT: milestone
point generation.

Method FD↓ APDM ↑ APDP ↑ Penetration↓ Sliding↓
ConvAE [30] 26.50 3.95 4.33 4.82 0.89

SLT [64] 27.95 3.76 4.05 4.13 0.78
Ours 22.34 4.06 4.52 4.00 0.50

Table 8. Ablation study of motion infilling module. We compare
our method with other motion infilling methods.

diversity of NM [63] is better than A∗, but still worse than
our method. The reason why these variants perform poorly
might be the low diversity of trajectory that affects the dis-
tribution of generated motions for calculating FD.

Motion infilling. To validate our motion infilling module,
we compare it with ConvAE [30] and SLT [64]. We only
replace the motion infilling module and keep the others the
same. The comparison of motion quality and diversity is
shown in Tab. 8 and our method outperforms ConvAE [30]
and SLT [64] with lower FD.

DDPM vs. VAE. To show the effectiveness of DDPM,
we implement a cVAE variant, where we simply replace
our transformer DDPM with transformer cVAE [45, 63].
As shown in Tab. 9, although cVAE models could generate

more diverse trajectories, their motion quality is far from
satisfactory, indicated by the much higher value of FD.

Comparison with other diffusion models. Our approach
stands out from architectures in MDM [59] and FLAME

Arch FD↓ R-APDM ↑ R-APDP ↑ R-APDT ↑ Penetration↓ Sliding↓
cVAE 29.32 3.65 3.58 109.55 5.06 1.12
DDPM 22.34 4.06 4.52 91.38 4.00 0.50

Table 9. Evaluation of the architecture for our generation
framework. Although cVAE based variant generates more diverse
trajectories, the motion quality drops significantly as indicated by
the much higher FD. Arch stands for the architecture type.

Variants FD↓ APDM ↑ APDP ↑ APDT ↑ Penetration↓ Sliding↓
MDM [59] 38.69 4.01 3.77 72.67 5.19 0.70

MDM [59] + C 23.97 4.02 4.13 89.80 4.87 0.39
FLAME [31] 28.93 4.02 4.46 65.46 5.78 0.89

Ours 22.34 4.06 4.52 91.38 4.00 0.50

Table 10. Comparison with MDM and FLAME. C denotes the
frame-wise conditions.

[31] by incorporating frame-wise conditions. Tab. 10
demonstrates the significance of the frame-wise conditions.

More analyses and ablation studies. More detailed anal-
yses and ablation studies of our design choices are provided
in the supplementary material.

4.5. Limitations

Although our method can generate diverse and natural
motions, there are still some limitations. Our method is
offline and cannot be applied to interactive scenarios. We
assume that the objects are static and cannot handle moving
objects. The diffusion models require a long inference time.
It takes 7.13 seconds on average for a 720-frame sequence
on a TITAN Xp GPU. The slow speed might be solved by
methods that could accelerate diffusion models [43, 2].

5. Conclusion

In this work, we propose a novel hierarchical pipeline
for motion synthesis of human-object interactions. Our ap-
proach first generates the goal pose and then predicts a set
of milestones. Next, we synthesize motions with the guide
of milestones. Furthermore, we apply DDPM in our hier-
archical pipeline. We also show that our framework could
generate more diverse and natural human-object interaction
motions than other methods.
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