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Abstract

In this paper we present an approach for localizing steps
of procedural activities in narrated how-to videos. To deal
with the scarcity of labeled data at scale, we source the
step descriptions from a language knowledge base (wiki-
How) containing instructional articles for a large variety of
procedural tasks. Without any form of manual supervision,
our model learns to temporally ground the steps of proce-
dural articles in how-to videos by matching three modali-
ties: frames, narrations, and step descriptions. Specifically,
our method aligns steps to video by fusing information from
two distinct pathways: i) direct alignment of step descrip-
tions to frames, ii) indirect alignment obtained by compos-
ing steps-to-narrations with narrations-to-video correspon-
dences. Notably, our approach performs global temporal
grounding of all steps in an article at once by exploiting
order information, and is trained with step pseudo-labels
which are iteratively refined and aggressively filtered. In
order to validate our model we introduce a new evaluation
benchmark – HT-Step – obtained by manually annotating a
124-hour subset of HowTo100M1 with steps sourced from
wikiHow articles. Experiments on this benchmark as well
as zero-shot evaluations on CrossTask demonstrate that our
multi-modality alignment yields dramatic gains over sev-
eral baselines and prior works. Finally, we show that our
inner module for matching narration-to-video outperforms
by a large margin the state of the art on the HTM-Align
narration-video alignment benchmark.

1. Introduction
Instructional videos have emerged as a popular means

for people to learn new skills and improve their abilities in
executing complex procedural activities, such as cooking
a recipe, performing home improvements, or fixing things.
In addition to being useful teaching materials for humans,
how-to videos are a promising medium for learning by ma-

*equal contribution
1A test server is accessible at https://eval.ai/web/

challenges/challenge-page/2082.
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Figure 1: Our proposed Video, Instructions, and Narrations
Aligner (VINA) learns to simultaneously ground narrations
and instruction steps in how-to videos from an uncurated
set of narrated videos and a separate knowledge base of in-
structional articles, without any manual annotations. This is
contrary to prior work that learns how to align a video with
a single sequence of sentences by leveraging ground-truth
pairs of video-text sequences, e.g., a video and its narra-
tions [19], or a video and an annotated, ordered list of steps
demonstrated in it [14].

chines, as they provide revealing visual demonstrations of
complex activities and show elaborate human-object inter-
actions in a variety of domains. Motivated by this observa-
tion, in this work we look at the task of temporally localiz-
ing the steps of procedural activities in instructional videos.
This problem is foundational to the broader goal of human-
procedure understanding and advances on this task promise
to enable breakthrough applications, such as AI-powered
skill coaching and human-to-robot imitation learning.

Prior work has tackled procedural step localization by
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leveraging either (a) fully-annotated datasets where the task
shown in the video is given (video-level labeling) and manu-
ally annotated temporal segments are provided for each step
(segment-level labeling) [53] or (b) weakly-annotated train-
ing sets where the task and the order in which the steps ap-
pear in the video is given [70]. However, due to the inherent
manual cost involved in collecting step annotations, these
works have relied on datasets that are small-scale both in
the number of tasks (e.g., at most few hundreds [70]) and in
the number of video samples (e.g., 12k videos [53]). These
limitations affect both the generality and the complexity of
the models that can be trained on these benchmarks. In
this paper, we therefore pose the following question: can
we leverage large-scale, unlabeled video datasets to train a
model that can ground procedural steps in how-to videos?

To answer this question, we propose a novel training
framework for weakly-supervised step grounding that uti-
lizes two freely available sources of information: (a) in-
structional articles which define ordered lists of steps for
a wide variety of tasks (e.g., from wikiHow) and (b) nar-
rations which provide instance-specific rich commentaries
of the execution of the task in the video, e.g., from ASR
transcriptions. Our work treats the former as an abstraction
of the latter and uses the video-specific narrations to support
the grounding of the article steps. Specifically, during train-
ing, our method leverages narrations as an auxiliary signal
to (i) identify the task shown in the video, (ii) temporally
ground the article steps that are visually-demonstrated and
(iii) filter out steps that are not executed in the given in-
stance. To further motivate this mechanism, let us look at
the example in Figure 1. The narrations help disambiguate
the task (make a pumpkin puree), enabling the automatic
retrieval of relevant instructional articles for the video. Fur-
thermore, the narrations can be matched to steps described
in the articles to roughly localize the steps that are repre-
sented in the video. In this example, the timestamp of “First
thing you’ll need to do is cut off the stem” provides a loose
temporal prior for the matching step “Cut the pumpkins.”
On the other hand, steps that do not have any matching nar-
rations (e.g., “Wash the pumpkins”) are unlikely to be rep-
resented in the video and thus can be rejected. Based on this
intuition, we propose a procedure that learns to align steps
to video by fusing information from two pathways. The first
is an indirect pathway inferring step-frame alignments by
composing step-to-narration assignments with narration-to-
frame correspondences. The second is a direct pathway that
learns associations between step descriptions and frames by
leveraging information from all videos having steps in com-
mon.

In our experiments we demonstrate that our multi-
modality alignment leads to significant performance gains
over several baselines, including single-pathway temporal
grounding, as well adaptations of prior works to our prob-

lem. During inference, the direct pathway can be used by
itself to temporally ground steps in absence of transcribed
narrations. When narrations are available at test time, our
method improves further the accuracy of temporal ground-
ing by fusing the inference outputs of the two pathways.

To summarize, our work makes the following contribu-
tions: 1) we learn to align steps to frames in how-to videos,
using only weak supervision in the form of noisy ASR nar-
rations and instructional articles; 2) we propose a novel ap-
proach for joint dense temporal grounding of instructional
steps and video narrations; 3) we introduce a new bench-
mark for evaluating instructional step grounding which we
will make available to the community; 4) we demonstrate
state-of the art results on multiple benchmarks for both step
as well as narration grounding.

2. Related Work
Procedural step recognition. Prior work on procedural
step localization [5, 8, 9, 16, 21, 31, 42, 45, 46, 58, 64, 67,
68, 70] can be roughly divided into two categories, based on
the query formulation: the first class approaches the prob-
lem in an open-world setting, where the use of text queries
transforms it into a temporal grounding task [2, 4, 18].
Such approaches can be further sub-divided into single
step grounding, where single steps are queried over the
whole video[24, 51] and dense temporal grounding meth-
ods [12, 19] where the objective is to jointly ground a se-
quence of steps or whole article into the video. The sec-
ond body of works uses fixed taxonomies of steps, often
as part of activities [26, 44, 53]. Our work is somehow
related to Lin et al. [29] who use semantic similarity be-
tween steps and narrations to obtain supervision for learn-
ing strong video representations. Although we also asso-
ciate steps from wikiHow articles to video frames through
the use of narrations, the two works differ in several as-
pects: we align steps to video by a global procedure that
takes into account all ordered steps in the article (inspired
by dense temporal grounding methods [4]) and temporally
grounds them in the whole video, instead of matching in-
dividual video clips to an orderless collection of steps; our
step grounding uses video in addition to steps and narra-
tions while the method proposed in Lin et al. relies purely
on text-matching narrations to step descriptions; finally, the
works differ in objectives with our aim being step ground-
ing in long how-to videos rather than learning video-clip
representations.

Existing methods also vary by the level of supervi-
sion used during training. One option is leveraging fully-
annotated datasets with known temporal segments for each
step [9, 23, 26, 44, 47, 54, 65, 71], using weakly-annotated
training sets where the task and the order in which the steps
appear in the video are known [6, 7, 10, 14, 17, 25, 41, 70],
only the task and potential steps are known [40], or only



loose association between video and instructional articles
is given [12, 15]. Video narrations are a commonly used
source of weak supervision [1, 17, 34, 43], while instruc-
tional steps from knowledge bases have recently been used
as supervision: [12, 29]. Chen et al. [12] use video-level
instructional step labels for (weak) supervision of a model
that grounds instructional articles to videos. This approach
attempts to localize steps without using any narration infor-
mation; we instead show that the task knowledge is not nec-
essary and heavily exploit narrations via multi-task learning
and complementary inference pathways [66]: we argue that
narrations provide a much richer source of supervision for
training step grounding models, while essentially coming
for free.
Video-Text alignment The availability of large-scale
video-text datasets such as HowTo100M has prompted
many works on joint video-language embedding train-
ing [29, 35]. A form of contrastive loss is often adopted
for bringing together the representations of the two modali-
ties [3, 32, 33, 35, 38, 39, 61, 63], while masked objectives
are also gaining popularity [13, 20, 28, 33, 50, 51, 52, 55,
69]. Some works perform end-to-end representation learn-
ing [35, 36], while others freeze representation and focus
on longer-term temporal modelling, which aims to capture
context [61]. More recently Han et al. investigated directly
aligning contextualized narration representations to video
frames [19]. We build our method off of this approach
– we note however that our objective is complementary:
rather than aligning a video’s narrations as an end-goal, we
use this functionality to ground a set of independent steps
sourced from instructional articles; in that process we show
that the synergy that develops while training jointly on the
two tasks results in improved performance for both.

3. Narration-Aided Step Grounding
We first present our architecture for joint narration and

step grounding (Sec. 3.2), followed by learning objectives
(Sec. 3.3.1) and pseudo-labeling strategy (Sec. 3.3.3); we
discuss inferring the video task in (Section 3.3.2).

3.1. Problem Formulation

Let (V,N ) be a video-narration pair, consisting of T
video frames and a sequence of N narrations. Also, let S
be an ordered list of S steps from an instructional article for
a candidate task τ . Our objective is to ground each step of
S to the video, conditioned on the other steps and the ASR
transcript2. In particular, the desired output of our model
is an alignment matrix Y SV ∈ {0, 1}S×T , where Yst = 1
only if frame t is depicting the s-th step of task τ , and zero
otherwise. Note that some steps might not be represented in
the video.

2ASR transcripts are assumed to be always available for training and
optionally during inference.

3.2. Joint Narration and Article Step Grounder

As shown in Figure 2, our proposed VINA model fol-
lows the popular paradigm of leveraging Transformers for
modeling multimodal interactions [56, 62].
Unimodal Encoders. Before feeding the video, narrations
and article steps to our model, we preprocess them to ex-
tract a sequence of tokens. Given a video-narration pair (V ,
N ) we extract visual features, Xv ∈ RT×Dv and narration
features Xn ∈ RN×Dn using standard backbone networks
(e.g., a frozen S3D [60] network for visual features, and
pooled Word2Vec [37] embeddings for narration features).
Similarly, we encode the sequence of steps in a sequence
of features Xs ∈ RS×Ds . The features of each modal-
ity m are embedded into a common embedding space of
dimensionality D using a Unimodal Encoder that consists
of a modality-specific MLP network, and then learnable,
modality-specific positional embeddings Pm are added to
them:

Hm = MLP (Xm; θm) + Pm, (1)

where m ∈ {v, n, s} denotes the modality.
Multimodal Encoder. The outputs of the Unimodal En-
coders are concatenated into a sequence of tokens: H =
[Hv;Hn;Hs] ∈ R(T+N+S)×D and fed to the Multimodal
Encoder, which is a standard Transformer with multiple lay-
ers of multi-head self-attention:

Z = Transformer(H) ∈ R(T+N+S)×D. (2)

The contextualized embeddings Z = [Zv;Zn;Zs] com-
puted by the Multimodal Encoder capture interactions
within each modality (e.g., temporal relationships within
the video and context among steps of an article) and
across modalities. We can then compute cosine similar-
ity matrices between all pairs of modalities: narrations-
to-video ANV ∈ RN×T , steps-to-video ASV ∈ RS×T ,
and steps-to-narrations ASN ∈ RS×N . For example,
the narrations-to-video similarity matrix ANV is obtained
by simply computing the cosine similarity between each
frame embedding and each narration embedding: ANV

nt =
znn

⊤zvt / (||znn|| ||zvt ||).
Narration-aided Step Grounding. A straightforward in-
ference path for temporally grounding the steps in the video
is directly through the ASV similarity matrix, which cap-
tures the similarity of each video frame with each instruc-
tional step. However, this alignment does not explicitly take
into account the narrations of the video (only implicitly,
through the Multimodal Transformer). We observe that an
alternative way to ground steps in a video is to first iden-
tify narrations in the ASR transcript that are relevant to the
step and then exploit the similarity of those narrations with
video frames to get a loose prior over the step location.
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Figure 2: (left) Schematic illustration of our system. First, it extracts representations for each modality (video, ASR narra-
tions, task steps) with three Unimodal Encoders. These representations are fed to a Transformer-based Multimodal Encoder
for capturing interactions among video frames as well as among the textual modalities and the video. The contextualized
embeddings for video frames, narrations and steps are used to compute correspondences between all pairs of modalities.
Step grounding is achieved by fusing the output of two pathways: a direct pathway aligning steps to video (ASV ) and an
indirect pathway that composes steps-to-narration (ASN ) with narration-to-video (ANV ) alignments to produce a second
step-to-video alignment (ASNV ). We train our model using a teacher-student strategy with iteratively refined and filtered
step pseudo-labels. (right) Qualitative examples of our learned steps-to-video alignment and steps-to-narrations alignment
matrices for a video snippet.

This is computed by combining the information captured
in the steps-to-narrations and narrations-to-video alignment
matrices ASN and ANV :

ASNV = ÃSNANV ∈ RS×T , (3)

where ÃSN is the predicted steps-to-narrations alignment
matrix ASN after being normalized with a softmax function
with temperature ξ: ÃSN

sn = exp (Asn/ξ)∑N
j=1 exp(Asj/ξ)

.

The resulting ASV and ASNV alignment matrices pro-
vide two complementary inference paths to align steps
to video frames. The mutual agreement between the di-
rect steps-to-video alignment provided by ASV and indi-
rect, narration-based steps-to-video alignment provided by
ASNV can be used to better ground steps. Intuitively, if a
frame is both very similar to a step in the joint embedding
space learned by the Multimodal Transformer, and also very
similar to a narration that is relevant to the step, then it is
more likely to be indeed relevant to the step. Hence, we
fuse the ASV and ASNV alignment matrices to a matrix
AF = (ASV +ASNV )/2.

3.3. Weakly-Supervised Training from Narrated In-
structional Videos

Next, we discuss how to supervise the VINA model in
order to learn steps-to-video alignment and narrations-to-

video alignment. We first present the training objective as-
suming that the ground-truth temporal segments for each
narration and step in the video are given. Then we describe
our approach for obtaining automatic pseudo-labels for the
temporal segments.

3.3.1 Learning on Labeled Data

Let B = {Vi,Ni,Si, Y
NV
i , Y SV

i }Bi=1 denote a set of train-
ing tuples, each comprising a video-narration pair, an or-
dered list of relevant task steps, and the target video-
narrations and video-steps alignment matrices, we train the
VINA model by optimising the following objective:

L =
1

B

[ B∑
i=1

λNV H(Y NV
i , ANV

i ) + λSV H(Y SV
i , ASV

i )
]
,

(4)

where H(·, ·) is the modified InfoNCE loss used by [19] for
aligning video with text using noisy ground-truth temporal
segments:

H(Y,A) = − 1

K

K∑
k=1

log

∑
t Yt,k exp (At,k/η)∑

t exp (At,k/η)
, (5)

where η is a temperature constant. Note that although we
do not explicitly supervise the steps-narrations alignment



ASN , meaningful alignments emerge during training due to
the joint grounding of narrations and steps to the same video
samples, as seen in Figure 2. Note that although we do
not directly supervise the steps-to-narrations alignment, our
model is able to learn meaningful correspondences, which
go beyond simple pairwise textual matching.

3.3.2 Pairing Videos with Articles

We assume access to a set of instructional articles A =
{Sj , τj}Wj=1, where τj denotes the article title and Sj the
associated set of steps. To assign a set of steps to a given
video from our training set B we need to associate it with an
article from A. If our video dataset provides metadata (e.g.,
a task id for every video), then this can be used to obtain the
association – although there is no guarantee that this will re-
sult in the best article-match for the video (see discussion in
supplementary materials for more analysis). If such meta-
data is not available, we can predict a task id, using the sim-
ilarity between the narration and the titles of the available
articles. To that end we use an off-the-shelf language model
(e.g. MPNet [49]) to compute semantic embeddings of the
ASR captions of every video and the title of each article
τj ∈ W . For every video Vi we then calculate the seman-
tic similarity between all the N captions in Ni and all task
titles τj ∈ W , and assign N votes; the vote of every cap-
tion goes to the task that best matches it. Finally the video
is assigned the task with the most votes. Alternatively, in
order to obtain multiple sets of steps for a video, we rank
the tasks by the number of votes.

3.3.3 Narration-Aided Pseudo-Labeling

Once a task τj has been associated with a video, we have
access to a list of steps Sj from the article of the task. How-
ever, whether these steps appear in the video and their tem-
poral location remain unknown. Inspired by self-labeling
approaches from the SSL literature [27, 48, 59], we fol-
low a teacher-student approach where a teacher version of
our models generates pseudo-labeled temporal segments for
training the student. For every step represented by a row
in the learned steps-to-video alignment matrix we obtain a
pseudo-ground truth segment by finding the maximal acti-
vation (peak) and expanding a temporal segment on both
sides until the activation falls below an adaptive threshold
ζ (e.g., 70% of the peak). To avoid training with unreliable
pseudo-labels, we filter out pseudo-labels with low confi-
dence: if the peak activation is below a fixed threshold γ,
the alignment of that step is treated as unreliable for pseudo-
labeling, and is altogether ignored.

Training curriculum. For the first Eb epochs we perform
burn-in training of the student model on fixed pseudo-labels
generated by feeding the video and the list of steps Sj to

TAN [19], an off-the-shelf model pre-trained on the task
of video-text alignment. Afterwards, we switch to using
pseudo-labels generated from the teacher, where the teacher
is initialized by duplicating the burn-in student model and
then updated every ν epochs. During both stages, we utilize
the original ASR timestamps for supervising the video-to-
narrations alignment.

4. Experiments
4.1. Datasets and Metrics

We train our models on narrated videos from the
HowTo100M dataset by leveraging the dataset release of
wikiHow instructional articles [22], without using any form
of manual annotations. In order to evaluate the effective-
ness of our method, we evaluate: step grounding on HT-
Step (a new benchmark, described below), narration align-
ment on HTM-Align [19], and zero-shot step localization
on CrossTask [70].

HowTo100M (Training). The HowTo100M dataset [36]
contains instructional videos from YouTube. Following
Han et al. [19], we use the Food & Entertainment subset
containing approximately 370K videos, where each video
is complemented by the “sentencified” ASR transcription of
its audio narration.

wikiHow (Training). We train using 14,541 cooking tasks
from the wikiHow-Dataset [22]. For each task, we generate
an ordered list of steps by extracting the step headlines.

CrossTask (Evaluation). We use this established instruc-
tional video benchmark for zero-shot grounding, i.e., by
directly evaluating on CrossTask our model learned from
HowTo100M. Following common practices, we use two
evaluation protocols: the first one – step localization – aims
at predicting a single timestamp for each occurring step in
videos from 18 primary tasks [70]. Performance is eval-
uated by computing the recall (denoted as Avg. R@1) of
the most confident prediction for each task and averaging
the results over all query steps in a video, where R@1
measures whether the predicted timestamp for a step falls
within the ground truth boundaries. We report average re-
sults over 20 random sets of 1850 videos [70]. The sec-
ond task – article grounding – requires predicting temporal
segments for each step of an instructional article describing
the task represented in the video. We use the mapping be-
tween CrossTask and simplified wikiHow article steps pro-
vided in Chen et al. [12] and report results on 2407 videos
of 15 primary tasks obtained excluding three primary tasks
following the protocol of [12] (see supplementary materi-
als for details). Performance for this task is measured with
Recall@K at different IoU thresholds [12].

HT-Step (Evaluation). To evaluate the effectiveness of
our model in grounding steps, we introduce an evaluation



benchmark consisting of 1200 HowTo100M videos span-
ning a total of 177 unique tasks, with each video manu-
ally annotated with temporal segments for each occurring
step. For each video, annotators were provided with the task
name (e.g., Make Pumpkin Puree) and the recipe steps from
the corresponding wikiHow article. We refer the reader to
supplementary materials for details about the data annota-
tion. We split the annotated videos into a validation and a
test set, each containing 600 videos, with 5 videos per task.
We ensure that our validation set does not contain videos
from HTM-Align.

HTM-Align (Evaluation). This benchmark is used to eval-
uate our model on narration grounding. It contains 80
videos where the ASR transcriptions have been manually
aligned temporally with the video. We report the R@1 met-
ric [19], which evaluates whether the model can correctly
localize the narrations that are alignable with the video.

4.2. Implementation Details

As video encoder we adopt the S3D [60] backbone pre-
trained with the MIL-NCE objective on HowTo100M [35].
Following previous work [19, 61], we keep this module
frozen and use it to extract clip-level features (one fea-
ture per second for video decoded at 16 fps). For extract-
ing context-aware features for each sentence (step or nar-
ration), we follow the Bag-of-word (BoW) approach based
on Word2Vec embeddings [37]. Our methods hyperparam-
eters were selected on the HT-Step validation set and are:
λSV = λNV = 1, temperatures η, ξ = 0.07, and thresh-
old γ = 0.65. We train our model for 12 epochs, with
3 epochs burn-in and then we update the teacher every 3
epochs. Pseudo-labels are obtained based on the steps-to-
video alignment matrix. To obtain temporal segment detec-
tions from the step-to-video alignment output of our model
(e.g. for evaluating on the CrossTask article grounding set-
ting) we use a simple 1D blob detector [57]. Unless other-
wise specified, we use the fused alignment matrix for step
grounding when narrations are available during inference
time. More details are included in supplementary materials.

4.3. Results

4.3.1 Comparison with the State of the Art
Weakly-Supervised Narration and Step Grounding. Ta-
ble 1 compares the step and narration grounding perfor-
mance of our method with recent state-of-the-art video-text
alignment methods trained on HowTo100M using ASR nar-
rations: MIL-NCE [35] and TAN [19]. When using them
for narration alignment, we feed them with ASR as input.
But we also evaluate them as strong baselines for zero-
shot step grounding by feeding them with the sequence of
steps as input. Our model achieves 66.5% R@1 on nar-
ration alignment on HTM-Align, leading to an absolute

Method Train. Inp. HT-Step ↑R@1 HTM-Align ↑R@1

w/o nar. w/ nar.

CLIP (ViT-B/32) [39] - - - 23.4
MIL-NCE [35] N 30.7 - 34.2
TAN (Joint+Dual, S2) [19] N - - 49.4
TAN* (Joint, S1, LC) [19] N 31.2 - 47.1
TAN* (Joint, S1, PE+LC) [19] N 7.9 - 63.0

Ours N+S 35.6 ± 0.4 37.4 ± 0.4 66.5 ± 0.9

Table 1: Comparison with state-of-the-art methods for
step and narration grounding. We report results on the
HT-Step and HTM-Align test sets, respectively. TAN*
refers to our improved baselines of [19]. S1 and S2 re-
fer to the training stages followed in [19]. PE denotes the
addition of positional encoding to the output of the narra-
tion encoder. LC denotes long context, i.e., our improved
TAN* baseline using 1024 seconds of context as opposed
to 64 for TAN. Previous best results are shown underlined.
Our VINA results are reported after 5 random runs. VINA
clearly outperforms all previous work – as well as our im-
proved TAN baselines – by large margins on both narration
alignment and step grounding.

improvement of 17.1% over the previously reported state-
of-the-art (49.4%). Notably, on HTM-Align our method
surpasses TAN* (Joint, S1, PE, LC) which is a new ver-
sion of TAN [19] implemented by us and much stronger in
video-narration alignment. Our re-implementation uses po-
sitional encodings for ASR narrations, is trained on long-
form videos (up to 17 minutes) only with original ASR
timestamps, while TAN was trained on 1 min video-clips
with refined narration timestamps and used a fusion of
two models during inference (Joint+Dual). Our method
also outperforms all baselines for step grounding on HT-
Step even when seeing only steps during inference, while
being trained with (video, narrations, steps) triplets. It
also outperforms TAN* (Joint, S1, LC), which is a second
re-implementation of TAN designed for maximum perfor-
mance on the task of step grounding. Additionally, VINA
is able to use ASR transcripts of videos during test time, if
available, to further boost the performance.

Step localization on CrossTask. In Table 2 we compare
our model against the state-of-the art in step localization on
the CrossTask benchmark. Our approach sets a new state-
of-the-art for zero-shot step localization on this challenging
benchmark. Importantly, most approaches are evaluated on
this dataset by feeding their predicted steps-to-frames align-
ment matrix to a dynamic programming algorithm which
finds the optimal assignment of each step with exactly one
short clip assuming a canonical, fixed ordering of steps for
each task. In contrast, our method, which is naturally aware
of context and ordering by densely grounding steps, can

https://www.wikiHow.life/Make-Pumpkin-Puree


Method ↑Avg. R@1 (%)

Supervised
TempCLR [64] 52.5

Zero-Shot
HT100M [36] 33.6
VideoCLIP [61] 33.9
MCN [11] 35.1
DWSA [45] 35.3
MIL-NCE [35] 40.5
Zhukov [70] 40.5
VT-TWINS* [21] 40.7
UniVL [31] 42.0

Ours w/o nar. 44.1
Ours w/ nar. 44.8

Table 2: Comparison with state-of-the-art methods
for zero-shot action step localization on the CrossTask
dataset. The performance of the state-of-the-art fully-
supervised method (TempCLR [64]) is reported as an upper-
bound to the zero-shot approaches. * denotes results re-
ported on different test splits, and hence not directly com-
parable with the rest. Our model outperforms all previous
works by a clear margin (2.1% absolute improvement over
the previous best result on the standard split). When pro-
viding narrations as additional inputs during inference (only
text, not the timings), we obtain a further 0.7% boost.

outperform prior results without imposing any constraints
during inference.

Model ↑R@50(IOU) ↑R@100(IOU)

0.1 0.3 0.5 0.1 0.3 0.5

MIL-NCE-max [35] 33.5 12.0 4.9 39.7 14.3 5.9
MIL-NCE-avg [35] 42.9 24.3 12.9 56.8 32.1 17.0
WSAG [12] 40.1 23.1 10.1 54.3 31.3 14.0

Ours 87.1 59.0 30.0 90.6 61.1 30.9

Table 3: Comparison with state-of-the-art approaches
for article grounding on the CrossTask dataset.

Article grounding on CrossTask. VINA is robust to the
type of language in which task steps are described. It can
handle both atomic phrases (as demonstrated by our re-
sults on step localization on CrossTask), but also rich, nat-
ural language step descriptions, as evidenced by perfor-
mance on HT-Step. To further demonstrate this, we com-
pare against the state-of-the art on the article grounding task
of CrossTask in Table 3. Our model outperforms all previ-
ous works by a large margin. We emphasize the perfor-
mance improvement we obtain compared to WSAG, which
highlights the importance of exploiting the narration infor-
mation for training.

4.3.2 Ablation Studies

We perform ablations to assess the impact of the various
design choices in our method by measuring step ground-
ing performance on the HT-Step validation set and video-
narration alignment performance on HTM-Align.

Method Train. Inp. Iter. Pseudo. HT-Step ↑R@1 HTM-Align

w/o nar. w/ nar.

Baseline/Initial Step Pseudo-labels
(1) TAN Joint S1 N 30.7 - 47.1

Single-Task Training
(2) Ours N - - 63.2
(3) Ours S 34.0 - -
(4) Ours S ✓ 35.8 - -

Multi-Task Training
(5) Ours N+S 34.3 36.1 64.8
(6) Ours N+S ✓ 36.9 39.1 67.0

Table 4: Ablation of main components of our frame-
work. We study the contribution of (a) multi-task train-
ing for narration and step grounding, (b) iterative step
pseudo-labeling (Iter. Pseudo), and (c) narration-aware step
grounding (w/ nar.). We report results on the HT-Step val
set for STG and HTM-Align for NG. We compare train-
ing only with narrations (N), only with wikiHow steps (S),
and training with narrations-steps sequence pairs (N+S). We
also compare the performance with and without providing
narrations during inference.

Effect of weak supervision from instructional articles.
Row 3 in Table 4 shows the step grounding results obtained
from an instance of our model that includes only the di-
rect video-step alignment pathway and that is trained just
on wikiHow steps (without narrations) using the fixed step
pseudo-labels from TAN* [19] without any form of iterative
pseudo-labeling (row 1). Remarkably, this variant improves
by 3.3% over the step-grounding performance of TAN*.
When we let this variant update the step pseudo-labels (row
4), the recall improves further (5.1% over TAN*). These
results provide evidence of the strong benefits of utilizing
instructional articles for the learning of step grounding.

Effect of multimodal training and inference. Training
our model with multi-modal textual inputs (steps and nar-
rations), we observe an improvement of 1.6% in narration
grounding (row 5 of Table 4) compared to its single-task
counterpart (row 2). However the gain in step grounding is
marginal when seeing only video frames during inference
(w/o nar., 34% in row 3 vs 34.3% in row 5). Our conjecture
is that the missing modality (narrations) leads to some drop
in performance. Providing both steps and narrations during
inference leads to a stronger step grounding performance,
which surpasses the TAN* baseline by 5.4% (30.7 → 36.1).



Effect of iterative pseudo-labeling. By comparing row 5
to row 6 of Table 4 we observe a clear boost in performance
on both step grounding and narration alignment. This is a
clear indication of the gains produced by iteratively refin-
ing the pseudo-labels using our model as a teacher during
training.

Alignment S → V S → N N → V HT-Step ↑R@1

S → V learned - - 34.3
S → N → V - learned learned 30.5
S → N → V - learned ASR 27.9
S → N → V - MPNet [49] ASR 19.0
Fused learned learned learned 36.1

Table 5: Impact of the alignment matrix used during in-
ference with narrations. The same model is used for all
results (corresponding to row 5 in Table 4).

Impact of pathways during inference. In Table 5 we
study the effects of using different pathways and align-
ment information during inference. All results are produced
from the same model trained for joint narration and step
grounding with fixed pseudo-labels from TAN (row 5 in Ta-
ble 4). Grounding steps using the indirect steps-to-video
alignment only lags by 3.8% behind the direct steps-to-
video alignment that directly computes the similarity be-
tween steps and video frames (30.5% vs 34.3%). Their fu-
sion outperforms their individual grounding performance.
This suggests that they capture complementary information.
We also explore substituting our learned steps-to-narrations
alignment with an alignment computed with an off-the-shelf
language model. This significantly degrades performance
(19.0%) showing that our joint steps and narrations ground-
ing model learns relationships between steps and narra-
tions that go beyond textual similarity between pairs of sen-
tences. Similarly, substituting our learned narrations-to-
video alignment with an alignment based on the original
ASR timestamps reduces performance by 2.6%.

Iterative pseudo-labeling strategies. In Table 6 we ab-
late design choices for the iterative pseudo-labeling stage.
We can observe that using aggressive filtering (i.e., high
thresholds translating to a high maximum percentage of
pseudo-labels that are discarded) is key to observing gains
from iterative pseudo-labeling (using either the S → V or
Fused alignment matrices) compared to training with fixed
pseudo-labels from TAN. Intuitively, a large percentage of
steps described in wikiHow articles are not represented in
the given instructional video due to task mismatch, varia-
tions in recipe execution, and some steps being optional.
Therefore, starting with a small subset of reliable pseudo-
labels can facilitate step grounding.

Task selection. In Table 7 we investigate different strate-
gies to select the wikiHow articles during training. This
selection determines the set of steps to be grounded. We

Alignment γ max % step HT-Step ↑R@1

discarded w/o nar. w/ nar.

S → V 0.40 24 34.3 36.5
S → V 0.65 91 36.9 39.1

Fused 0.40 60 34.1 35.9
Fused 0.55 88 36.2 35.5

Table 6: Ablation of the type of alignment matrix and
filtering threshold used for pseudo-label generation.
Pseudo-label generation with the steps-to-video alignment
matrix and the fusion of the direct and indirect pathways
perform comparably for step grounding. Aggressive unreli-
able pseudo-label filtering with high confidence thresholds
γ (large maximum step discard ratio) helps in both cases.

Task ID selection HT-Step ↑R@1

HT100M metadata 34.3
Top-1 prediction 34.7
Random / top-5 pred 34.3

Table 7: Sensitivity to task id selection. We assess how the
performance of our method changes when using different
strategies to associate videos with articles. We experiment
with using the task ids available from HT100M, as well as
the the two predictive strategies presented in Section 3.3.2.
We conclude that our method is robust to the task selection,
and the task labels are not necessary for training.

evaluate two strategies for video-task association from nar-
rations and compare them with using the task id provided in
the HowTo100M metadata for each video3. We see that our
automatic selection approaches yield results on par with or
even slightly better than those based on metadata.

5. Conclusion

We have presented a method for learning how to tem-
porally ground sequences of steps in instructional videos,
without any manual supervision. Our proposed method
exploits the weak supervision naturally provided in such
videos through their narrations, and solves for joint align-
ment of narrations and steps, while fusing two comple-
mentary pathways for step-to-video alignment. We demon-
strated strong quantitative performance, surpassing the
state-of-the-art on multiple benchmarks for both narration
and step grounding.

Acknowledgements. We thank Huiyu Wang, Yale Song,
Mandy Toh, and Tengda Han for helpful discussions.

3During inference, metadata task ids are used in all of our HowTo100M
experiments in order to evaluate against the ground-truth step annotations.
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This Appendix provides: additional details (annotation
procedure, statistics) about the HT-Step dataset that we in-
troduced for evaluating models on step grounding (Sec-
tion A), additional details for the rest of the datasets that
were used for training/evaluation (Section B), implementa-
tion details (Section C), qualitative results for step ground-
ing on HT-Step (Section D), additional ablation studies
(Section E), and additional details about the evaluation of
our models on HTM-Align (Section F).

A. HT-Step Dataset

Dataset Step Annot. # Videos # Activities # Steps # Segments

HowTo100M [36] ✗ 1.2M 25k - -
HTM-Align [19] ✗ 80 80 - -
CrossTask [70] ✓ 4.8k (2.8k) 83 (18) 133 20.9k
HT-Step (val) ✓ 600 120 1,204 3,441
HT-Step (test) ✓ 600 120 1,242 3,631

wikiHow - 14k 100k -

Table 8: Summary statistics for the datasets in our work.
For CrossTask, the statistics for primary activities only are
shown in parentheses.

In this section we provide details about the creation
of the HT-Step benchmark that we used for evaluating
our models. This benchmark was designed to provide a
high-quality set of step-annotated instructional videos for
a plethora of tasks, described in rich, structured language
instead of atomic phrases.
Annotation setup. We used videos from the HowTo100M
dataset; each one of those videos contains a task id label that
corresponds to a wikiHow article. This association enabled
us to obtain a set of potential step descriptions for every
video, directly from the corresponding wikiHow article. We
note that this association is noisy, e.g. the video might show
a variation of a specific recipe, where some of the steps in
the article often do not appear at all, appear partially, are
executed in different order, or are repeated multiple times.
Annotation instructions. For each video, annotators were
provided with the task name (e.g., Make Pumpkin Puree)
and the recipe steps from the corresponding wikiHow arti-
cle. The annotators where asked to watch the whole video
and first decide whether it is relevant to the given task –
i.e. if at least some of the given steps were visually demon-
strated and the task’s end goal was the same (e.g. a specific
recipe) – or reject it otherwise. When a video was deemed
relevant, annotators were asked to mark all instances of the
provided steps with a temporal window. We note that Wik-
iHow articles often contain several variations/methods for
completing a given task. For tasks where this was the case,
the annotators were asked to select the set of steps corre-
sponding to the variation that best fits every video and only

use those steps for annotating the entire video.
QA process. To ensure the quality of the annotations, we
followed a rigorous multi-stage Quality Assurance (QA)
process: In the first stage, the videos were annotated by a
single annotator. These initial annotations were then re-
viewed by more experienced annotators, who either ap-
proved all the annotations on a given video (meaning all
the marked steps were correct and no steps were missing)
or marked it for redoing with specific comments on which
annotations needed fixing and in what way. At the last stage
of the QA process, the annotations that were marked as in-
correct were redone by third, independent annotators.
Statistics. We provide per-activity statistics for the annota-
tions in Table 9. The metrics used, i.e. number of unique
steps, step and video coverage, are given to provide an un-
derstanding of how the number of steps varies between dif-
ferent tasks and how the steps of a task may appear partially
in the HowTo100M videos.
Validation and test (val/test) split. Overall during the full
annotation process, approximately 35% of the videos were
rejected as irrelevant to the given tasks. We split the re-
maning, annotated videos into a validation and a test set,
each containing 600 videos, with 5 videos per task. We en-
sured that our validation set does not contain videos from
HTM-Align. In total 87 human annotators manually anno-
tated 1200 videos over 177 tasks: 120 in the validation and
120 in the test set, with 5 videos per task, i.e. with 63 tasks
overlapping between the two sets.

B. Datasets Details
We provides a statistics summary for the datasets used

for training and evaluation in Table 8.
HowTo100M (Training). HowTo100M contains over 1M
unique instructional videos, spanning over 24k activities in-
cluding cooking, DIY, arts and crafts, gardening, personal
care, fitness and more. Each instructional video is comple-
mented by the ASR transcription of it’s audio, which usu-
ally contains the real time narration/commentary of the in-
structor during the activity. We use the ”senticified” version
of the ASR sentences provided by Han et al. [19]. Follow-
ing Han et al. [19] we also train only using the Food &
Enteratainment subset, which includes a subset of approxi-
mately 370k videos.
wikiHow (Training). We train using 14,541 cooking tasks
from the wikiHow-Dataset [22]. For each task, we gen-
erate an ordered list of steps by extracting the step head-
lines. The HowTo100M dataset was curated using a semi-
automatic pipeline that involved searching YouTube with
queries based on the titles of wikiHow articles. Conse-
quently there is an almost complete overlap in activities
between the two corpora, which makes wikiHow a natu-
ral choice for mining step-level articles to associate with

https://www.wikiHow.life/Make-Pumpkin-Puree
https://www.wikiHow.life/Make-Pumpkin-Puree


Task # steps step coverage video coverage

Make Zucchini Pancakes 4.0 0.83 0.37
Make a Hearty Stew 3.5 0.82 0.12
Make Beef and Broccoli 3.1 0.78 0.24
Make Coconut Popsicles 3.8 0.76 0.28
Make Yorkshire Pudding 5.3 0.76 0.11
Cook Spaghetti alla Carbonara 4.6 0.73 0.39
Make Vegan Pesto 2.2 0.73 0.15
Make Corn Fritters 6.4 0.72 0.28
Make Buttermilk Fried Chicken 4.2 0.70 0.44
Make a Shrimp Po Boy Sandwich 4.2 0.70 0.27
...

...
...

...
...

Cook Prime Rib 2.6 0.19 0.19
Cure Bacon 2.2 0.18 0.11
Make Dim Sum 4.6 0.18 0.15
Make Vegan Ceviche 2.8 0.17 0.08
Make Lobster Bisque 3.6 0.17 0.28
Make Giblet Gravy 2.8 0.16 0.23
Make Pickled Eggs 4.4 0.16 0.19
Pickle Onions 1.6 0.15 0.12
Cook Rib Eye Roast 2.0 0.12 0.28
Make Pap 2.0 0.12 0.21

Average 4.0 0.42 0.24

Table 9: Statistics of the annotations used to create the HT-
Step benchmark. The metrics are computed per task (for
177 tasks in total), averaged over all the annotated videos
for a given task. # steps denotes the average number of
unique steps annotated per video, per activity; step cover-
age denotes the fraction of a task’s steps that have been
found and annotated in every video; video coverage de-
notes the fraction of the video’s duration that is covered by
step annotations; Rows are sorted by step coverage; only
the 10 tasks with the highest and lowest step coverage are
shown here for brevity.

instructions in HowTo100M videos. In the context of this
paper we used the wikiHow-Dataset [22] to collect the arti-
cles for 14,541 cooking tasks.

CrossTask (Evaluation). We use this established instruc-
tional video benchmark for zero-shot grounding, i.e., by
directly evaluating on CrossTask our model learned from
HowTo100M. The Crosstask dataset [70]. is an established
benchmark for temporal localization of steps in instruc-
tional videos. It consists of 4800 videos from 83 activities,
which are divided into 18 primary (14 related to cooking
and 4 to DIY car repairs and shelf assembly) and 65 re-
lated activities. The videos in the primary activities are an-
notated with step annotations in the form of temporal seg-
ments from a predefined taxonomy of 133 steps. Those
steps tend to be atomic, e.g. for activity “Make Taco
Salad” the available steps are “add onion”, “add taco”, “add
lettuce”, “add meat”, “add tomato”, “add cheese”, “stir”,
and “add tortilla”. Following common practices, we use
two evaluation protocols: the first one – step localization
– aims at predicting a single timestamp for each occurring
step in videos from 18 primary tasks [70]. Performance is
evaluated by computing the recall (denoted as Avg. R@1)

of the most confident prediction for each task and averag-
ing the results over all query steps in a video, where R@1
measures whether the predicted timestamp for a step falls
within the ground truth boundaries. We report average re-
sults over 20 random sets of 1850 videos [70]. The second
task – article grounding – requires predicting temporal seg-
ments for each step of an instructional article describing the
task represented in the video. We use the mapping between
CrossTask and simplified wikiHow article steps provided in
Chen et al. [12] and report results on 2407 videos of 15
primary tasks obtained excluding three primary tasks fol-
lowing the protocol of [12]. Performance for this task is
measured with Recall@K at different IoU thresholds [12].
HTM-Align (Evaluation). This benchmark is used to eval-
uate our model on narration grounding. It contains 80
videos where the ASR transcriptions have been manually
aligned temporally with the video. In the main submission,
we report the R@1 metric [19], which evaluates whether the
model can correctly localize the narrations that are alignable
with the video. In Section F we also evaluate our model in
terms of its capability to decide whether a narration is vi-
sually groundable in the video or not using the ROC-AUC
metric [19]. AUC denotes the area the ROC curve of the
alignment task, and measures the ability of the model to
correctly predict whether a given step is alignable within a
video or not.

C. Implementation Details
As video encoder we adopt the S3D [60] backbone pre-

trained with the MIL-NCE objective on HowTo100M [35].
Following previous work [19, 61], we keep this module
frozen and use it to extract clip-level features (one fea-
ture per second for video decoded at 16 fps). For extract-
ing context-aware features for each sentence (step or nar-
ration), we follow the Bag-of-word (BoW) approach based
on Word2Vec embeddings [37]. These embeddings are ini-
tialized based on MIL-NCE Word2Vec and are fine-tuned
during training.

The hyperparameters of the model compared with state-
of-the-art methods in Tables 1,2,3 of the main submission
were selected based on R@1 performance on the HT-Step
validation set and are: λSV = λNV = 1, temperatures
η, ξ = 0.07, and pseudo-label filtering threshold γ = 0.65.
We train our model for 12 epochs, with 3 epochs burn-
in training with step pseudo-labels generated by TAN, and
then we update the teacher VINA every 3 epochs. We use
the AdamW [30] optimizer, having an initial learning rate of
2e− 4 decayed with a cosine learning schedule. Our batch
size is 32 videos, with maximum length of 1024 seconds.

Pseudo-labels are obtained based on the steps-to-video
alignment matrix and are generated (before filtering) as fol-
lows: for each step we find the timestep with maximum
similarity with the step and then extend a temporal segment



to the left and right of that peak as long as the similarity
score does not follow below 0.7 of the peak height. Pseudo-
labels whose peak score falls below the filtering threshold γ
are not used for training.

The rest of hyperparameters were selected based on
TAN [19]. The multimodal encoder is a pre-norm multi-
layer transformer which consists of 6 layers of self-
attention, with 8 heads and has hidden dimension D = 512.
A learnable positional encoding of size D = 512 is used
to inject temporal information to each frame/narration/step
token.

To obtain temporal segment detections from the step-to-
video alignment output of our model (e.g. for evaluating on
the CrossTask article grounding setting or for the qualitative
video included in this supplementary) we use a simple 1D
blob detector [57]. Unless otherwise specified, we use the
fused alignment matrix for step grounding when narrations
are available during inference time.

Our model is trained on 8 GPUs (Tesla V100-
SXM2-32GB) and training lasts approximately 10-12
hours. All models were implemented in Python using
Pytorch and are based on the PySlowFast (https:
//github.com/facebookresearch/SlowFast)
and TAN (https://github.com/TengdaHan/
TemporalAlignNet) open-source codebases. For
ablation studies, we choose the best checkpoint for each
configuration based on performance on HT-Step validation
set and report its test split performance.

D. Qualitative Results
In this section, we provide qualitative results for the

ground-truth steps-to-video alignment and predicted align-
ments by our improved baseline that serves as the initial
teacher model (TAN*), and our model (using the direct
steps-to-video alignment without narrations) or the fusion
with the indirect steps-to-video alignment (with narrations).
From these qualitative results (Figure 3), we observe that
our VINA model can correctly temporally localize visu-
ally groundable steps, despite being trained only with noisy
pairs of narrated videos and instructional steps. Predicted
alignments tend to also be less noisy than TAN*, show-
casing the effectiveness of training a video-language align-
ment model with distant supervision from WikiHow arti-
cles. Our model can also leverage ASR transcripts (with-
out any temporal information regarding when the instructor
uttered each narration) to further improve its results (Fig-
ure 4).

E. Extra Ablations
Architecture ablations. In Table 10 we study the design
of the unimodal encoder used to embed steps before they
are fed to our Multimodal Transformer. Overall, using po-

sitional embeddings capturing the ordering of steps in a
task, and using modality-specific projection MLPs leads to
a slightly better performance in step grounding (w/o nar-
ration input). Narration grounding seems to benefit from
using a shared text encoder, possibly because this facilitates
knowledge transfer from the WikiHow steps.

PE Sep. MLP HT-Step ↑R@1 HTM-Align

w/o nar. w/ nar.

✓ 33.5 34.0 65.8
34.0 34.9 65.9

✓ 33.8 34.4 67.0
✓ ✓ 34.3 36.1 64.8

Table 10: Ablation study on architecture design. We
study the contribution of positional encodings for steps (PE)
and of specialized text projection layers for wikiHow article
steps (Sep. MLP). All models are trained for joint narration
and step grounding with fixed pseudo-labels from TAN and
evaluated on HT-Step val split (last row corresponds to row
5 in Table 4 of the main text).

F. Experimental Setup on HTM-Align
As explained in the official code repository of

TAN [19] (https://github.com/TengdaHan/
TemporalAlignNet/tree/main/htm_align), the
results reported for HTM-Align are obtained with a text
moving window of 1 minute, i.e., for each 1-minute tempo-
ral segment only ASR captions whose original time-stamps
fall within a 3-min window centered around this temporal
segment are considered for grounding. Instead, for all
our reported results (for TAN* and VINA) we operate in
the more challenging setup where an ASR caption can be
grounded in any timestep of the original video (there is
no knowledge about the original ASR timestamps during
inference). Under this more challenging setup, our model
outperforms TAN both in narration retrieval, as measured
by Recall@1 (66.5% vs 49.4%, as seen in Table 1 of the
main submission).

Our model also performs comparably with TAN in step
alignability prediction, as measured by ROC-AUC (76%
vs 75.1%). Note that our model does not have dedicated
alignability head for predicting whether a narration exists or
not in the video as TAN [19]. Instead, we simply obtain an
alignability score by using the maximum cosine similarity
score over time, where cosine similarities of each narration
with each video frame are computed based on the outputs
of the unimodal encoders.

G. Limitations and Ethical Concerns
From the qualitative results, we observe that due to the

losses used during training, which do not explicitly penalize

https://github.com/facebookresearch/SlowFast
https://github.com/facebookresearch/SlowFast
https://github.com/TengdaHan/TemporalAlignNet
https://github.com/TengdaHan/TemporalAlignNet
https://github.com/TengdaHan/TemporalAlignNet/tree/main/htm_align
https://github.com/TengdaHan/TemporalAlignNet/tree/main/htm_align


(a) Ground-truth step grounding annotations.

(b) Predicted alignment by TAN*.

(c) Predicted alignment by VINA w/o narrations.

(d) VINA w/ narrations.

Figure 3: Qualitative results on a validation video of the HT-Step dataset (VIQYQkA3mNU) demonstrating how to Broil Steak.
Steps that are not visually groundable in the video are highlighted in blue, steps that are correctly retrieved by each model
are highlighted in green, while steps that are not retrieved are shown in red. Figure best viewed zoomed in and in color.

wrong temporal extent (as long as the predicted heatmap has
a peak within the target temporal window), grounded tem-
poral segments tend to be short. This is especially promi-
nent when using the direct steps-to-videos alignment that
is explicitly supervised (second to last row of the predicted
alignment figures). Furthermore, our training objective does
not utilize negative examples, e.g. steps that are not vi-
sually groundable, to suppress detections. This can lead
to confident detections for missing steps. Another limita-
tion of our approach (similar to previous approaches that
operate on pre-extracted visual features) is that our per-
formance is limited by the quality of the extracted visual
representations. Regarding ethical concerns, public instruc-
tional video datasets and public knowledge base datasets
may have gender, age, geographical and cultural bias.



(a) Ground-truth step grounding annotations.

(b) Predicted alignment by TAN*.

(c) Predicted alignment by VINA w/o narrations.

(d) VINA w/ narrations.

Figure 4: Qualitative results on a validation video of the HTM-Step dataset (0dHofx1lqAg) demonstrating how to Make
Broccoli Cheese Soup. Steps that are not visually groundable in the video are highlighted in blue, steps that are correctly
retrieved by each model are highlighted in green, while steps that are not retrieved are shown in red. Figure best viewed
zoomed in and in color.


